API src

Found 264 results.

Related terms

Gewässergüte (Chemie) 2001

Temperatur (02.01.2) Die Temperatur ist eine bedeutende Einflussgröße für alle natürlichen Vorgänge in einem Gewässer. Biologische, chemische und physikalische Vorgänge im Wasser sind temperaturabhängig , z.B. Zehrungs- und Produktionsprozesse, desgleichen Adsorption und Löslichkeit für gasförmige, flüssige und feste Substanzen. Dies gilt auch für Wechselwirkungen zwischen Wasser und Untergrund oder Schwebstoffen und Sedimenten sowie zwischen Wasser und Atmosphäre. Die Lebensfähigkeit und Lebensaktivität der Wasserorganismen sind ebenso an bestimmte Temperaturgrenzen oder -optima gebunden wie das Vorkommen unterschiedlich angepasster Organismenarten und Fischbesiedelungen nach Flussregionen in Mitteleuropa. Die Darstellung der Heizkraftwerke in der Karte sowie deren Einfluss auf die Gewässertemperatur sind bei der Betrachtung zu berücksichtigen. Aus der Temperaturverteilungskarte wird deutlich sichtbar, dass die Wärmeeinleitungen in die Berliner Gewässer in den letzten Jahren rückläufig war, vor allem im Bereich der Spreemündung und der Havel. Die kritische Schwelle von 28° C wurde nicht überschritten, die Maxima bzw. 95-Perzentile liegen im Bereich um 25° C. Ende der neunziger Jahre wurden sporadisch noch Temperaturen über 28° C gemessen. Der Rückgang der Wärmefrachten der Berliner Kraftwerke in die Gewässer beträgt seit 1993 ca. 13 Mio. GJ und ist im Wesentlichen auf den Anschluss des Berliner Stromnetzes an das westeuropäische Verbundnetz zurückzuführen. Durch die Liberalisierung des Strommarktes bedingte sinkende Strombeschaffungskosten und damit verbundene geringere Erzeugung in den Berliner Kraftwerken hat zur Stilllegung bzw. Teilstilllegung von Kraftwerken geführt, die zum Teil mit Modernisierungen zur Effizienzsteigerung verbunden waren. Die derzeitige Wärmefracht beträgt ca. 10 Mio. GJ. Sauerstoffgehalt (02.01.1) Der Sauerstoffgehalt des Wassers ist das Ergebnis sauerstoffliefernder und -zehrender Vorgänge . Sauerstoff wird aus der Atmosphäre eingetragen, wobei die Sauerstoffaufnahme vor allem von der Größe der Wasseroberfläche, der Wassertemperatur, dem Sättigungsdefizit, der Wasserturbulenz sowie der Luftbewegung abhängt. Sauerstoff wird auch bei der Photosynthese der Wasserpflanzen freigesetzt, wodurch Sauerstoffübersättigungen auftreten können. Beim natürlichen Abbau organischer Stoffe im Wasser durch Mikroorganismen sowie durch die Atmung von Tieren und Pflanzen wird Sauerstoff verbraucht . Dies kann zu Sauerstoffmangel im Gewässer führen. Der kritische Wert liegt bei 4 mg/l, unterhalb dessen empfindliche Fischarten geschädigt werden können. Sowohl aus den Werten der Messstationen als auch aus den Stichproben ist eine Verbesserung des Sauerstoffgehaltes der Berliner Gewässer nur teilweise ablesbar. Kritisch sind nach wie vor die Gewässer, in die Mischwasserüberläufe stattfinden. In der Mischwasserkanalisation werden Regenwasser und Schmutzwasser in einem Kanal gesammelt und über Pumpwerke zu den Klärwerken gefördert. Dieses Entwässerungssystem ist in der gesamten Innenstadt Berlins präsent. (vgl. Karte 02.09) Im Starkregenfall reicht die Aufnahmekapazität der Mischkanalisation nicht aus und das Gemisch aus Regenwasser und unbehandeltem Abwasser tritt in Spree und Havel über. Infolge dessen kann es durch Zehrungsprozesse zu Sauerstoffdefiziten kommen. Besonders extreme Ereignisse lösen in einigen Gewässerabschnitten (v.a. Landwehrkanal und Neuköllner Schifffahrtskanal) sogar Fischsterben aus. Um die Überlaufmengen künftig deutlich zu verringern, werden im Rahmen eines umfassenden Sanierungsprogramms zusätzliche unterirdische Speicherräume aktiviert bzw. neu errichtet. Die kritischen Situationen im Tegel Fließ sind auf nachklingende Rieselfeldeinflüsse bzw. Landwirtschaft zurückzuführen. TOC (02.01.10) und AOX (02.01.7) Die gesamtorganische Belastung in Oberflächengewässern wird mit Hilfe des Leitparameters TOC (total organic carbon) ermittelt. Die Summe der “Adsorbierbaren organisch gebundenen Halogene” wird über die AOX -Bestimmung wiedergegeben. Bei der Bestimmung des Summenparameters AOX werden die Halogene (AOJ, AOCl, AOBr) in einer Vielfalt von Stoffen mit ganz unterschiedlichen Eigenschaften erfasst. Dieser Parameter dient insofern weniger der ökotoxikologischen Gewässerbewertung, sondern vielmehr in der Gewässerüberwachung dem Erfolgsmonitoring von Maßnahmen zur Reduzierung des Eintrags an “Adsorbierbaren organisch gebundenen Halogenen”. Beide Messgrößen lassen prinzipiell keine Rückschlüsse auf Zusammensetzung und Herkunft der organischen Belastung zu. Erhöhte AOX – Befunde in städtischen Ballungsräumen wie Berlin dürften jedoch einem vornehmlich anthropogenen Eintrag über kommunale Kläranlagen zuzuschreiben sein. TOC-Einträge können sowohl anthropogenen Ursprungs als auch natürlichen Ursprungs z.B. durch den Eintrag von Huminstoffen aus dem Einzugsgebiet bedingt sein, was die ökologische Aussagefähigkeit des Parameters teilweise einschränkt. Bewertungsmaßstab ist für beide Messgrößen das 90-Perzentil. Unter Anwendung dieses strengen Maßstabs wird die Zielgröße Güteklasse II für den TOC bereits in den Zuflüssen nach Berlin und im weiteren Fließverlauf durch die Stadt in sämtlichen Haupt- und Nebenfließgewässern überschritten . Für AOX liegen die Messwerte nicht durchgängig für alle Fließabschnitte der Berliner Oberflächengewässer vor. Dennoch lässt sich ableiten, dass lediglich in den Gewässerabschnitten, die unmittelbar den Klärwerkseinleitungen ausgesetzt sind (Neuenhagener Fließ, Wuhle, Teltowkanal, Nordgraben), leicht erhöhte AOX – Messwerte auftreten und die Zielvorgabe knapp überschritten wird (Güteklasse II bis III). Ammonium-Stickstoff (02.01.3), Nitrit-Sickstoff (02.01.5), Nitrat-Stickstoff (02.01.4) Stickstoff tritt im Wasser sowohl molekular als Stickstoff (N 2 ) als auch in anorganischen und organischen Verbindungen auf. Organisch gebunden ist er überwiegend in pflanzlichem und tierischem Material (Biomasse) festgelegt. Anorganisch gebundener Stickstoff kommt vorwiegend als Ammonium (NH 4 ) und Nitrat (NO 3 ) vor. In Wasser, Boden und Luft sowie in technischen Anlagen (z.B. Kläranlagen) finden biochemische (mikrobielle) und physikalisch-chemische Umsetzungen der Stickstoffverbindungen statt (Oxidations- und Reduktionsreaktionen). Eine Besonderheit des Stickstoffeintrages ist die Stickstofffixierung, eine biochemische Stoffwechselleistung von Bakterien und Blaualgen (Cyanobakterien), die molekularen gasförmigen Stickstoff aus der Atmosphäre in den Stoffwechsel einschleusen können. Innerhalb Berlins ist der Eintrag über die Kläranlagen die Hauptbelastungsquelle . Durch die Regenentwässerungssysteme werden sporadisch kritische Ammoniumeinträge verursacht. Ammonium kann in höheren Konzentrationen erheblich zur Belastung des Sauerstoffhaushalts beitragen, da bei der mikrobiellen Oxidation (Nitrifikation) von 1 mg Ammonium-Stickstoff zu Nitrat rd. 4,5 mg Sauerstoff verbraucht werden. Dieser Prozess ist allerdings stark temperaturabhängig. Erhebliche Umsätze erfolgen nur in der warmen Jahreszeit . Bisweilen überschreitet die Sauerstoffzehrung durch Nitrifikationsvorgänge die durch den Abbau von Kohlenstoffverbindungen erheblich. Toxikologische Bedeutung kann das Ammonium bei Verschiebung des pH-Wertes in den alkalischen Bereichen erlangen, wenn in Gewässern mit hohen Ammoniumgehalten das fischtoxische Ammoniak freigesetzt wird. Nitrit-Stickstoff tritt als Zwischenstufe bei der mikrobiellen Oxidation von Ammonium zu Nitrat ( Nitrifikation ) auf. Nitrit hat eine vergleichsweise geringere ökotoxikologische Bedeutung. Mit zunehmender Chloridkonzentration verringert sich die Nitrit-Toxizität bei gleichem pH-Wert. Während für die Spree, Dahme und Havel im Zulauf nach Berlin die LAWA – Qualitätsziele (Güteklasse II) für NH 4 -N eingehalten werden, werden die Ziele überall dort überschritten, wo Gewässer dem Ablauf kommunaler Kläranlagen und Misch- und Regenwassereinleitungen ausgesetzt sind. Die Ertüchtigung der Nitrifikationsleistungen in den Klärwerken der Berliner Wasserbetriebe seit der Wende führte stadtweit zu einer signifikanten Entlastung der Gewässer mit Gütesprüngen um drei bis vier Klassen . Viele Gewässerabschnitte konnten den Sprung in die Güteklasse II schaffen. Die Werte für die Wuhle und in Teilen für die Vorstadtspree sind für den jetzigen Zustand nicht mehr repräsentativ, da mit der Stilllegung des Klärwerkes Falkenberg im Frühjahr 2003 eine signifikante Belastungsquelle abgestellt wurde. Mit der Stillegung des Klärwerkes Marienfelde (Teltowkanal, 1998) und der Ertüchtigung von Wassmansdorf konnte die hohe Belastung des Teltowkanals ebenfalls deutlich reduziert werden. Das Neuenhagener Mühlenfließ ist nach wie vor sehr hoch belastet. Hier besteht Handlungsbedarf beim Klärwerk Münchehofe . Die Stadtspree (von Köpenick bis zur Mündung in die Havel) weist durchgängig die Güteklasse II bis III auf und verfehlt damit die LAWA – Zielvorgabe ebenso wie die Unterhavel , der Teltowkanal und die mischwasserbeeinflussten innerstädtischen Kanäle . In 2001 ist eine Überschreitung der LAWA – Zielvorgabe für Nitrit-Stickstoff (90-Perzentil) in klärwerksbeeinflussten Abschnitten von Neuenhagener Fließ und Wuhle (s. Anmerkung oben) sowie in drei Abschnitten des Teltowkanals zu verzeichnen. Die Nitratwerte der Berliner Gewässer sind durchgehend unkritisch. Chlorid (02.01.8) In den Berliner Gewässern liegt der natürliche Chloridgehalt unter 60 mg/l. Anthropogene Anstiege der Chloridkonzentration erfolgen durch häusliche und industrielle Abwässer sowie auch durch Streusalz des Straßenwinterdienstes. Einem typischen Jahresverlauf unterliegt das Chlorid durch den sommerlichen Rückgang des Spreewasserzuflusses und der damit verbundenen Aufkonzentrierung in der Stadt. Bei Chloridwerten über 200 mg/l können für die Trinkwasserversorgung Probleme auftauchen. Die Chloridwerte der Berliner Gewässer stellen kein gewässerökologisches Problem dar. Sulfat (02.01.9) Der Beginn anthropogener Beeinträchtigungen im Berliner Raum wird mit etwa 120 mg/l angegeben. Die Güteklasse II (< 100 mg/l) kann somit für unsere Region nicht Zielgröße sein. Die Bedeutung des Parameters Sulfat liegt im Spree-Havel-Raum weniger in seiner ökotoxikologischen Relevanz, als vielmehr in der Bedeutung für die Trinkwasserversorgung. Der Trinkwassergrenzwert liegt bei 240 mg/l (v.a. Schutz der Nieren von Säuglingen vor zu hoher Salzfracht). Die Zuläufe nach Berlin weisen Konzentrationen von 150 bis 180 mg/l auf. Hier ist in Zukunft mit einer Zunahme der Sulfatfracht aus den Bergbauregionen der Lausitz zu rechnen. Folgende Einträge in die Gewässer sind im Spreeraum von Relevanz: Eintrag über Sümpfungswässer aus Tagebauen Direkter Eintrag aus Tagebaurestseen, die zur Wasserspeicherung genutzt werden indirekter Eintrag über Grundwässer aus Tagebaugebieten Einträge des aktiven Bergbaus Atmosphärischer Schwefeleintrag (Verbrennung fossiler Brennstoffe) Diffuse und direkte Einträge (Kläranlageneinleitungen, Abschwemmungen, Landwirtschaft) In gewässerökologischer Hinsicht können erhöhte Sulfatkonzentrationen eutrophierungsfördernd sein. Sulfat kann zur Mobilisierung von im Sediment festgelegten Phosphor führen. Gesamt-Phosphor (02.01.6) Phosphor ist ein Nährstoffelement, das unter bestimmten Bedingungen Algenmassenentwicklungen in Oberflächengewässern verursachen kann (nähere Erläuterungen siehe Karte 02.03). Unbelastete Quellbäche weisen Gesamt-Phosphorkonzentrationen von weniger als 1 bis 10 µg/l P, anthropogen nicht belastete Gewässeroberläufe in Einzugsgebieten mit Laubwaldbeständen 20-50 µg/l P auf. Die geogenen Hintergrundkonzentrationen für die untere Spree und Havel liegen in einem Bereich um 60 bis 90 µg/l P. Auf Grund der weitgehenden Verwendung phosphatfreier Waschmittel und vor allem auch der fortschreitenden Phosphatelimination bei der Abwasserbehandlung ist der Phosphat-Eintrag über kommunale Kläranlagen seit 1990 deutlich gesunken , vor allem in den Jahren bis 1995. Der Eintrag über landwirtschaftliche Flächen ist ebenfalls rückgängig. Die Phosphorbelastung der Berliner Gewässer beträgt für den Zeitraum 1995-1997: Zuflüsse nach Berlin 188 t/a Summe Kläranlagen 109 t/a Misch- und Trennkanalisation 38 t/a Summe Zuflüsse und Einleitungen 336 t/a Summe Abfluss 283 t/a In den Zuflüssen nach Berlin überwiegen die diffusen Einträge mit ca. 60 %. Der Grundwasserpfad ist mit ca.50 % der dominante Eintragspfad (diffuser Eintrag 100 %). Beim Gesamtphosphor wird der Mittelwert der entsprechenden Jahre zugrundegelegt. Deutlich wird die erhöhte P-Belastung der Berliner Gewässer etwa um den Faktor 2 bis 3 über den Hintergrundwerten. Eine Ausnahme bildet der Tegeler See . Der Zufluss zum Hauptbecken des Tegeler Sees wird über eine P-Eliminationsanlage geführt und somit der Nährstoffeintrag in den See um ca. 20 t/a entlastet.

Reactive nitrogen flows in Germany 2010-2014 (DESTINO Report 2)

Der Eintrag von Stickstoff in die Umwelt verursacht vielfältige Probleme. Für die Konzeption von Minderungsmaßnahmen ist es eine wesentliche Voraussetzung, die Quellen, Senken und Flüsse reaktiver Stickstoffverbindungen (Nr) zu quantifizieren. Im Rahmen des überarbeiteten Göteborg-Protokolls zur Convention on Long-Range Transboundary Air Pollution (CLTRAP) wurde 2012 vereinbart, die nationalen Stickstoff-Flüsse zu erfassen. Das "Guidance document on national nitrogen budgets" der Economic Commission for Europe bildet dafür den Ausgangspunkt (ECE 2013). In einer nationalen N-Bilanzierung (NNB) werden für acht Pools die ein- und ausgehenden Nr-Flüsse berechnet: Atmosphäre, Energiewirtschaft und Verkehr, Industrielle Produktion, Ernährung und Konsum, Landwirtschaft, Wald und semi-natürliche Flächen, Abfallwirtschaft und Abwasserentsorgung, Gewässer sowie die grenzüberschreitenden N-Flüsse (Importe und Exporte). Die N-Flüsse werden aus statistischen Be-richten, Veröffentlichungen etc. direkt entnommen oder als Produkt aus der transportierten bzw. um-gesetzten Stoffmenge und deren mittlerem N-Gehalt berechnet. Insgesamt werden für Deutschland rund 150 N-Flüsse beschrieben, die Unsicherheit der Ergebnisse wird in vier Stufen von "sehr gering" bis "hoch" eingestuft. In Deutschland werden jährlich 6275 kt Nr a-1 in Umlauf gebracht (Mittelwert 2010 bis 2014), davon 43 % über die Ammoniak-Synthese. Die inländische Förderung und der Import von N-haltigen fossilen Energieträgern (Braunkohle, Steinkohle, Rohöl) tragen 2335 kt N a-1 dazu bei. Mit der Stickstoff-Fixierung als einzigem natürlichen Prozess werden 308 kt N a-1 in organisch gebundenen Stickstoff überführt. Als bedeutendste Senke von Nr werden mit der Verbrennung von fossilen und regenerativen Energieträgern sowie mit der Verarbeitung von Rohöl zu Mineralölprodukten 2711 kt N a-1 wieder in N2 überführt. In Gewässern, Böden und Kläranlagen werden 1107 kt N a-1 denitrifiziert. Über die Atmosphäre und den Gewässerabfluss exportiert Deutschland netto 745 kt N a-1 in seine Nachbarländer und in die Küstenmeere. Die Änderung des N-Bodenvorrats wurde bislang nur für Waldböden ermittelt, für die ein Abbau von 293 kt N a-1 berechnet wird. Der NNB zufolge werden in Deutschland jährlich 1627 kt Nr a-1 freigesetzt. Die NNB ist allerdings durch größere Unsicherheiten gekennzeichnet, was bei der Interpretation der Ergebnisse berücksichtigt werden muss. Quelle: Forschungsbericht

Reaktive Stickstoffflüsse in Deutschland 2010-2014 (DESTINO Bericht 2)

Der Eintrag von Stickstoff in die Umwelt verursacht vielfältige Probleme. Für die Konzeption von Minderungsmaßnahmen ist es eine wesentliche Voraussetzung, die Quellen, Senken und Flüsse reaktiver Stickstoffverbindungen (Nr) zu quantifizieren. Im Rahmen des überarbeiteten Göteborg-Protokolls zur Convention on Long-Range Transboundary Air Pollution (CLTRAP) wurde 2012 vereinbart, die nationalen Stickstoff-Flüsse zu erfassen. Das "Guidance document on national nitrogen budgets" der Economic Commission for Europe bildet dafür den Ausgangspunkt (ECE 2013). In einer nationalen N-Bilanzierung (NNB) werden für acht Pools die ein- und ausgehenden Nr-Flüsse berechnet: Atmosphäre, Energiewirtschaft und Verkehr, Industrielle Produktion, Ernährung und Konsum, Landwirtschaft, Wald und semi-natürliche Flächen, Abfallwirtschaft und Abwasserentsorgung, Gewässer sowie die grenzüberschreitenden N-Flüsse (Importe und Exporte). Die N-Flüsse werden aus statistischen Be-richten, Veröffentlichungen etc. direkt entnommen oder als Produkt aus der transportierten bzw. um-gesetzten Stoffmenge und deren mittlerem N-Gehalt berechnet. Insgesamt werden für Deutschland rund 150 N-Flüsse beschrieben, die Unsicherheit der Ergebnisse wird in vier Stufen von "sehr gering" bis "hoch" eingestuft. In Deutschland werden jährlich 6275 kt Nr a-1 in Umlauf gebracht (Mittelwert 2010 bis 2014), davon 43 % über die Ammoniak-Synthese. Die inländische Förderung und der Import von N-haltigen fossilen Energieträgern (Braunkohle, Steinkohle, Rohöl) tragen 2335 kt N a-1 dazu bei. Mit der Stickstoff-Fixierung als einzigem natürlichen Prozess werden 308 kt N a-1 in organisch gebundenen Stickstoff überführt. Als bedeutendste Senke von Nr werden mit der Verbrennung von fossilen und regenerativen Energieträgern sowie mit der Verarbeitung von Rohöl zu Mineralölprodukten 2711 kt N a-1 wieder in N2 überführt. In Gewässern, Böden und Kläranlagen werden 1107 kt N a-1 denitrifiziert. Über die Atmosphäre und den Gewässerabfluss exportiert Deutschland netto 745 kt N a-1 in seine Nachbarländer und in die Küstenmeere. Die Änderung des N-Bodenvorrats wurde bislang nur für Waldböden ermittelt, für die ein Abbau von 293 kt N a-1 berechnet wird. Der NNB zufolge werden in Deutschland jährlich 1627 kt Nr a-1 freigesetzt. Die NNB ist allerdings durch größere Unsicherheiten gekennzeichnet, was bei der Interpretation der Ergebnisse berücksichtigt werden muss. Quelle: Forschungsbericht

Stickstoffeintrag aus der Landwirtschaft und Stickstoffüberschuss

Stickstoffeintrag aus der Landwirtschaft und Stickstoffüberschuss Stickstoff ist ein essenzieller Nährstoff für alle Lebewesen. Im Übermaß in die Umwelt eingebrachter Stickstoff führt aber zu enormen Belastungen von Ökosystemen. Stickstoffüberschuss der Landwirtschaft Eine Maßzahl für die Stickstoffeinträge in Grundwasser, Oberflächengewässer, Böden und die Luft aus der Landwirtschaft ist der aus der landwirtschaftlichen Stickstoff-Gesamtbilanz ermittelte Stickstoffüberschuss (siehe Abb. „Saldo der landwirtschaftlichen Stickstoff-Gesamtbilanz in Bezug auf die landwirtschaftlich genutzte Fläche“). Die Stickstoff-Gesamtbilanz setzt sich zusammen aus den Komponenten Flächenbilanz (Bilanzierung der Pflanzen- bzw. Bodenproduktion), Stallbilanz (Bilanzierung der tierischen Erzeugung) und der Biogasbilanz (Bilanzierung der Erzeugung von Biogas in landwirtschaftlichen Biogasanlagen). Der Stickstoffüberschuss der Gesamtbilanz ergibt sich aus der Differenz von Stickstoffzufuhr in und Stickstoffabfuhr aus dem gesamten Sektor Landwirtschaft (siehe Schaubild „Schema der Stickstoff-Gesamtbilanz der Landwirtschaft“). Der ⁠ Indikator ⁠ wird vom Institut für Pflanzenbau und Bodenkunde des Julius Kühn-Instituts und dem Umweltbundesamt berechnet und jährlich vom ⁠ BMEL ⁠ veröffentlicht (siehe BMEL, Tabellen zur Landwirtschaft, MBT-0111-260-0000 ). Der Stickstoffüberschuss der Gesamtbilanz ist als mittlerer Überschuss aller landwirtschaftlicher Betriebe in Deutschland zu interpretieren. Regional können sich die Überschüsse jedoch sehr stark unterscheiden. Grund dafür sind vorrangig unterschiedliche Viehbesatzdichten und daraus resultierende Differenzen beim Anfall von Wirtschaftsdünger. Um durch ⁠ Witterung ⁠ und Düngerpreis verursachte jährliche Schwankungen auszugleichen wird ein gleitendes 5-Jahresmittel errechnet. ___ * jährlicher Überschuss bezogen auf das mittlere Jahr des 5-Jahres-Zeitraums (aus gerundeten Jahreswerten berechnet) ** 1990: Daten zum Teil unsicher, nur eingeschränkt vergleichbar mit Folgejahren. *** Ziel der Nachhaltigkeitsstrategie der Bundesregierung, bezogen auf das 5-Jahres-Mittel, d.h. auf den Zeitraum 2028 bis 2032 Bundesministerium für Ernährung und Landwirtschaft (BMEL) 2024, Statistischer Monatsbericht Kap. A Nährstoffbilanzen und Düngemittel, Nährstoffbilanz insgesamt von 1990 bis 2022 (MBT-0111260-0000) Die Ergebnisse der Bilanzierung zeigen einen abnehmenden Trend bei den Stickstoffüberschüssen über die erfasste Zeitreihe (siehe Abb. „Saldo der landwirtschaftlichen Stickstoff-Gesamtbilanz in Bezug auf die landwirtschaftlich genutzte Fläche“). Im Zeitraum 1992 bis 2020 ist der Stickstoffüberschuss im gleitenden 5-Jahresmittel von 117 Kilogramm Stickstoff pro Hektar landwirtschaftlich genutzter Fläche und Jahr (kg N/ha*a) auf 77 kg N/ha*a gesunken. Das entspricht einem jährlichen Rückgang von 1 % sowie einem Rückgang über die Zeit um 34 %. Die Reduktion des Stickstoffüberschusses zu Beginn der 1990er Jahre ist größtenteils auf den Abbau der Tierbestände in den neuen Bundesländern zurückzuführen. Der durchschnittliche Rückgang des Stickstoffüberschusses über die gesamte Zeit von 1992 bis 2020 beruht auf Effizienzgewinnen bei der Stickstoffnutzung (Effizienterer Einsatz von Stickstoff-Düngemitteln, Ertragssteigerungen in der Pflanzenproduktion und höhere Futterverwertung bei Nutztieren). In den Jahren seit 2015 ist der Überschuss besonders stark gesunken. Grund dafür sind neben einer veränderten und wirksameren Gesetzgebung, gesunkene Tierzahlen sowie Dürrejahre und höhere Mineraldüngerpreise und der damit einhergehende verminderte Einsatz von Mineraldüngern. Im Jahr 2016 wurde in der Deutschen Nachhaltigkeitsstrategie der Bundesregierung (BReg 2016) ein Zielwert von 70 kg N/ha*a für das gleitende 5-Jahresmittel von 2028-2032 verankert. Von 2016 bis 2020, also in 4 Jahren, wurde somit bereits etwa dreiviertel der angestrebten Reduktion erreicht. Bewertung der Entwicklung Wenn die Stickstoffüberschüsse weiterhin so schnell sinken wie in den letzten Jahren bzw. auf dem aktuellen Niveau bleiben wird das Ziel der Deutschen Nachhaltigkeitsstrategie voraussichtlich in den nächsten zwei bis drei Jahren erreicht werden. Für einen umfassenden Schutz von Umwelt und ⁠ Klima ⁠ ist dies aber noch nicht ausreichend. Die in 2016 in Kraft getretene EU-Richtlinie über nationale Emissionshöchstmengen für bestimmte Luftschadstoffe (⁠ NEC-Richtlinie ⁠) verpflichtet Deutschland bis 2030 dazu 29 % der Ammoniak-Emissionen im Vergleich zum Jahr 2005 zu reduzieren. Bis zum Jahr 2022 wurde hier nur eine Minderung von 18 % erreicht. Da der Sektor Landwirtschaft der größte Verursacher von Ammoniak-Emissionen ist, sind hier also noch weitere Maßnahmen für die Zielerreichung nötig. Aber auch für das Erreichen von weiteren Zielen, wie Nitrat im Grundwasser, Stickstoffeintrag über die Zuflüsse in Nord- und Ostsee und ⁠ Eutrophierung ⁠ der Ökosysteme wird voraussichtlich das Erreichen des 70 kg-Ziels nicht ausreichen, denn hier kommt es weniger auf den durchschnittlichen nationalen Stickstoffüberschuss, sondern eher auf die regionale Verteilung der Stickstoffüberschüsse an. Einen Überblick über die Verteilung der Überschüsse finden Sie hier . Stickstoffzufuhr und Stickstoffabfuhr in der Landwirtschaft Die Stickstoffzufuhr zur landwirtschaftlichen Gesamtbilanz berücksichtigt Mineraldünger, Wirtschaftsdüngerimporte, Kompost und Klärschlamm, atmosphärische Stickstoffdeposition, Stickstoffbindung von Leguminosen, Co-Substrate für die Bioenergieproduktion sowie Futtermittelimporte. Die Stickstoffabfuhr berücksichtigt pflanzliche und tierische Marktprodukte. Im Durchschnitt lag die Stickstoffzufuhr zwischen 1990 und 2022 bei 187 Kilogramm pro Hektar landwirtschaftlich genutzter Fläche und Jahr (kg N/ha*a), mit einem Maximum von 209 kg N/ha*a im Jahr 1990 und einem Minimum von 151 kg N/ha*a im Jahr 2022. Die Zufuhr hat sich bis 2017 kaum verändert. Lediglich in den letzten 5 Jahren gab es einen mittleren Rückgang von 8 kg N/ha*a. Die Stickstoffabfuhr betrug im gesamten Betrachtungszeitraum durchschnittlich 87 kg N/ha*a, mit einem Maximum von 103 kg N/ha*a im Jahr 2014 und einem Minimum von 67 kg N/ha*a im Jahr 1990. Im gleitenden 5-Jahresmittel stieg die Abfuhr von 73 kg N/ha*a im Jahr 1992 auf 88 kg N/ha*a im Jahr 2020 an. Dies entspricht einem Anstieg des über tierische und pflanzliche Produkte abgefahrenen Stickstoffs von etwa 21 %. 2022 stammten 44 % der Stickstoffzufuhr der Landwirtschaft aus Mineraldüngern, 25 % aus inländischem Tierfutter sowie 14 % aus Futtermittelimporten. Wirtschaftsdünger und betriebseigene Futtermittel werden in der Flächenbilanz, nicht aber in der Gesamtbilanz berücksichtigt. 3 % des Stickstoffs wurden über den Luftpfad eingetragen (⁠ Deposition ⁠ aus Verkehrsabgasen und Verbrennungsanlagen) und 2 % stammte aus Kofermenten für die Biogasproduktion. 10 % sind der biologischen Stickstofffixierung von Leguminosen (zum Beispiel Klee oder Erbsen) anzurechnen, die Luftstickstoff in erheblichem Maße binden. Etwa 1 % der Stickstoffzufuhr stammte aus Saat- und Pflanzgut. Die Stickstoffabfuhr fand zu 32 % über Fleisch, Schlachtabfälle und sonstige Tierprodukte und zu 68 % über pflanzliche Marktprodukte statt. Umweltwirkungen der Stickstoffüberschüsse Überschüssiger Stickstoff aus landwirtschaftlichen Quellen gelangt als Nitrat in Grund- und Oberflächengewässer und als Ammoniak und Lachgas in die Luft. Lachgas trägt als hochwirksames ⁠ Treibhausgas ⁠ zur Klimaerwärmung bei. Der Eintrag von Nitrat und Ammoniak in Land- oder Wasser-Ökosysteme kann weitreichende Auswirkungen auf den Naturhaushalt haben. Diese sind unter anderem eine Nitratbelastung des Grundwassers, eine ⁠ Versauerung ⁠ der Böden und Gewässer und somit eine Beeinträchtigung der biologischen Vielfalt sowie eine Nährstoffanreicherung (⁠ Eutrophierung ⁠) in Wäldern, Mooren, Heiden, Oberflächengewässern und Meeren. Im Mittel der Jahre 2012 bis 2016 wurden rund 480 Kilotonnen Stickstoff pro Jahr in die deutschen Oberflächengewässer eingetragen (siehe „Einträge von Nähr- und Schadstoffen in die Oberflächengewässer“ ). Durchschnittlich stammten in diesem Zeitraum 74 % dieser Einträge aus landwirtschaftlich genutzten Flächen. Die Düngeverordnung Die Düngeverordnung definiert „die gute fachliche Praxis der Düngung“ und gibt vor, wie die mit der Düngung verbundenen Risiken zu minimieren sind. Sie ist wesentlicher Bestandteil des nationalen Aktionsprogramms zur Umsetzung der EU-Nitratrichtlinie . Nach der Düngeverordnung dürfen Landwirtinnen und Landwirte Pflanzen nur entsprechend ihres Nährstoffbedarfs düngen. Die Düngeverordnung wurde 2017 und 2020 novelliert um Strafzahlungen als Folge des Urteils des EuGHs gegen Deutschland wegen Verletzung der EU-Nitratrichtlinie zu verhindern. Dieses Ziel wurde vorerst erreicht. Die kurzfristige Wirkung der Maßnahmen der novellierten Düngeverordnung werden aktuell im Rahmen eines Effizienzmonitorings geprüft, um die mit Nitrat belasteten und von ⁠ Eutrophierung ⁠ betroffenen Gebiete zu identifizieren und eine schnelle Nachsteuerung von Maßnahmen in diesen Gebieten zu erreichen. Informationen zu den Novellierungen finden Sie hier . Weitere Maßnahmen zur Verringerung der Überschüsse Um das Ziel der Bundesregierung zum Stickstoffüberschuss und der damit untrennbar verbundenen Umweltziele zu Nitrat im Grundwasser, ⁠ Eutrophierung ⁠ von Ökosystemen sowie Oberflächengewässern und zu Emissionen von Luftschadstoffen zu erreichen, muss die Gesamtstickstoffzufuhr in der Landwirtschaft verringert und der eingesetzte Stickstoff effizienter genutzt werden. Die Voraussetzung dafür ist das Schließen des Stickstoffkreislaufs. Dafür müssen Maßnahmen umgesetzt werden, die dazu führen, dass die Anwendung von Mineraldünger reduziert wird, importierte Futtermittel durch heimische ersetzt werden und die Anzahl von Nutztieren reduziert wird. Zudem muss die Effizienz der Stickstoffnutzung durch weitere Optimierungen des betrieblichen Nährstoffmanagements, wie standortangepasste Bewirtschaftungsmaßnahmen, geeignete Nutzpflanzensorten und passende, vielfältige Fruchtfolgen verbessert werden. Dabei ist am Ende nicht nur die Verringerung der durchschnittlichen Überschüsse entscheidend, sondern auch die Verteilung der Nährstoffe in die Fläche, denn nur so können die genannten Umweltziele erreicht werden. Um diese Verteilung zu erreichen müssen große Tierbestände reduziert und die Tiere gleichmäßiger auf die gesamte landwirtschaftliche Fläche verteilt werden.

StickstoffBW

Nach Experteneinschätzung wird zurzeit weltweit etwa viermal mehr Stickstoff in reaktive (reduzierte, oxidierte und organische) Form umgewandelt, als es für die Umwelt verträglich ist. Um den Stickstoffhaushalt und die unerwünschten Auswirkungen zu erheben, Instrumente anzupassen und neue Maßnahmen vorzuschlagen hat der Ministerrat von Baden-Württemberg das Verbundvorhaben StickstoffBW beschlossen (Federführung Ministerium für Umwelt, Klima und Energiewirtschaft (UM), Koordinierung LUBW). Durch die Zusammenführung von Daten werden verbesserte Grundlagen für die Planung von Maßnahmen und für den Vollzug im Immissionsschutz, in der Wasserwirtschaft, im Naturschutz, und bei der Land- und Forstwirtschaft, dem Bau und Betrieb von Verkehrswegen sowie in der Umweltplanung erwartet. Eine eher langfristige Erwartung ist, dass das Projekt auch einen Beitrag für ein nachhaltiges Management „der Ressource reaktiver Stickstoff" liefert. Zum UM AKTUELLES 14.11.2023 - Auf der 9. Umweltbeobachtungskonferenz in Leipzig wird die erfolgreiche Integration von Immissions-, Agrar- und FFH-Daten am Beispiel von Trophiestufen diskutiert (Veranstalter sind BfN, BAFU, UBA Dessau, LANUV, MUNV & LUBW) Download. 01.08.2023 - Der StickstoffBW Depositionsbericht 2023 erscheint. Mit dem Bericht werden die für den Vollzug bereitgestellten und im Kartendienst des Landes Baden-Württemberg veröffentlichten Karten der Ammoniakkonzentration und der Stickstoffdeposition dokumentiert (5-Jahresmittel). Am Ende des Berichtes sind Hinweise zur Aktualisierung der Hintergrundbelastung zusammengetragen und es wird eine praxisgerechte Umsetzung über ein Umweltinformations-, Planungs- und Bewertungssystem UIS Stickstoff vorgeschlagen Download. 01.02.2023 - Die Einführung von drei Trophiestufen für die künftige, praxisgerechte Anwendung von Critical Level und Critical Loads wird auf einem internationalen Expertenworkshop des Umweltbundesamtes zu Ammoniak vorgestellt Download. 23.11.2022 - Mit dem Abschlussbericht der 8. Umweltbeobachtungskonferenz werden im Kontext der Leitthemen Biodiversitätsverlust, Stickstoffüberschuss, Chemikalieneffekte und Klimawandel jeweils acht Verbesserungsvorschläge für die Umweltbeobachtung, das Umweltwissen und das Umwelthandeln veröffentlicht Download. 05.02.2021 - In der AG2 Critical Loads wurde mit dem "Formular Offenland" die Neukalibrierung der Critical Loads für FFH-Lebensraumtypen nach der SMB-Methode gestartet. Ausgangspunkt ist die CL-Datenmappe 2014. Als wesentliche Elemente der neuen CL Datenmappe 2022 sind geplant: eine Tabelle für die kritische N-Konzentration in der Bodenlösung (N crit ), eine Tabelle für den idealtypischen Entzug (N ue ), die Limitierung der Ammoniakemissionen für beweidete und gedüngte Lebensräume (N Vol ) und die Limitierung der Nitratauswaschung (N le ). Die deutlich zu hoch angesetzte Immobilisierung (N i ) wird auf das bodengenetisch belegte Niveau reduziert. Für eine praxisgerechte Zuordnung der Annahmen werden die Pflanzenarten je LRT nach Trophiestufen (Tr) gegliedert (die Gliederung nach Pflanzengesellschaften ist optional). Elf weitere Sitzungen sind für die Abstimmung der Details geplant. 05.01.2021 - Der Bericht zum StickstoffBW Projekt 401 "Instrumente und Maßnahmen zur Reduktion der Stickstoffüberschüsse" erscheint im Publikationsdienst: Download. 18.12.2020 - In der AG2 Critical Load wird der Fahrplan zur "CL-Datenmappe 2022" auf den Weg gebracht. Die Datenmappe löst die Fassung aus dem Jahr 2014 ab (Datengrundlage für den Stickstoffleitfaden Straße des FGSV und für Anhang 8 der TA Luft). 10.12.2020 - In der AG3 Bilanz wurde die Neubewertung der Stickstofffixierung durch Leguminosen verabredet (wichtig für die Mittelgebirge). In einer Kurzmitteilung zur Hoftorbilanz sollen im Jahr 2021 zudem Hinweise zu kritischen Ammoniakkonzentrationen in der Luft und Nitratkonzentrationen im Grundwasser zusammengestellt werden. 31.08.2020 - Im Daten- und Kartendienst der LUBW > Stickstoff sind neue Karten der Ammoniakkonzentration und Stickstoffdeposition für Baden-Württemberg erschienen. Die jetzt im ha-Raster aufgelösten Karten ersetzen die Interimslösung aus der nationalen Modellierung. Die noch auf Ebene der Gemeinden sehr grob aufgelöste Karte der Stickstoffüberschüsse bleibt gültig: Ammoniakkonzentration , Stickstoffdeposition und Stickstoffüberschüsse 14.07.2020 - Der Bericht zum StickstoffBW Projekt 401 "Instrumente und Maßnahmen zur Reduktion der Stickstoffüberschüsse" ist auf der Seite des Öko-Instituts Freiburg mit einer Pressemitteilung erschienen: Download. 22.06.2020 - Der DESTINO-Projektbericht zum Integrierten Stickstoffziel wurde vom Umweltbundesamt veröffentlicht: Download. Die Autoren betonen, dass die lokale Einhaltung des Critical Level für Ammoniak von 1 µg m -3 beachtet werden sollte (Bericht 1, Seite 40) und verweisen auf eine Lücke bei der nationalen N-Bilanz der Atmosphäre in Höhe von 126 kt N a -1 (Bericht 2, Seite 41). 04.05.2020 - Auf der INI 2020 erscheint ein Poster zur Neufassung der Ammoniakkonzentration und der Stickstoffdeposition für Baden-Württemberg (StickstoffBW Projekt 101): Download und beispielsweise ein Vorschlag für einen "national nitrogen target": Download. 16.01.2020 - StickstoffBW Berichte erscheinen im neuen Publikationsdienst mit Bezug zu den laufenden Projekten. Beispiel Bericht: Download. Übersicht der Projekte "pudi.lubw.de/projekte > Stickstoffforschung" Download . 23.05.2019 - Der Bericht zur Umweltbeobachtungskonferenz 2018 ist erschienen <Umweltkommunikation MitWirkung> Download. Hintergrundinformationen zur UBK18 beim Schweizer Bundesamt für Umwelt Download. 15.05.2019 - Die 92. UMK beschließt: <Damit die „Emissionsminderungsmaßnahmen“ nicht dazu führen, andere Umweltmedien zu belasten, muss die Emissionsminderung über die Einhaltung kritischer Überschüsse überwacht werden> Download. Die mit Bund und Ländern abgestimmte Methodik zur Ermittlung der kritischen Überschüsse ist im CS Bericht 2017 dokumentiert Download. 12.05.2019 - Der SWR berichtet über "Stickstoff und Pestizide" als eine der Hauptursachen des Insektensterbens Download (siehe auch Literaturstudie des UBA Download ). 08.05.2019 - Ein Kommentar zum Abschneidekriterium im Stickstoffleitfaden des LAI (Stand 2012) erscheint Download. 07.05.2019 - Der "CL Bericht 2019" ist erschienen <Ermittlung der Critical Levels und Critical Loads für Stickstoff - Methodik für die Neufassung der Belastungsgrenzen für in Deutschland vorkommende Vegetationseinheiten>. Am Ende des Fachberichtes sind zur Orientierung für Forschungseinrichtungen, Gutachterbüros und Fachverwaltungen in Bund und Ländern die aktuellen Belastungsgrenzen zusammengestellt. Betroffen sind die Fachbereiche Umweltbeobachtung, Naturschutz, Immissionsschutz, Bodenschutz, Wasserwirtschaft, Land- und Forstwirtschaft sowie Verkehrs- und Umweltplanung Download. 20.03.2019 - Mit dem Beitrag "Stickstoffüberschüsse senken! - Landesstrategie zum Schutz der Umwelt vor Ammoniak" startet die Kommunikation der Instrumente und Maßnahmen zur Stickstoffstrategie Baden-Württemberg. Umweltjournal Einblicke 2018, S 76 - 78: Download. 09.03.2019 - Das Umweltprogramm der UN betont mit dem Bericht " Frontiers 2018/19: Emerging Issues of Environmental Concern " das noch wenig beachtete Thema Stickstoff Download. Im Nachgang erscheint die UN-Resolution "Sustainable nitrogen management" Download. 28.01.2019 - Der Vortrag zum Stickstoffkreislauf auf der Umweltbeobachtungskonferenz erscheint Download. 13.12.2018 - "Reaktiver Stickstoff in der Umwelt" erscheint: Umweltdaten 2018 Baden-Württemberg, S 124 - 126 Download. 07.12.2018 - Die Kommunikation der Planetaren Belastungsgrenzen für Biodiversitätsverlust, den nicht geregelten Stickstoffkreislauf und Landnutzungswandel standen im Focus der 7. Umweltbeobachtungskonferenz in Bern. Vorträge, Prototypen für die "Kommunikation MitWirkung" und Erläuterungen sollen auf der Konferenzseite zur Verfügung stehen: Download . Das Land Baden-Württemberg lud im Anschluss zur „Umweltbeobachtungskonferenz 2020“ ein. Die Akteure wollen die Stickstoffkommunikation bis zur Konferenz 2020 weiter entwickeln. 30.11.2018 - "Die unterschätzte Gefahr - Ammoniak und die Biodiversität" , eine SWR-Sendung zur Stickstoff- und Ökologiewende ist umgezogen: Download. 08.11.2018 - EuGH Grundsatzurteil zu Ammoniak: Im Umfeld der Natura-2000-Gebiete kann Düngung und Weidehaltung (auch nach den Regeln der "Guten landwirtschaftlichen Praxis") ein "Projekt" im Sinne der FFH-RL (§ 34 BNatSchG) sein: Download. Im vorliegenden Verfahren beträgt die De-Minimis Schwelle für die Erfassung der N-Einträge 1 g N ha -1 a -1 . Die Generalanwältin J. Kokott gibt auch Hinweise zur De-Minimis Schwelle in Deutschland: Download. Nach europäischem Recht müssten demnach die Auswirkungen von Ammoniakemissionen aus Tierhaltung und Düngung (auch mit Gärrresten) auf geschützte Lebensräume künftig sehr genau, sehr umfassend und auch in einem großen Umfeld der geschützten Flächen geprüft werden. Der Vorrang des landwirtschaftlichen Fachrechtes in zahlreichen Umwelt- und Naturschutzbestimmungen muss damit nun auf den Prüfstand. Ein wichtiges und praktikables Element der Umsetzung der EuGH Entscheidung und der Stickstoff- und Ökologiewende Baden-Württemberg wird die sachgerechte Festsetzung der kritischen Überschüsse (Critical Surplus) sein: Download. 10.10.2018 - "Stickstoffüberschüsse senken" ist eine wesentliche Maßnahme im Aktionsprogramm Insektenschutz der Bundesregierung Download 20.09.2018 - Anlässlich der EuGH Prüfung wird im Bundesumweltministerium erstmals über ein Stickstoffgesetz diskutiert Download 29.06.2018 - Niederländisches Programm Aktion Stickstoff (PAS) u. Tool AERIUS - Vortrag Download 08.12.2017 - Stickstoff- und Ökologiewende Baden-Württemberg: Eröffnung Download und Bericht Download 10.11.2017 - Umweltausschuss des Bundesrates lehnt Anlage 4 der Stoffstrombilanzverordnung ab: Download 28.07.2017 - Dokumentation der Ammoniakkonzentration und der Stickstoffdeposition: Download , Dokumentation des Stickstoffüberschusses: Download; Die ersten drei StickstofBW-Karten sind erschienen: Bundesrat moniert fehlende Regelung für kritische Ammoniakkonzentrationen: Download Klärung der Anforderungen an die Stickstoffbilanzierung (CS-Bericht 2017): Download Beurteilung der Stickstoffdeposition - Kurzmitteilung 1/2016: Download Belastungsgrenzen für Stickstoff: Download Zu Gremien

Spatial variability of the effects of biochar on soybean-rhizobium symbiosis and plant growth on sandy soil

Das Projekt "Spatial variability of the effects of biochar on soybean-rhizobium symbiosis and plant growth on sandy soil" wird vom Umweltbundesamt gefördert und von Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V., Institut für Landnutzungssysteme und Landschaftsökologie durchgeführt. Limiting of water and nutrient retention capacity of soils in sandified regions are critical factors for crop growth. Biochar can increase water retention capacity and available water capacity of sandy soils. It does not only improve soil structure, but also contribute with additional cation and increased cation exchange capacity. On the other hand, the nitrogen availability in soil can get lower due to the high carbon/nitrogen ratio of the biochar and the resulting nitrogen immobilization. The nitrogen addition from fertilizer or legumes, through its nitrogen fixation ability, is necessary to fully utilize the benefit of biochar. But fertilizer application will cause more nitrogen leaching from soil to environment. Thus, the project aims to promote soybean-rhizobium symbiosis on sandy soil to remedy shortage of nitrogen. Soybean rhizobium symbiosis has high nitrogen fixation ability. The amount of nitrogen fixed by rhizobium soybean can be up to 450 kg nitrogen ha-1. Sandy field heterogeneity is also proved to be a problem to influence plant growth. A transect study is designed to separate treatment effect from field variability. In consequence, the main objectives of the project are: (I) to investigate the potential of soybean growth and biological nitrogen fixation on sandy soil with biochar application, (II) to improve the water and nutrient retention capacity in sandy soils, (III) to examine the spatial soil property and water variation in field

Teilprojekt D

Das Projekt "Teilprojekt D" wird vom Umweltbundesamt gefördert und von P. H. Petersen Saatzucht Lungsgaard GmbH durchgeführt. Durch artenreiches Grasland werden vielfältige Ökosystemleistungen (ÖSL) simultan erbracht. Die Bandbreite der in der intensiven Graslandnutzung für Milchvieh eingesetzten Pflanzenarten beschränkt sich auf einige wenige Vertreter der Gräser und Leguminosen. Viele leguminose und nicht-leguminose dikotyle Pflanzenarten wurden bisher nicht züchterisch bearbeitet, sie werden bislang im Anbau kaum berücksichtigt und offiziell gar nicht empfohlen. Dikotyle Pflanzenarten weisen einen hohen Futterwert auf, sind durch tiefe Wurzeln häufig trockentoleranter als Gräser und enthalten sekundäre Inhaltsstoffe. Diese Eigenschaften sind bei zu erwartender zunehmender Trockenheit (tiefe Wurzel) und zur Reduktion der Methanemission von Wiederkäuern (sekundäre Inhaltsstoffe) entscheidend. Ein zentrales Problem dieser bisher wenig verbreiteten, minoren dikotylen Pflanzenarten ist die unzureichende Kenntnis der agronomischen und qualitativen Eigenschaften sowie die Aussichten für eine weitergehende züchterische Bearbeitung, weil zur intra-spezifischen Variation der ÖSL einzelner Pflanzenarten weitgehend Unklarheit herrscht. Das beantragte Verbundprojekt verfolgt deshalb das Ziel der Etablierung und Nutzung von artenreichem Grünland, um wichtige ÖSL durch verbesserte Zuchtsorten in angepassten neuartigen Mischungen oder durch Streifenanbau simultan zu erbringen. Es werden in einem systematischen Ansatz ausgewählte Arten mit wertvollen Eigenschaften identifiziert und die intra-spezifische Variabilität der Eigenschaften in einem 'pre-breeding' Ansatz ermittelt und beschrieben. Im Besonderen richten sich die ÖSL auf Biodiversität (Blütenangebot), Trockentoleranz (stomatäre Leitfähigkeit), pflanzliche Sekundärmetabolite (PSM wie Tannine), Ausdauer, Winterhärte, Konkurrenzkraft und Etablierungserfolg sowie auf Futterqualität, Ertrag und die biologische Stickstofffixierung. Ein Anbauprotokoll jeder Art wird eigens erstellt.

Impact of Atmospheric Inputs of Nutrients on the n2 Fixation by Cyanobacteria

Das Projekt "Impact of Atmospheric Inputs of Nutrients on the n2 Fixation by Cyanobacteria" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Meereswissenschaften (IFM-GEOMAR), Forschungsbereich 2: Marine Biogeochemie durchgeführt. The main objective of the proposed research is the study of the impact of atmospheric inputs of nutrients (phosphorus, iron) on the biological production in oligotrophic marine systems. In particular, we will focus on the impact of atmospheric input - in particular from the Sahara- on the nitrogen fixation, which is suspected to be limited by one or both nutrients. This work will be based on an experimental approach and a field study (oceanographic campaign). Cultures of Trichodesmium will be performed at the host institution, in seawater and fertilization by Fe and or P will be done in order to simulate the atmospheric input: various parameters will be measured as the N2 fixation and the chi a concentration. These experiments will allow to quantify and parameterise the response of Trichodesmium in term of increase of the N2 fixation after an input of a limited nutrient. On board the R/V Meteor in the tropical Atlantic ocean (13 October to 16 November 2002), experiments of incubations of oligotrophic seawater following various scenario of limitation will be performed (see details in table). The tropical Atlantic Ocean, lying downwind of the Sahara dust-generation region is the major deposition region in the world ocean for terrestrial dust. These quasi in situ fertilizations will allow to respond to the question: 'Can sporadic Saharan dust inputs lead to an increase of the N2 fixation, in this part of ocean'. This campaign is part of the international SOLAS program (Surface Ocean Lower Atmosphere Study).

Teilprojekt C

Das Projekt "Teilprojekt C" wird vom Umweltbundesamt gefördert und von Deutsche Saatveredelung AG durchgeführt. Durch artenreiches Grasland werden vielfältige Ökosystemleistungen (ÖSL) simultan erbracht. Die Bandbreite der in der intensiven Graslandnutzung für Milchvieh eingesetzten Pflanzenarten beschränkt sich auf einige wenige Vertreter der Gräser und Leguminosen. Viele leguminose und nicht-leguminose dikotyle Pflanzenarten wurden bisher nicht züchterisch bearbeitet, sie werden bislang im Anbau kaum berücksichtigt und offiziell gar nicht empfohlen. Dikotyle Pflanzenarten weisen einen hohen Futterwert auf, sind durch tiefe Wurzeln häufig trockentoleranter als Gräser und enthalten sekundäre Inhaltsstoffe. Diese Eigenschaften sind bei zu erwartender zunehmender Trockenheit (tiefe Wurzel) und zur Reduktion der Methanemission von Wiederkäuern (sekundäre Inhaltsstoffe) entscheidend. Ein zentrales Problem dieser bisher wenig verbreiteten, minoren dikotylen Pflanzenarten ist die unzureichende Kenntnis der agronomischen und qualitativen Eigenschaften sowie die Aussichten für eine weitergehende züchterische Bearbeitung, weil zur intra-spezifischen Variation der ÖSL einzelner Pflanzenarten weitgehend Unklarheit herrscht. Das beantragte Verbundprojekt verfolgt deshalb das Ziel der Etablierung und Nutzung von artenreichem Grünland, um wichtige ÖSL durch verbesserte Zuchtsorten in angepassten neuartigen Mischungen oder durch Streifenanbau simultan zu erbringen. Es werden in einem systematischen Ansatz ausgewählte Arten mit wertvollen Eigenschaften identifiziert und die intra-spezifische Variabilität der Eigenschaften in einem 'pre-breeding' Ansatz ermittelt und beschrieben. Im Besonderen richten sich die ÖSL auf Biodiversität (Blütenangebot), Trockentoleranz (stomatäre Leitfähigkeit), pflanzliche Sekundärmetabolite (PSM wie Tannine), Ausdauer, Winterhärte, Konkurrenzkraft und Etablierungserfolg sowie auf Futterqualität, Ertrag und die biologische Stickstofffixierung. Ein Anbauprotokoll jeder Art wird eigens erstellt.

Teilprojekt A

Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Fachgruppe Biologie, Institut für Biologie I (Botanik, Molekulargenetik) durchgeführt. Ausgehend von einer Population von vorselektierten argentinischen Sojabohnenlinien soll ein mechanistisches Verständnis für eine Trockenstresstoleranz und damit einhergehender Stickstofffixierung in Sojabohnen unter suboptimalen Bedingungen geschaffen werden. Dieses ist ein wichtiger Baustein für eine zukünftige Agrarwirtschaft vor einem sich negativ veränderndem Klima. Aufgrund der Eigenschaft der Leguminose Soja, Stickstoff fixieren zu können, spielt ein Verständnis dieser Eigenschaft sowie eine Anpassung an (schlechtere) Klimabedingungen eine erhebliche Rolle für Deutschland, um Nitrateinträge durch Mineraldünger in das Grundwasser zu mindern. Hierzu sollen high tech Phänotypisierungstechnologien sowie Transcriptomicstechnologien zum Einsatz kommen.

1 2 3 4 525 26 27