s/stauentwicklung/Staubentwicklung/gi
Informationen über Großfeuerungsanlagen der gemeldeten Standorte 2022. Die 13. BImSchV regelt Anforderungen an die sogenannten Großfeuerungsanlagen. Für diese Anlagen gelten Messverpflichtungen und Berichtspflichten gegenüber der Europäischen Union. Ausgenommen von diesen Berichtspflichten sind aufgrund des Geltungsbereiches der EU-Richtlinie 2001/80/EG z. B. große Feuerungsanlagen aus Zuckerfabriken und der chemischen Industrie. Große Feuerungsanlagen, in denen auch Abfälle mitverbrannt werden, unterliegen anderen Berichtspflichten, so dass diese hier nicht berücksichtigt sind. Eingestellt in dieser interaktiven Kartendarstellung sind die in Niedersachsen erfassten Großfeuerungsanlagen im Zuständigkeitsbereich der Gewerbeaufsicht und des Landesamtes für Bergbau, Energie und Geologie , die dem Geltungsbereich der 13. BImSchV unterliegen. Durch Anklicken der einzelnen Standorte erhalten Sie Detailinformationen zu den Anlagen. Dem Informationsblatt der jeweiligen Großfeuerungsanlage können Sie vom Betreiber angegebene Daten, wie beispielsweise den Betreiber der Anlage, den Energieeinsatz und die Emissionen an SOx, NOx und Staub, aber auch die zuständige Immissionsschutzbehörde entnehmen. Im Informationsblatt finden Sie des Weiteren ein Diagramm, welches die zu berichtenden Jahresemissionen und den Gesamtenergieeinsatz der letzten vier Jahre darstellt. Die Daten werden jährlich aktualisiert.
Im Forschungsvorhaben "Untersuchungen zur möglichen Freisetzung von Nanopartikeln bei der Ablagerung und bodenbezogenen Anwendung von mineralischen Abfällen" wurden mögliche Freisetzungspfade von Nanopartikeln bei der Aufbereitung und Verwertung fester Verbrennungsrückstände aus der Haumüll- und Klärschlammverbrennung untersucht. Zu diesem Zweck wurden Hausmüll- und Klärschlammchargen mit nanoskaligem Titandioxid dotiert und anschließend in Verbrennungsanlagen thermisch behandelt. Die erzeugten nanomaterialhaltigen Schlacken und Aschen wurden unter Zuhilfenahme der Röntgenspektroskopie (REM EDX) hinsichtlich ihres Agglomerations- bzw. Aggregationsverhaltens untersucht und bewertet. Darüber hinaus wurden die Asche- und Schlackeproben im Hinblick auf Staubfreisetzung bei der mechanischen Aufbereitung bewertet und mittels Lysimeter- bzw. Deponiekörperreaktoren das Elutionsvermögen der Nanopartikel untersucht. Die Forschungsergebnisse legen eine besondere Sorgfalt bei der mechanischen Aufbereitung der Verbrennungsrückstände nahe, z.B. durch Maßnahmen wie Kapselung und Befeuchtung zur Minderung der Staubemissionen, sowie bei der bodenbezogenen Verwertung der Klärschlammverbrennungsaschen. Veröffentlicht in Texte | 136/2020.
Deponiegas-Gasmotor-BHKW mit Oxkat, technische Kenndaten nach #1 bis #3, Kosten und Emissionen nach #4, aktualisiert durch Daten nach #5 für Staub, NMVOC, CH4 und N2O. Mager-Gasmotor mit lambda=1,7. Änderungen gegenüber den Technologiedaten 2000: Reduktion der Investkosten um 4,2%;Erhähung des Nutzungsgrades um 2%; Reduktion des thermischen Nutzungsgrades um 1%; Absenkung der Output-bezogenen Emissionen um 1%(Außer SO2, HCl und HF) + Minderung durch Effizienzsteigerung. Hier mit energiebezogener Allokation zwischen Strom und genutzter Koppelwärme Auslastung: 7000h/a Brenn-/Einsatzstoff: Brennstoffe-Bio-Gase Flächeninanspruchnahme: 45m² gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 20a Leistung: 1MW Nutzungsgrad: 37% Produkt: Elektrizität Verwendete Allokation: Allokation nach Energieäquivalenten
Deponiegas-Gasmotor-BHKW mit Oxkat, technische Kenndaten nach #1 bis #3, Kosten und Emissionen nach #4, aktualisiert durch Daten nach #5 für Staub, NMVOC, CH4 und N2O. Mager-Gasmotor mit lambda=1,7. Änderungen gegenüber den Technologiedaten 2000: Reduktion der Investkosten um 7,4%; Erhöhung des Nutzungsgrades um 4%; Reduktion des thermischen Nutzungsgrades um 2%; Absenkung der Output-bezogenen Emissionen um 1% (außer SO2, HCl und HF) + Minderung durch Effizienzsteigerung. Auslastung: 7000h/a Brenn-/Einsatzstoff: Brennstoffe-Bio-Gase Flächeninanspruchnahme: 45m² gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 20a Leistung: 1MW Nutzungsgrad: 39% Produkt: Elektrizität
Deponiegas-Gasmotor-BHKW mit Oxkat, technische Kenndaten nach #1 bis #3, Kosten und Emissionen nach #4, aktualisiert durch Daten nach #5 für Staub, NMVOC, CH4 und N2O. Mager-Gasmotor mit lambda=1,7. Änderungen gegenüber den Technologiedaten 2000: Reduktion der Investkosten um 4,2%;Erhähung des Nutzungsgrades um 2%; Reduktion des thermischen Nutzungsgrades um 1%; Absenkung der Output-bezogenen Emissionen um 1% (außer SO2, HCl und HF) + Minderung durch Effizienzsteigerung. Auslastung: 7000h/a Brenn-/Einsatzstoff: Brennstoffe-Bio-Gase Flächeninanspruchnahme: 45m² gesicherte Leistung: 100% Jahr: 2015 Lebensdauer: 20a Leistung: 1MW Nutzungsgrad: 37% Produkt: Elektrizität
Brennen von Kalk (Drehrohröfen). Unter dem Prozess des Kalkbrennens versteht man die Zersetzungsreaktion des Kalksteins durch die Zufuhr thermischer Energie: CaCO3 => CaO + CO2. In der Technik wird die Zersetzung bei 900-1100°C durchgeführt. Das Brennen des Kalks kann in verschiedenen Formen von Öfen erfolgen. Dabei gibt es vier Haupttypen, deren Anteile nach einer Umfrage des Bundesverbandes der deutschen Kalkindustrie folgendermaßen anzunehmen sind: Tab.: Ungefährer Anteil einzelner Ofentypen zur Branntkalkherstellung (BdK 1995). Ofentyp Mengenanteil in % Schachtofen 30 Ringschachtofen 30 Gleichstrom-Gegenstrom-Regenerativofen (GGR-Ofen) 25 Drehrohrofen 15 Die in dieser Bilanz genutzten Daten beziehen sich auf den Brennprozess in einem Drehrohrofen. Im Vergleich zu den meisten Schachtöfen zeichnet sich der Drehrohrofen durch einen höheren Energieverbrauch aus. Ein Drehrohrofen kann prinzipiell mit Gas, Öl und festen Brennstoffen befeuert werden. Je nach Brennstoff variiert der Energiebedarf der Drehrohröfen von 8400 MJ/t Branntkalk für die einfachsten gasbefeuerten Öfen bis zu 5050 MJ/t Branntkalk für die komplexeren kohle-befeuerten Einheiten (Ullmann 1990). Im Vergleich zu den Schachtöfen ist es einfacher - auch bei hohem Schwefelgehalt der Brennstoffs (Kohle) - einen Kalk mit geringerem Schwefelgehalt herzustellen, wie er zum Beispiel für die Stahlindustrie gebraucht wird, wo er unter anderem dazu eingesetzt wird, um das Eisen zu entschwefeln, bevor es in den Hochofen gelangt. In GEMIS wird ein Drehrohrofen bilanziert, der nach #1 einen Energiebedarf von 5200 MJ/t Branntkalk hat. Die Quelle in #1 ist eine amerikanische Studie aus dem Jahre 1987, wobei angenommen wird, daß der Wert örtlich wie zeitlich übertragbar ist. In dieser Studie wird angesetzt, daß der bilanzierte Drehrohrofen mit Steinkohle befeuert wird. Massenbilanz: Pro Tonne stückigen Branntkalks müssen 1755 kg Ofenstein in den Brennprozess eingebracht werden (Scholz 1994).Weitere Hifs- oder Betriebsstoffe werden nicht benötigt. Der enorme Massenverlust kommt dadurch zustande, daß gemäß der oberen Reaktionsgleichung ein Teil des Kalksteins als CO2 den Prozeß über den Gaspfad verläßt. Energiebedarf: Für das Brennen einer Tonne Kalks im bilanzierten Drehrohrofen werden 5200 MJ/t benötigt (#1). Als Brennstoff wird Steinkohle verwendet. Diese Annahmen decken sich mit denen von Merten für einen Drehrohrofen (#2). Neben dem Brennstoffbedarf besteht für den Betrieb des Ofens noch ein Strombedarf von ca. 130 MJ/t Branntkalk (#2). Prozessbedingte Luftemissionen: Als prozessbedingte Luftemissionen sind im Prozeß des Kalkbrennens die CO2-Emissionen zu bilanzieren, die bei der sog. Entsäuerung des Kalks auftreten. Die Ofensteinmasse enthält 767 kg gebundenes Kohlendioxid von denen während des Brennprozesses 755 kg/t Branntkalk freigesetzt werden (Scholz 1994). Die Differenz verbleibt weiterhin gebunden im Branntkalk. Der Wert von Scholz stimmt exakt mit dem Wert überein, den das UBA als materialbedingte Prozeßemissionen angibt. Das UBA gibt weiterhin einen Wert für Staub an, den es mit 0,17 kg/t Branntkalk quantifiziert (UBA 1996). Auch dieser Wert wird in GEMIS bernommen. Die brennstoffbedingten Prozessemissionen lassen sich nicht einfach über eine Verbrennungsrechnung zur Bereitstellung einer bestimmten Prozesswärme berechnen. Vielmehr sind die spezifischen Bedingungen der Verbrennung bei der Branntkalkherstellung wichtig. Das UBA gibt für verschiedene Brennstoffe Emissionskennziffern an. Diese sind für Steinkohle in der folgenden Tabelle wiedergegeben: Tab.: Brennstoffbedingte Prozeßemissionen bei der Branntkalkherstellung in steinkohlebefeuerten Schachtöfen (UBA 1996). Schadstoff Emissionen in kg/TJ Emissionen in kg/t Branntkalk CO2 94000 479,4 CO 6000 30,6 CH4 15 0,0765 NMVOC 15 0,0765 NOx 155 0,7905 N2O 4,0 0,0204 SO2 33 0,1683 Staub 0 0 Die gesamten Emissionsfaktoren ergeben sich durch Addition der materialbedingten und brenstoffbedingten Emissionsfaktoren. Wasserinanspruchnahme: Direkt im Prozess des Kalkbrennens wird kein Wasser in Anspruch genommen. Abwasserinhaltsstoffe: In dem beschriebenen Prozess wird kein belastetes Abwasser bilanziert. Reststoffe: Es fallen keine Reststofe an, die nicht wieder innerhalb der Systemgrenzen verwertet werden können. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 57% Produkt: Baustoffe
Klinkerbrennen: Nach der Aufbereitung der Rohstoffe wird das Rohmehl in Drehrohröfen zu Klinker gebrannt. In den Kalzinierungsreaktionen findet die Zersetzung des Kalksteines bei ca. 900°C statt (Hantsche 1993). In der Praxis werden die Rohmaterialien bei ca. 1450°C zu Klinker gebrannt (ETH 1995). Dabei erfordert die Zersetzung des Kalksteins ca. 70 % des gesamten Wärmeaufwandes der Prozeßeinheit. Nach dem Brennen des Klinkers wird dieser abgekühlt, bevor er - wenn erwünscht - weiterverarbeitet werden kann. Mit der Abwärme können die Rohmaterialien vorgetrocknet werden (vgl. „Aufbereitung der Rohstoffe“). Ortsbezug: Die hier verwendeten Daten aus (Hantsche 1993), (ETH 1995), (WIKUE 1995a), (VDZ 1996) beziehen sich alle auf die Zementproduktion in Deutschland zu Beginn der 90er Jahre. Die Daten verschiedener Quellen zum Energiebedarf des Prozesses zeigen eine gute Übereinstimmung, so daß die Datenqualität als hinreichend gut zu bezeichnen ist. Genese der Daten - Massenbilanz: Im Brennprozeß wird dem Rohmaterial neben der eigentlichen Klinkerbildung das restliche Wasser (<2 %) und vor allen Dingen CO2 ausgetrieben. Daher müssen bezogen auf eine Tonne Klinker zwischen 1550 und 1600 kg Rohmehl in den Drehrohrofen eingebracht werden (Hantsche 1993), (WIKUE 1995a). In dieser Studie wird das arithmetische Mittel von 1575 kg/t Klinker angesetzt. Energiebedarf: Der aus der Stöchiometrie resultierende theoretische Wärmeaufwand beträgt ca. 2000 MJ/t Klinker. Für den realen Energiebedarf werden in der Literatur Werte angegeben, die gut übereinstimmen. Tab.: Energiebedarf zum Klinkerbrennnen in MJ/t Klinker. Literatur Energiebedarf [MJ/t] (Hantsche 1993) 3200 (WIKUE 1995) 3250 (VDZ 1996) 3000 GEMIS 3.0 3000 In GEMIS werden die Daten des Vereins Deutscher Zementwerke e.V. übernommen, der diese Angaben für das Jahr 1994 nach einer statistischen Erhebung noch einmal bestätigte. Demnach ergibt sich für die gesamte Bundesrepublik ein spezifischer Brennstoffenergieverbrauch von 3000 MJ/t. In den alten Bundesländern werden 2950 MJ/t Klinker eingesetzt, während in den neuen Bundesländern im Schnitt noch 3180 MJ/t benötigt werden (VDZ 1996). Der Brennstoffenergieverbrauch konnte im Jahr 1994 im Vergleich zu den Vorjahren und den anderen Literaturangaben noch einmal gesenkt werden, da die Auslastung der Drehrohrofenanlagen in diesem Jahr besonders hoch war. Für die darauffolgenden Jahre wird von einer stagnierenden Auslastung ausgegangen (VDZ 1996). Trotzdem soll der spezifische Brennstoffenergieverbrauch bis zum Jahre 2005 sowohl in den neuen als auch in den alten Bundesländern auf 2800 MJ/t gesenkt werden (VDZ 1996). Der größte Teil des Brennstoffenergieverbrauchs (ca. 96%) wird über Steinkohle, Braunkohlen, Sekundärbrennstoffen und Heizöl S gedeckt. Weitere Brennstoffe werden in GEMIS nicht berücksichtigt. Dabei sind die Anteile der einzelnen Energieträger folgendermaßen verteilt: Tab.: Relative Anteile der einzelnen Energieträger am spezifischen Brennstoffenergieverbrauch beim Klinkerbrennen (VDZ 1996). Brennstoff Rel. Anteil in Prozent Steinkohle 50 Braunkohlen (Brikett, rheinisch) 33 Sekundärbrennstoffe 11 Heizöl S (1,8 % S) 6 Prozessbedingte Luftemissionen: Da zu den prozessbedingten Luftemissionen keine repräsentativen validierten Meßwerte zur Verfügung stehen, wird auf Emissionsfaktoren des UBA zurückgegriffen. Die Luftemissionen des Prozesses setzen sich zusammen aus den Emissionen, die aus dem Einsatzmaterial resultieren und den brennstoffbedingten Emissionen. Durch die Entsäuerung des Rohstoffs Kalkstein werden beim Brand des Klinkers ca. 545 kg CO2 pro Tonne Zementklinker emittiert. Dieser Wert stimmt gut mit den Daten des UBA überein. Das UBA gibt einen Emissionsfaktor von 565 kg/t Zementklinker an (UBA 1996) Dieser Wert wird in GEMIS übernommen. Für die brennstoffbedingten Emissionen sind die Verbrennungsbedingungen sehr wichtig. Daher kann keine Verbrennungsrechnung zur Bereitstellung der Prozesswärme durchgeführt werden. Vielmehr müssen spezifische Emissionsfaktoren getrennt nach einzelnen Brennstoffen für die spezifischen Prozessbedingungen angenommen werden. Das UBA hat auch für den Prozess des Klinkerbrennens für die brennstoffspezifischen Prozessemissionen zusammengestellt (UBA 1996). Zur Berechnung der in GEMIS relevanten Emissionen werden die Emissionsfaktoren in kg Schadstoff pro TJ eingesetzte Energie für die einzelnen Brennstoffe für den oben angegebenen Brennstoffmix berechnet . Diese werden mit dem Brennstoffenergieverbrauch multipliziert. Man erhält somit die Emissionsfaktoren in kg Schadstoff pro Tonne Produkt, die in der folgenden Tabelle aufgeführt sind: Tab.: Brennstoffbedingte Emissionsfaktoren beim Klinkerbrennen bezogen auf den Brennstoffmix des VDZ von 1994 (Verändert nach UBA 1996). Schadstoff Emissionsfaktor in kg/t Klinker SO2 0,11 NOx 1,73 Staub 0 CO2 277,69 CO 0,19 CH4 0,04 NMVOC 0,04 N2O 0,01 Das UBA weist keinen Emissionsfaktor für Staub aus, obwohl dessen Emission bei der Klinkerherstellung wichtig erscheint. Hierfür werden nach Hantsche 0,3 kg/t Klinker angesetzt (Hantsche 1993). Wasserinanspruchnahme: Für das Klinkerbrennen wird weder Prozess- noch Kühlwasser benötigt. Das Abkühlen des Klinkers erfolgt durch Luftkühlung. Die abgeführte Wärme wird zur Vortrocknung der Rohmaterialien genutzt. Abwasserinhaltsstoffe: In dem betrachteten Prozess fällt kein Abwasser an. Reststoffe: Es fallen keine Reststoffe an, die nicht wieder in dem Prozess eingesetzt werden können. Aufgrund der Bilanzgrenzen werden daher keine Reststoffe bilanziert. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Sonstige gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 63,5% Produkt: Baustoffe
Flußspatgewinnung (EU): Der für die Flußsäuregewinnung notwendige Säurespat (97% CaF2) wird durch Flotation aus dem gemahlenen Flußspat gewonnen. Allokation: keine Genese der Daten: Die Kennziffern für den Einsatz an Erdgas (61,5 MJ/t), Heizöl S (226 MJ/t) und elektr. Strom (590 MJ/t) sowie die Emissionen an Staub (70 kg/t) basieren auf #1; sie wurden aufgrund eines systematischen Fehlers in der Orginalquelle (falsche Stöchiometrie, vgl. Flußsäureherstellung) für GEMIS entsprechend korrigiert. Auslastung: 1h/a Brenn-/Einsatzstoff: Ressourcen Flächeninanspruchnahme: 0,04m² gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 1a Leistung: 1t/h Nutzungsgrad: 100% Produkt: Rohstoffe
Schmelzflusselektrolyse (Primär- bzw. Hüttenaluminium) aus Tonerde Hall-Heroult-Prozeß). Werte für CF4- und C2F6-Emissionen aktualisiert. Allgemeines Verfahren ist die Elekrolyse der Tonerde (Al2O3) in Kryolithschmelzen (Na3AlF6). Kryolith wird im Prozeß zur Schmelzpunkterniedrigung (auf ca. 950 °C) benötigt. Kryolithverluste werden durch Zugabe von Aluminiumfluorid (AlF3) ausgeglichen. Das elektrolytisch gebildete Aluminium setzt sich am kathodischen Boden der Elektrolysezelle ab. Der Sauerstoffanteil der eingesetzten Tonerde verbindet sich mit dem Kohlenstoff der Anoden zu Kohlendioxid und Kohlenmonoxid. Durch den Schwefelgehalt des eingesetzten Anodenmaterials werden weiterhin Schwefeldioxidemissionen freigesetzt. Weitere wichtige Emissionen bei der Schmelzflußelektrolyse sind Staub sowie Fluorwasserstoff. Das Ausmaß der Emissionen ist von der konkreten Technik der Anlage und der Effizienz der Abgasreinigung abhängig. Schließlich werden bei der Schmelzflußelektrolyse Tetrafluormethan (CF4) und Hexafluorethan (C2F6) emittiert (#2), die als langlebige und extrem potente Treibhausgase bekannt sind. Die einzelnen Anlagen unterscheiden sich vor allem durch die eingesetzte Technologie der Elektrolysezellen. Es wird unterschieden in pre-bake- und Söderberg-Zellen, von welchen wiederum diverse Untervarianten existieren (Huglen 1990). Genese der Daten: Die Daten (pro t Alu) für die Einsatzstoffe Tonerde (1900 kg), Anoden (430 kg) und Aluminiumfluorid (18 kg) sowie der Hilfsenergie Heizöl EL (3825 MJ) sind #1 entnommen. Der Wert für den Stromverbrauch der bundesdeutschen Schmelzelektrolysen (13400 kWh = 48240 MJ/t) geht auf #3 zurück und trägt den vergleichsweise modernen Elektrolyseöfen in der Bundesrepublik Rechnung (vgl. z.B. GUS -Schmelzflußelektrolyse). Die Emissionsfaktoren für Schwefeldioxid (10 kg), Kohlenmonoxid (110 kg) und Fluorwasserstoff (0,04 kg) gehen auf Messungen nach #2 an einer deutschen Primäraluminiumhütte mit moderner prebake-Technologie zurück, die einen bedeutenden Anteil der inländischen Produktionskapazität abdeckt. Die Meßwerte werden als repräsentativ für die bundesdeutsche Produktion erachtet und daher für GEMIS übernommen. Weiterhin werden basierend auf #2 die Daten für Kohlendioxid auf 1400 kg/t gesetzt. Die Emissionen für Tetrafluormethan (0,25 kg) und Hexafluorethan (0,025 kg) beruhen auf (WiMe 1999) und spiegeln die Fortschritte der Emissionsminderung dieser Treibhausgase in der Aluminiumindustrie wieder. Der Emissionswert für Staub (1,36 kg) aus #1 wird auf die deutsche Produktion übertragen. Die Kennziffer für die Gesamtabfallmenge (35,7 kg) stammt aus #3. Nicht abgebrannte Anodenreste sind dabei nicht berücksichtigt, da sie bei der Anodenherstellung wieder eingesetzt werden. Tetrafluormethan (0,75 kg) und Hexafluorethan (0,11 kg) Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2050 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 52,6% Produkt: Metalle - NE
BRD -Schmelzflusselektrolyse (Primär- bzw. Hüttenaluminium) aus Tonerde mittels Schmelzflußelektrolyse (Hall-Heroult-Prozeß). Werte für CF4- und C2F6-Emissionen aktualisiert nach Ref. Öko-Recherche 1996. Allgemeines Verfahren ist die Elekrolyse der Tonerde (Al2O3) in Kryolithschmelzen (Na3AlF6). Kryolith wird im Prozeß zur Schmelzpunkterniedrigung (auf ca. 950 oC) benötigt. Kryolithverluste werden durch Zugabe von Aluminiumfluorid (AlF3) ausgeglichen (WIKUE 1995b). Das elektrolytisch gebildete Aluminium setzt sich am kathodischen Boden der Elektrolysezelle ab. Der Sauerstoffanteil der eingesetzten Tonerde verbindet sich mit dem Kohlenstoff der Anoden zu Kohlendioxid und Kohlenmonoxid. Durch den Schwefelgehalt des eingesetzten Anodenmaterials werden weiterhin Schwefeldioxidemissionen freigesetzt. Weitere wichtige Emissionen bei der Schmelzflußelektrolyse sind Staub sowie Fluorwasserstoff. Das Ausmaß der Emissionen ist von der konkreten Technik der Anlage und der Effizienz der Abgasreinigung abhängig. Schließlich werden bei der Schmelzflußelektrolyse Tetrafluormethan (CF4) und Hexafluorethan (C2F6) emittiert (#2), die als langlebige und extrem potente Treibhausgase bekannt sind. Die einzelnen Anlagen unterscheiden sich vor allem durch die eingesetzte Technologie der Elektrolysezellen. Es wird unterschieden in pre-bake- und Söderberg-Zellen, von welchen wiederum diverse Untervarianten existieren (Huglen 1990). Genese der Daten: Die Daten (pro t Alu) für die Einsatzstoffe Tonerde (1900 kg), Anoden (430 kg) und Aluminiumfluorid (18 kg) sowie der Hilfsenergie Heizöl EL (3825 MJ) sind #1 entnommen. Der Wert für den Stromverbrauch der bundesdeutschen Schmelzelektrolysen (13400 kWh = 48240 MJ/t) geht auf #3 zurück und trägt den vergleichsweise modernen Elektrolyseöfen in der Bundesrepublik Rechnung (vgl. z.B. GUS -Schmelzflußelektrolyse). Die Emissionsfaktoren für Schwefeldioxid (10 kg), Kohlenmonoxid (110 kg) und Fluorwasserstoff (0,04 kg) gehen auf Messungen nach #2 an einer deutschen Primäraluminiumhütte mit moderner prebake-Technologie zurück, die einen bedeutenden Anteil der inländischen Produktionskapazität abdeckt. Die Meßwerte werden als repräsentativ für die bundesdeutsche Produktion erachtet und daher für GEMIS übernommen. Weiterhin werden basierend auf #2 die Daten für Kohlendioxid auf 1400 kg/t gesetzt. Die Emissionen für Tetrafluormethan (0,25 kg) und Hexafluorethan (0,025 kg) beruhen auf (WiMe 1999) und spiegeln die Fortschritte der Emissionsminderung dieser Treibhausgase in der Aluminiumindustrie wieder. Der Emissionswert für Staub (1,36 kg) aus #1 wird auf die deutsche Produktion übertragen. Die Kennziffer für die Gesamtabfallmenge (35,7 kg) stammt aus #3. Nicht abgebrannte Anodenreste sind dabei nicht berücksichtigt, da sie bei der Anodenherstellung wieder eingesetzt werden. Tetrafluormethan (0,75 kg) und Hexafluorethan (0,11 kg) Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 52,6% Produkt: Metalle - NE
Origin | Count |
---|---|
Bund | 894 |
Land | 64 |
Wissenschaft | 1 |
Zivilgesellschaft | 1 |
Type | Count |
---|---|
Förderprogramm | 610 |
Gesetzestext | 1 |
Text | 289 |
Umweltprüfung | 34 |
unbekannt | 21 |
License | Count |
---|---|
geschlossen | 119 |
offen | 606 |
unbekannt | 230 |
Language | Count |
---|---|
Deutsch | 951 |
Englisch | 64 |
unbekannt | 1 |
Resource type | Count |
---|---|
Archiv | 113 |
Bild | 2 |
Datei | 114 |
Dokument | 163 |
Keine | 625 |
Webdienst | 1 |
Webseite | 185 |
Topic | Count |
---|---|
Boden | 955 |
Lebewesen & Lebensräume | 955 |
Luft | 955 |
Mensch & Umwelt | 955 |
Wasser | 955 |
Weitere | 931 |