Mykotoxine sind Metaboliten des Sekundärstoffwechsels mikroskopisch kleiner Pilze, vor allem der Gattung Aspergillus, Penicillium und Fusarium. In bestimmten Konzentrationen wirken sie toxisch für Mensch, Tier und Pflanze. Die als Feldpilze bekannten Fusarien bilden Mykotoxine (Trichothezen und Zearalenon) zum Teil schon während der Wachstums- und Reifungsphase des heimischen Futtergetreides und beim Mais. Trichothezen (Deoxynivalenol, DNO) übt eine zytotoxische Wirkung aus, indem es die Protein- und DNA-Synthese hemmt. Aufgrund seiner hohen Zytotxizität greift die Substanz an verschiedenen Systemen des Körpers ein, so dass infolge einer Abwehrschwäche Fruchtbarkeitsstörungen (Unfruchtbarkeit, Umrauschen), Aborte, Totgeburten und mimifizierte Früchtte sowie Uterusatrophie bei Sauen insbesondere bei Jungsauen aufgetreten sind. Im Gegensatz dazu sind die Zearalenone nicht toxisch. Ihre Aktivität im Tier besteht in einer östrogenen Wirkung, die zu Veränderungen an den Fortpflanzungsorganen und zu Fruchtbarkeitsstörungen beim Schwein führen. Ein Einfluss von Mykotoxin auf die Fruchtbarkeit wurde bisher weitgehend nach Fütterung von mykotoxin-haltigen Futtermitteln beobachtet. Grundlagenerkenntnisse über direkte negative Einflüsse von Mykotoxinen auf die Fruchtbarkeit können mit Hilfe von Untersuchungen mittels In-vitro-Kultivierung von Eizellen und Embryonen, ovariellen und uterinen Zellen gewonnen werden. Die physiologische Aktivität der genannten Zelltypen des weiblichen Reproduktionstraktes kann über funktionelle Tests gemessen werden, die ihrerseits darüber Auskunft geben, in welchem Maße die Leistungen dieser Zellen bzw. Embryonen störanfällig gegenüber Zearalenon und Trichothezen sind.
Obwohl bei Triticale partielle Fremdbefruchtung vorkommt, werden derzeit bei der Entwicklung neuer Sorten Methoden der Linienzüchtung eingesetzt. Untersuchungen zur Heterosis lassen jedoch erkennen, dass die Hybridzüchtung eine aussichtsreiche Alternative zur Linienzüchtung darstellt. Es gilt nun, die genetischen und methodischen Grundlagen zu untersuchen, ein stabiles System für die cytoplasmatisch männliche Sterilität (CMS) zu etablieren und die Restorerfähigkeit zu analysieren. Auf Basis von Untersuchungen zur genetischen Diversität werden Konzepte zur Entwicklung Heterotischer Gruppen erarbeitet.
Im Hinblick auf die Ursache der cytoplasmatisch-kerngenischen männlichen Sterilität beim PET2-Plasma konnte sowohl ein neuer offener Leserahmen orf288 identifiziert werden, der für ein 10,6-kDa-Protein mit einer potentiellen Transmembrandomäne kodiert, als auch ein zusätzliches 5'-deletiertes atp9 Gen (orf231). Der orf288 wird in Blättern der männlich sterilen Pflanzen (PET2) und der fertilitätsrestaurierten Hybride exprimiert. Bei der Überexpression des orf288 in E. coli erwies sich dieser als cytotoxisch, ebenso der orf231. Es muss geklärt werden, ob der orf288 für das spezifische 12,4-kDa-Protein im PET2-Plasma kodiert. Außerdem sind für die Wirkungsweise die Lokalisation innerhalb der Mitochondrien und eine mögliche Assoziation mit anderen mitochondrialen Proteinkomplexen von Bedeutung. Zudem muss der Einfluss des Restorergens RfPET2 auf die Transkription und Expression des Genprodukts des orf288 und/oder des orf231 in den Blüten untersucht werden. Über die Transformation von Tabak mit einem Konstrukt zur antherenspezifischen Expression des orf288 und/oder orf231 soll der ursächliche Zusammenhang zwischen der männlichen Sterilität und diesen orfs erbracht werden.
Wie wirkt ionisierende Strahlung? Wenn ionisierende Strahlung auf den menschlichen Körper trifft, können Schäden in einzelnen Zellen oder Geweben entstehen. Das liegt daran, dass die Strahlungsenergie chemische Verbindungen ( Moleküle ) auseinanderbrechen kann. Auch einzelne Elektronen, also elektrisch geladene Teilchen, können aus Verbindungen herausgeschlagen werden. So kann Strahlung direkt Biomoleküle der Zelle, wie zum Beispiel Proteine oder DNA (Moleküle, die die Erbinformation tragen) schädigen. Andererseits kann Strahlung auch mit dem Wasser interagieren, das in Zellen reichlich vorhanden ist, und Radikale bilden. Diese sehr reaktionsfreudigen Stoffe, können wiederum auf Biomoleküle treffen und weitere schädliche Prozesse anstoßen. Für Spätfolgen einer Strahlenexposition sind Veränderungen der DNA von besonderer Bedeutung. Reparaturmechanismen der Zelle Normalerweise ist die Zelle in der Lage, Strahlenschäden zu reparieren, so dass keine negativen Folgen auftreten. Schafft sie das nicht, stirbt sie in der Regel ab. Dafür hat der menschliche Körper raffinierte, strukturierte Programme zur Verfügung ( z. B. Apoptose). Bei massiven Schäden durch eine Bestrahlung mit sehr hohen Strahlendosen funktionieren auch diese Vorgänge nicht mehr und die Zelle stirbt unkontrolliert ab (Nekrose). Besonders gefährlich ist jedoch, wenn die DNA einer Zelle beschädigt wird, ohne dass sie komplett repariert wird - und ohne dass die Zelle stirbt. Denn so können genetisch veränderte (mutierte) Zellen entstehen, die sich weiter vermehren und eine Krebserkrankung auslösen können. Strahlenwirkungen auf den Organismus Ob und in welchem Ausmaß eine Strahlenexposition zu einem gesundheitlichen Schaden führt, hängt von der absorbierten Strahlenmenge, der Strahlenart und davon ab, welches Organ oder Gewebe des Körpers hauptsächlich betroffen ist. Strahlenschäden können auch durch ionisierende Strahlung aus natürlichen Quellen (zum Beispiel Radon ) entstehen. Zur Information: Für in Deutschland lebende Personen beträgt die Dosis aus natürlichen Quellen im Durchschnitt etwa 2 bis 3 Millisievert im Jahr. Vergleich zwischen deterministischen und stochastischen Strahlenschäden Deterministische Strahlenschäden Stochastische Strahlenschäden Beschreibung Schäden, die nur oberhalb eines Schwellenwertes der Dosis auftreten Später auftretende Schäden aufgrund von Zellen, deren DNA (Erbmaterial) geschädigt wurde Ursache des Schadens Abtötung oder Fehlfunktionen zahlreicher Zellen Mutationen und nachfolgende Vermehrung von einzelnen mutierten Zellen (Körperzellen oder Keimzellen) Dosis -Abhängigkeit Je höher die Strahlendosis, desto schwerer der Strahlenschaden Je höher die Strahlendosis, desto höher die Wahrscheinlichkeit des Eintretens eines Strahlenschadens Dosis - Schwellenwert ca. 500 Millisievert ( mSv ); beim ungeborenen Kind ca. 50 bis 100 mSv Nicht vorhanden Beispiele Rötungen der Haut, Haarausfall, Unfruchtbarkeit, akute Strahlenkrankheit, Fehlbildungen und Fehlentwicklungen des Gehirns beim Ungeborenen Krebs, vererbbare Effekte Bei manchen Erkrankungen, die als Folge von Strahlung auftreten können, ist der genaue Zusammenhang zwischen Strahlendosis und Erkrankungsrisiko noch unklar. Insbesondere ist nicht bekannt, ob es eine Schwellenwertdosis gibt. Hierzu zählen Herz-Kreislauferkrankungen und Katarakte (Trübungen der Augenlinse). Ziele des Strahlenschutzes Der Strahlenschutz ist darauf ausgerichtet, die Gesundheit des Menschen zu schützen. Er hat das Ziel, deterministische Strahlenschäden zuverlässig zu verhindern und das Risiko für stochastische Schäden auf ein vernünftigerweise erreichbares Maß zu reduzieren. Stand: 20.05.2025
Sensoren sind in extremer Vielfalt zur Steuerung und Überwachung von Bioprozessen im Einsatz. Typische stabförmige Sensorelektroden werden über einen Standard-Port in den Bioreaktor eingebracht und repräsentieren einen Messwert an nur einer Stelle des Reaktors. Daher können Informationen über Prozessparameter, die inhomogen verteilt sind, nicht erfasst werden. Dies kann zur Wahl von suboptimalen Prozesskontrollparametern führen und Ergebnisse negativ beeinflussen. Darüber hinaus kann der Zugang für Sensoren hinsichtlich der Sterilität des Prozesses zu Problemen führen, wenn die Prozessüberwachung für das Reaktorsystem konstruktiv nicht vorgesehen ist. Ein Beispiel für einen derartigen Reaktor ist der oft verwendete Erlenmeyerkolben. Ziel des Projekts ist die Entwicklung ortsunabhängiger, voll autarker, minimal invasiver Mikrosensoren, den so genannten Sens-o-Spheres, um diesen Problemen zu begegnen. Dazu soll eine typische Messvorrichtung für die Temperatur, welche eine einfach zu erfassende und dennoch wichtige Messgröße für Bioprozesse darstellt, in eine kleine Kugel mit nur wenigen Millimetern Durchmesser abgebildet werden. Die Kugel besteht aus einer funktionell integrierten Antenne innerhalb der Kapselung (1), welche für die Verwendung in biotechnologischen Prozessen geeignet ist, einem Mikrocontroller zur Funktionskoordination (2) und einer wiederaufladbaren Energieversorgung (3).
In SelfieGras soll die Hybridzüchtung in Gräsern durch die systematische Nutzung der Selbstfertilität und deren Kombination mit CMS in züchtungsrelevantem Material etabliert werden. Dies soll erreicht werden durch die grundlegende Erforschung der SI- und SF-Mechanismen, und der Erarbeitung von molekularen Werkzeugen, um SF-Quellen in der Züchtung effizient nutzen zu können. SelfieGras beinhaltet die Etablierung von verfügbaren SF Quellen in L. perenne sowie deren genetische und funktionelle Beschreibung durch die Erzeugung spaltender Populationen. Des Weiteren die genetische Kartierung und Isolierung kausaler Gene ausgewählter SF Quellen durch Pool-Sequenzieren hochauflösender Kartierungspopulationen sowie die Entwicklung von DNA Markern in den identifizierten Genen/Genomregionen. Ebenso die Etablierung kurzfristiger Strategien, um die SF mittels Marker-gestützter Rückkreuzung in züchterisch relevantes CMS Material zu bringen. Was schließlich in der Erstellung von Experimentalhybriden, um diese unter Feldbedingungen zu prüfen, mündet. Detaillierte Kenntnisse darüber werden zur Züchtung von ertragreichen Futtergras-Hybridsorten beitragen, die zukünftig der Landwirtschaft als perennierende Alternativen zu existierenden Biogas-Arten für eine effiziente und umweltschonende Ressourcennutzung zur Verfügung stehen. Im ersten Schritt sollen verschiedene Selbst-Fertilitätsquellen in L.perenne etabliert und genetisch als auch funktionell charakterisiert werden. Es folgt die Kartierung und Identifizierung kausaler Gene von ausgewählten SF-Quellen sowie die Entwicklung von Markern. Schließlich werden die SF-Quellen mittels markergestützter Rückkreuzungen in züchterisch relevantes CMS- Material und in vitalen Inzuchtlinien etabliert. Im letzten Schritt erfolgt die Erstellung von Hybridsaatgut für die Prüfung von Experimentalhybriden unter Feldbedingungen.
Im Verbundprojekt SelfieGras soll die Hybridzüchtung bei Gräsern durch die systematische Nutzung der Selbstfertilität (SF) und deren Kombination mit Cytoplasmatisch-männliche Sterilität (CMS) in züchtungsrelevantem Material etabliert werden. Dies soll erreicht werden durch die grundlegende Erforschung von Selbst-Inkompatibilitäts (SI)- und SF-Mechanismen, und der Erarbeitung von molekularen Werkzeugen, um SF-Quellen in der Züchtung effizient nutzen zu können. SelfieGras beinhaltet die Etablierung von verfügbaren SF Quellen in Lolium perenne sowie deren genetische und funktionelle Beschreibung durch die Erzeugung spaltender Populationen. Des Weiteren die genetische Kartierung und Isolierung kausaler Gene ausgewählter SF Quellen durch Pool-Sequenzieren hochauflösender Kartierungspopulationen sowie die Entwicklung von DNA Markern in den identifizierten Genen/Genomregionen. Ebenso die Etablierung kurzfristiger Strategien, um die SF mittels markergestützter Rückkreuzung in züchterisch relevantes CMS Material zu bringen. Dies soll schließlich in der Erstellung von Experimentalhybriden münden, die unter Feldbedingungen geprüft werden können. Detaillierte Kenntnisse darüber werden zur Züchtung von ertragreichen Futtergras-Hybridsorten beitragen, die zukünftig der Landwirtschaft als perennierende Alternativen zu existierenden Biogas-Arten für eine effiziente und umweltschonende Ressourcennutzung zur Verfügung stehen. Zunächst sollen verschiedene Selbst-Fertilitätsquellen in L. perenne etabliert und sowohl genetisch als auch funktionell charakterisiert werden. Fokus des Projekt-Teils der an der Universität Bielefeld durchgeführt wird ist die Identifizierung kausaler Genomregionen bzw. Gene ausgewählter SF-Quellen durch Pool-Sequenzieren hochauflösender Kartierungspopulationen durch MBS ('mapping by sequening'), sowie die Entwicklung von molekularen Markern.
Untersuchungen aus USA, Japan, Belgien und auch der Schweiz haben gezeigt, dass transgener Raps sich ausbreiten und etablieren konnte, auch ohne dass ein Anbau stattgefunden hat. Anträge auf eine Genehmigung für den Anbau von transgenem Raps befinden sich im Verfahren. Alle bisher genehmigten und beantragten Rapslinien verfügen über eine transgene Toleranz gegen Herbizide, wenige verfügen zusätzlich über die Eigenschaft männlicher Sterilität. Deutschland gehört zu den Hauptanbauländern von Raps. Vorkommen von Ruderalraps sind weit verbreitet und die Ausbildung ausdauernder Populationen wurde vielfach nachgewiesen. Eine Verbreitung transgener Rapspflanzen z.B. entlang von Transportwegen oder in der Nähe von Verarbeitungsanlagen ist daher auch für D wahrscheinlich. Untersuchungen dazu wurden bisher nur vereinzelt, lokal begrenzt und mit uneinheitlicher Methodik durchgeführt. Eine Verbreitung und Etablierung transgenen Rapses birgt das Potential für schädliche Umweltwirkungen wie z.B. die Verstärkung des Unkrautpotenzials von Raps oder die Auskreuzung in wildverwandte Arten und eine damit verbundene Ausbildung invasiver Eigenschaften. Ein fachlich tragfähiges Konzept für ein Monitoring der Umweltwirkungen von transgenem Raps liegt bisher weder für Import und Verarbeitung noch für den Anbau vor. EFSA empfiehlt in seinem Leitfaden zum Monitoring (2011), die Wirksamkeit von Risikomanagementmaßnahmen, im Fall von Import und Verarbeitung die Verhinderung des Gelangens von keimfähigen Rapssamen in die Umwelt, im Rahmen der fallspezifischen Beobachtung zu überprüfen. Ziele des Vorhabens: - Ein praxistaugliches und im Aufwand angemessenes Konzept für das Monitoring der Umweltwirkungen transgenen Rapses bei Import und Verarbeitung unter Berücksichtigung der nationalen Bedingungen zu erarbeiten. - Erhebungen zum Vorkommen von transgenem Ruderalraps in ausgewählten Regionen durchzuführen und den entwickelten methodischen Ansatz zu erproben.
| Origin | Count |
|---|---|
| Bund | 59 |
| Land | 5 |
| Type | Count |
|---|---|
| Ereignis | 1 |
| Förderprogramm | 56 |
| Text | 5 |
| unbekannt | 2 |
| License | Count |
|---|---|
| geschlossen | 6 |
| offen | 58 |
| Language | Count |
|---|---|
| Deutsch | 63 |
| Englisch | 7 |
| Resource type | Count |
|---|---|
| Datei | 1 |
| Dokument | 2 |
| Keine | 30 |
| Unbekannt | 1 |
| Webseite | 32 |
| Topic | Count |
|---|---|
| Boden | 31 |
| Lebewesen und Lebensräume | 64 |
| Luft | 23 |
| Mensch und Umwelt | 63 |
| Wasser | 25 |
| Weitere | 64 |