s/stauentwicklung/Staubentwicklung/gi
Informationen über Großfeuerungsanlagen der gemeldeten Standorte 2022. Die 13. BImSchV regelt Anforderungen an die sogenannten Großfeuerungsanlagen. Für diese Anlagen gelten Messverpflichtungen und Berichtspflichten gegenüber der Europäischen Union. Ausgenommen von diesen Berichtspflichten sind aufgrund des Geltungsbereiches der EU-Richtlinie 2001/80/EG z. B. große Feuerungsanlagen aus Zuckerfabriken und der chemischen Industrie. Große Feuerungsanlagen, in denen auch Abfälle mitverbrannt werden, unterliegen anderen Berichtspflichten, so dass diese hier nicht berücksichtigt sind. Eingestellt in dieser interaktiven Kartendarstellung sind die in Niedersachsen erfassten Großfeuerungsanlagen im Zuständigkeitsbereich der Gewerbeaufsicht und des Landesamtes für Bergbau, Energie und Geologie , die dem Geltungsbereich der 13. BImSchV unterliegen. Durch Anklicken der einzelnen Standorte erhalten Sie Detailinformationen zu den Anlagen. Dem Informationsblatt der jeweiligen Großfeuerungsanlage können Sie vom Betreiber angegebene Daten, wie beispielsweise den Betreiber der Anlage, den Energieeinsatz und die Emissionen an SOx, NOx und Staub, aber auch die zuständige Immissionsschutzbehörde entnehmen. Im Informationsblatt finden Sie des Weiteren ein Diagramm, welches die zu berichtenden Jahresemissionen und den Gesamtenergieeinsatz der letzten vier Jahre darstellt. Die Daten werden jährlich aktualisiert.
<p>Feinstaub-Belastung</p><p>Gegenüber den 1990er Jahren konnte die Feinstaubbelastung erheblich reduziert werden. Zukünftig ist zu erwarten, dass die Belastung eher langsam abnehmen wird. Großräumig treten heute PM10-Jahresmittelwerte unter 20 Mikrogramm pro Kubikmeter (µg/m³) auf.</p><p>Feinstaubkonzentrationen in Deutschland</p><p>Die Ländermessnetze führen seit dem Jahr 2000 flächendeckende Messungen von Feinstaub der Partikelgröße <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM10#alphabar">PM10</a> (Partikel mit einem aerodynamischen Durchmesser von 10 Mikrometer oder kleiner) und seit 2008 auch der Partikelgröße <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM25#alphabar">PM2,5</a> durch. Besonders hoch ist die Messnetzdichte in Ballungsräumen. Die hohe Zahl und Dichte an Emittenten – beispielsweise Hausfeuerungsanlagen, Gewerbebetriebe, industrielle Anlagen und der Straßenverkehr – führen zu einer erhöhten Feinstaubkonzentration in Ballungsräumen gegenüber dem Umland. Besonders hohe Feinstaubkonzentrationen werden unter anderem wegen der starken verkehrsbedingten Emissionen wie (Diesel-)Ruß, Reifenabrieb sowie aufgewirbeltem Staub an verkehrsnahen Messstationen registriert. Während zu Beginn der 1990er Jahre im Jahresmittel großräumig Werte um 50 Mikrogramm pro Kubikmeter (µg/m³) gemessen wurden, treten heute PM10-Jahresmittelwerte zwischen 15 und 20 µg/m³ auf. Die im ländlichen Raum gelegenen Stationen des <a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>-Messnetzes verzeichnen geringere Werte.</p><p>Die Feinstaub-Immissionsbelastung wird nicht nur durch direkte Emissionen von Feinstaub verursacht, sondern zu erheblichen Teilen auch durch die <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Emission#alphabar">Emission</a> von gasförmigen Schadstoffen wie Ammoniak, Schwefeldioxid und Stickstoffoxiden. Diese reagieren in der Luft miteinander und bilden sogenannten „sekundären“ Feinstaub. Einhergehend mit einer starken Abnahme der Schwefeldioxid (SO2)-Emissionen und dem Rückgang der primären PM10-Emissionen im Zeitraum von 1995 bis 2000 sanken im gleichen Zeitraum auch die PM10-Konzentrationen deutlich (siehe Abb. „Trend der PM10-Jahresmittelwerte“). Der Trend der Konzentrationsabnahme setzt sich seitdem fort. Die zeitliche Entwicklung der PM10-Konzentrationen wird von witterungsbedingten Schwankungen zwischen den einzelnen Jahren – besonders deutlich in den Jahren 2003 und 2006 erkennbar – überlagert. Erhöhte Jahresmittelwerte wurden auch 2018 gemessen, die auf die besonders langanhaltende, zehnmonatige Trockenheit von Februar bis November zurückzuführen sind.</p><p>Überschreitungssituation</p><p>Lokal und ausschließlich an vom Verkehr beeinflussten Stationen in Ballungsräumen traten in der Vergangenheit gelegentlich Überschreitungen des für das Kalenderjahr festgelegten Grenzwerts von 40 µg/m³ auf. Seit 2012 wurden keine Überschreitungen dieses Grenzwertes mehr festgestellt.</p><p>Seit 2005 darf auch eine <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM10#alphabar">PM10</a>-Konzentration von 50 Mikrogramm pro Kubikmeter (µg/m³) im Tagesmittel nur an höchstens 35 Tagen im Kalenderjahr überschritten werden. Überschreitungen des Tageswertes von 50 µg/m³ werden vor allem in Ballungsräumen an verkehrsnahen Stationen festgestellt. Die zulässige Zahl von 35 Überschreitungstagen im Kalenderjahr wurde hier in der Vergangenheit zum Teil deutlich überschritten (siehe Karten „Feinstaub (PM10) - Tagesmittelwerte Zahl von Überschreitungen von 50 mg/m³“ und Abb. „Prozentualer Anteil der Messstationen mit mehr als 35 Überschreitungen des 24-h-Grenzwertes“). Vor allem das Jahr 2006 fiel durch erhebliche Überschreitungen der zulässigen Überschreitungstage auf, was auf lang anhaltende und intensive „Feinstaubepisoden“ zurückzuführen war. In den unmittelbar zurückliegenden Jahren traten nicht zuletzt durch umfangreiche Maßnahmen der mit Luftreinhaltung befassten Behörden keine Überschreitungen des Grenzwerts mehr auf. Auch 2023 wurde der Grenzwert somit an allen Messstationen in Deutschland eingehalten.</p><p>Witterungsabhängigkeit</p><p>Vor allem in trockenen Wintern, teils auch in heißen Sommern, können wiederholt hohe <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM10#alphabar">PM10</a>-Konzentrationen in ganz Deutschland auftreten. Dann kann der Wert von 50 µg/m³ großflächig erheblich überschritten werden. Ein Beispiel für eine solche Belastungssituation zeigt die Karte „Tagesmittelwerte der Partikelkonzentration PM10“. Zum Belastungsschwerpunkt am 23. Januar 2017 wurden an etwa 56 % der in Deutschland vorhandenen PM10-Messstellen Tagesmittelwerte von über 50 µg/m³ gemessen. Die höchste festgestellte Konzentration betrug an diesem Tag 176 µg/m³ im Tagesmittel.</p><p>Wie stark die PM10-Belastung während solcher Witterungsverhältnisse ansteigt, hängt entscheidend davon ab, wie schnell ein Austausch mit der Umgebungsluft erfolgen kann. Winterliche Hochdruckwetterlagen mit geringen Windgeschwindigkeiten führen – wie früher auch beim Wintersmog – dazu, dass die Schadstoffe nicht abtransportiert werden können. Sie sammeln sich in den unteren Luftschichten (bis etwa 1.000 Meter) wie unter einer Glocke. Der Wechsel zu einer Wettersituation mit stärkerem Wind führt zu einer raschen Abnahme der PM10-Belastung. Auch wenn die letzten Jahre eher gering belastet waren, können auch zukünftig meteorologische Bedingungen auftreten, die zu einer deutlich erhöhten Feinstaubbelastung führen können.</p><p>Bürgerinnen und Bürger können laufend<a href="https://www.umweltbundesamt.de/daten/luftbelastung/aktuelle-luftdaten">aktualisierte Feinstaubmessdaten und Informationen zu Überschreitungen der Feinstaubgrenzwerte</a>in Deutschland im Internet und mobil über die<a href="https://www.umweltbundesamt.de/themen/luft/luftqualitaet/app-luftqualitaet">UBA-App "Luftqualität"</a>erhalten.</p><p>Bestandteile des Feinstaubs</p><p>Die Feinstaubbestandteile <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM10#alphabar">PM10</a> und <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM25#alphabar">PM2,5</a> sind Mitte der 1990er Jahre wegen neuer Erkenntnisse über ihre Wirkungen auf die menschliche Gesundheit in den Vordergrund der Luftreinhaltepolitik getreten. Mit der<a href="https://eur-lex.europa.eu/eli/dir/2008/50/oj?locale=de">EU-Richtlinie 2008/50/EG</a>(in deutsches Recht umgesetzt mit der<a href="https://www.bmuv.de/gesetz/39-verordnung-zur-durchfuehrung-des-bundes-immissionsschutzgesetzes/">39. Bundes-Immissionsschutz-Verordnung</a>(39. <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=BImSchV#alphabar">BImSchV</a>)), welche die bereits seit 2005 geltenden Grenzwerte für PM10 bestätigt und neue Luftqualitätsstandards für PM2,5 festlegt (siehe Tab. „Grenzwerte für den Schadstoff Feinstaub“), wurde dem Rechnung getragen. Als PM10 beziehungsweise PM2,5 (PM = particulate matter) wird dabei die Massenkonzentration aller Schwebstaubpartikel mit aerodynamischen Durchmessern unter 10 Mikrometer (µm) beziehungsweise 2,5 µm bezeichnet.</p><p>Herkunft</p><p>Feinstaub kann natürlichen Ursprungs sein oder durch menschliches Handeln erzeugt werden. Stammen die Staubpartikel direkt aus der Quelle - zum Beispiel durch einen Verbrennungsprozess - nennt man sie primäre Feinstäube. Als sekundäre Feinstäube bezeichnet man hingegen Partikel, die durch komplexe chemische Reaktionen in der <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> erst aus gasförmigen Substanzen, wie Schwefel- und Stickstoffoxiden, Ammoniak oder Kohlenwasserstoffen, entstehen. Wichtige vom Menschen verursachte Feinstaubquellen sind Kraftfahrzeuge, Kraft- und Fernheizwerke, Abfallverbrennungsanlagen, Öfen und Heizungen in Wohnhäusern, der Schüttgutumschlag, die Tierhaltung sowie bestimmte Industrieprozesse. In Ballungsgebieten ist vor allem der Straßenverkehr eine bedeutende Feinstaubquelle. Dabei gelangt Feinstaub nicht nur aus Motoren in die Luft, sondern auch durch Bremsen- und Reifenabrieb sowie durch die Aufwirbelung des Staubes auf der Straßenoberfläche. Eine weitere wichtige Quelle ist die Landwirtschaft: Vor allem die Emissionen gasförmiger Vorläuferstoffe aus der Tierhaltung tragen zur Sekundärstaubbelastung bei. Als natürliche Quellen für Feinstaub sind Emissionen aus Vulkanen und Meeren, die Bodenerosion, Wald- und Buschfeuer sowie bestimmte biogene <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Aerosole#alphabar">Aerosole</a>, zum Beispiel Viren, Sporen von Bakterien und Pilzen zu nennen.</p><p>Während im letzten Jahrzehnt des 20. Jahrhunderts die Gesamt- und Feinstaubemissionen in Deutschland drastisch reduziert werden konnten, verlangsamte sich seither die Abnahme (siehe<a href="https://www.umweltbundesamt.de/daten/luft/luftschadstoff-emissionen-in-deutschland/emission-von-feinstaub-der-partikelgroesse-pm10">„Emission von Feinstaub der Partikelgröße PM10“</a>und<a href="https://www.umweltbundesamt.de/daten/luft/luftschadstoff-emissionen-in-deutschland/emission-von-feinstaub-der-partikelgroesse-pm25">„Emission von Feinstaub der Partikelgröße PM2,5“</a>). Für die nächsten Jahre ist zu erwarten, dass die Staubkonzentrationen in der Luft weiterhin nur noch langsam abnehmen werden. Zur Senkung der PM-Belastung sind deshalb weitere Maßnahmen erforderlich.</p><p>Gesundheitliche Wirkungen</p><p>Feinstaub der Partikelgröße <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM10#alphabar">PM10</a> kann beim Menschen durch die Nasenhöhle in tiefere Bereiche der Bronchien eindringen. Die kleineren Partikel <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM25#alphabar">PM2,5</a> können bis in die Bronchiolen und Lungenbläschen vordringen und die ultrafeinen Partikel mit einem Durchmesser von weniger als 0,1 µm sogar bis in das Lungengewebe und den Blutkreislauf. Je nach Größe und Eindringtiefe der Teilchen sind die gesundheitlichen Wirkungen von Feinstaub verschieden. Sie reichen von Schleimhautreizungen und lokalen Entzündungen im Rachen, der Luftröhre und den Bronchien oder Schädigungen des Epithels der Lungenalveolen bis zu verstärkter Plaquebildung in den Blutgefäßen, einer erhöhten Thromboseneigung oder Veränderungen der Regulierungsfunktion des vegetativen Nervensystems (zum Beispiel mit Auswirkungen auf die Herzfrequenzvariabilität). Eine langfristige Feinstaubbelastung kann zu Herz-Kreislauferkrankungen und Lungenkrebs führen, eine bestehende COPD (Chronisch Obstruktive Lungenerkrankung) verschlimmern, sowie das Sterblichkeitsrisiko erhöhen.</p><p>Messdaten</p><p>Mitte der 1990er Jahre wurde zunächst in einzelnen Ländermessnetzen mit der Messung von <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM10#alphabar">PM10</a> begonnen. Seit dem Jahr 2000 wird PM10 deutschlandweit gemessen. Für die Jahre, in denen noch nicht ausreichend Messergebnisse für die Darstellung der bundesweiten PM10-Belastung vorlagen, wurden PM10-Konzentrationen näherungsweise aus den Daten der Gesamtschwebstaubkonzentration (TSP) berechnet. Seit dem Jahr 2001 basieren alle Auswertungen ausschließlich auf gemessenen PM10-Daten. <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM25#alphabar">PM2,5</a> wird seit dem Jahr 2008 deutschlandweit an rund 200 Messstationen überwacht.</p>
Die Untersuchungsgebiete liegen in den alpinen bis nivalen Höhenstufen der Nördlichen Kalkalpen. Dort existieren auf verkarsteten Kalken (CaCO3-Gehalte größer 96 Prozent) unterschiedliche Entwicklungsstufen der humusreichen Rendzina (A-C-bzw. O-C Profile) sowie verbraunte und braune Bodentypen (A-B-C-Profile). Alle Böden, besonders die braunen Varianten, weisen allochthone Glimmer, Silikate und Schwerminerale auf. So wird der Einfluß von Flugstäuben auf die Solumbildung evident. Aus diesem Sachverhalt resultieren als Forschungsschwerpunkte die rezente Flugstaubdynamik und die dadurch beeinflußte Bodengenese auf Kalkstein. Im Rahmen des geplanten Projekts ergeben sich folgende Kernfragen: 1. Wie sind die Flugstäube durch die beeinflußten Böden in den einzelnen Höhenstufen verbreitet? Welche Geofaktoren steuern die räumliche Verteilung? 2. Wieviel Flugstaub wird rezent (Größenordnung, (mm/a) eingetragen? Welche Hauptliefergebiete gibt es? Wie korrelieren Staubmenge und Solummächtigkeit? 3. Wie verändern die Stäube die Böden? Welchen Anteil haben autochthone Terrae fuscae, allochthone Braunerden und Mischformen? Welche Divergenzen und Konvergenzen der Bodenbildung gibt es in den einzelnen Untersuchungsgebieten? Gibt es Anhaltspunkte für mögliche Bildungszeiträume eine Alterseinstufung der Böden?
Die Abluft von Tierhaltungen kann fuer die Umwelt durch Geruchs- und Keimausbreitungen zu Belaestigungen fuehren. Auch das Ausbringen von Pflanzenschutz- und Duengemitteln stellt ein Emissionsproblem dar. Letztlich gehoert zu diesem Themenkreis die Staubentstehung auf fahrenden Arbeitsmaschinen. Fuer diese Ausbreitungsvorgaenge wird ein mathematisches Transportmodell entwickelt, das a) den statistischen Charakter der Teilchengroessenverteilung beruecksichtigt, b) Slip-, Haft- und Stossbedingungen erfasst und c) meteorologische Einfluesse miteinbezieht. Anhand von Untersuchungen in einem Staubfeld unter definierten und jederzeit reproduzierbaren Randbedingungen ist das obige Modell messtechnisch abzustuetzen.
Die Strahlungsabsorption des atmosphärischen Aerosols ist einer seiner Haupteffekte im Einfluss auf die solar-terrestrische Energiebilanz und damit auf das Klima. Die Absorption wird im Wesentlichen durch drei Komponenten verursacht: Ruß, Mineralstaub und absorbierende Organika. Allerdings sind die relativen Beiträge dieser Stoffe aus anthropogenen und natürlichen Quellen nicht gut bekannt. Der vorliegende Antrag zielt daher auf eine Quantifizierung Ruß-, Staub- und organischen Anteils, basierend auf der Analyse der chemischen Zusammensetzung und Struktur viele einzelner Partikel mittels Elektronenmikroskopie. Das östliche Mittelmeer wurde als Fokusregion ausgewählt, da hier im Frühjahr eine komplexe Mischung von Aerosol aus der Biomassenverbrennung, anthropogenen Emissionen, marinem Aerosol und afrikanischem sowie asiatischem Wüstenstaub entsteht. Die vorgeschlagenen Arbeiten werden in Verbindung mit einer von dritter Seite finanzierten großen Flug- und Bodenmesskampagne durchgeführt. Hierbei ergibt sich die einmalige Gelegenheit, Messungen aus der Fokusregion in Verbindung mit einer Vielzahl anderer atmosphärischer Messungen sowie Aerosol- und Wolkenmessungen zu erhalten. Hauptziele des Projektes sind: A) Charakterisierung der Aerosolzusammensetzung: Aerosoltypen werden an Hand chemischer Merkmale identifiziert und quantifiziert. Größenverteilungen der chemischen Zusammensetzung werden erstellt für Partikel kleiner 2.5 mym aus der relativen Zusammensetzung und externen Größenverteilungsmessungen, für größere Partikel direkt aus spezialisierten Sammelverfahren. B) Aufteilung in volatile / nichtvolatile Komponenten: entsprechende Komponenten werden auf Einzelpartikelbasis identifiziert und quantifiziert. Typen nichtvolatiler Komponenten werden unterschieden. C) Aufteilung nach Staub- / Ruß-Absorption für Einzelpartikel: Der absorbierende Anteil im atmosphärisch alterierten Aerosol wird an Hand chemischer und morphologischer Kriterien identifiziert. Durch Bildanalyse wird der jeweilige Volumenbeitrag bestimmt. Die Konzentration absorbierender Anteile wird dann zur Bestimmung der relativen Beiträge von Staub und Ruß genutzt. Rußmikrosktruktur und chemische Zusammensetzung werden genutzt, um Haupt-Rußquellen zu identifizieren. D) Ermittlung des Einflusses der Staubquelle auf die Staubabsorption: Die Absorption, modelliert durch die Staubzusammensetzung, wird im Hinblick auf die jeweilige Quelle untersucht; basierend auf einer Jahreszeitreihe können so systematische Zusammenhänge aufgedeckt werden. Insgesamt wird das vorgeschlagene Projekt neue und detailreiche Einsichten in die Beiträge zur Absorption und den Mineralstaub-Beitrag zum Strahlungsantrieb in einer belasteten und gemischten Umgebung liefern, möglicher Zusammenhänge zwischen Staubquelle und Absorption aufdecken und Information über die Haupt-Rußquellen liefern.
Origin | Count |
---|---|
Bund | 907 |
Kommune | 1 |
Land | 62 |
Zivilgesellschaft | 1 |
Type | Count |
---|---|
Förderprogramm | 615 |
Gesetzestext | 1 |
Text | 297 |
Umweltprüfung | 35 |
unbekannt | 20 |
License | Count |
---|---|
geschlossen | 112 |
offen | 614 |
unbekannt | 242 |
Language | Count |
---|---|
Deutsch | 938 |
Englisch | 68 |
Resource type | Count |
---|---|
Archiv | 107 |
Bild | 1 |
Datei | 107 |
Dokument | 164 |
Keine | 637 |
Webdienst | 1 |
Webseite | 182 |
Topic | Count |
---|---|
Boden | 968 |
Lebewesen und Lebensräume | 968 |
Luft | 968 |
Mensch und Umwelt | 968 |
Wasser | 968 |
Weitere | 926 |