API src

Found 725 results.

Related terms

Ueber die Herkunft von Ammonium im Wasser

In einigen Veroeffentlichungen der letzten Jahre wird die Bildung von Ammonium aus Nitrat in Frage gestellt. Wir haben aus je einer Erd- und Talsperrensedimentprobe 60 verschiedene Staemme von nitratammonifizierenden Bakterien erhalten. Von den Bakterien, die unter anaeroben Bedingungen aus Nitrat Ammonium bilden, sind diejenigen zu trennen, die Nitrat unter Bildung von N2 oder N2O denitrifizieren. Verschieden von beiden Prozessen ist die Ammoniumbildung aus organischen, stickstoffhaltigen Verbindungen (Ammonifikation). Nitratammonifizierende Bakterien koennen auch Nitrit und teilweise Hydroxylamin unter anaeroben Bedingungen reduzieren. Sowohl bei der Denitrifikation als auch bei der Nitratammonifikation kann aus organischer Substanz Ammonium gebildet werden.

Bodenaushagerung nach Einstellung der Stickstoffduengung auf verschieden geduengtem Wirtschaftsgruenland zur Ueberfuehrung in Extensivgruenland

Auf vorher mit 0, 180, 300, 420 und 660 kg N/ha N zT aus Handelsduenger, zT aus Guelle; die Guelle zT als Vollguelle, zT als verduennte Guelle und zT mit Nachregnen-geduengten Flaechen wird nicht mehr mit N geduengt. Alle Varianten werden 4mal geschnitten. Ermittelt werden Trockenmasseertrag und N-Gehalt im Aufwuchs sowie NO3-Konzentration im Bodenwasser (90 cm Tiefe), Nmin im Boden bei 100 cm Tiefe und Gesamt-N und Gesamt-C bis 40 cm Tiefe.

Prognose des Restnitratstickstoffgehaltes in 0-90 cm Tiefe im Herbst mit Hilfe der EUF-N-Fraktionen des Oberbodens (0-30 cm) im Sommer

Photosensibilisierung: Ein neuer Pfad zur SOA Bildung und Änderung der Eigenschaften von troposphärischen Partikeln

Troposphärische Aerosolpartikel sind oft in einer sehr simplen Art und Weise, als nicht-flüchtig und chemisch-inert, in Modellen beschrieben. Diese Annahmen werden durch die aktuelle Forschung in Frage gestellt, wonach die flüchtigen organischen Verbindungen (VOC) und sekundäre organische Aerosole (SOA) ein System bilden, das sich in der Atmosphäre durch chemische und dynamische Prozessierung entwickelt. Ein aktuelles Schlüsselproblem in der Atmosphärenchemie sind organische Partikel, welche in Modellen auf der Grundlage verfügbarer Parametrisierungen von Laborversuchen implementiert sind, die die SOA Bildung stark unterschätzen und nicht ausreichendend das Partikelwachstum vorhersagen. Differenzen zwischen den gemessenen und modellierten SOA-Konzentrationen deuten darauf hin, dass andere wesentliche SOA Quellen noch nicht identifiziert und charakterisiert sind. Zur Erklärung und Schließung dieser Lücke wurden Studien durchgeführt. So wurde gezeigt, dass das gasförmige Glyoxal deutlich zur SOA Masse durch Mehrphasenchemie beitragen kann. Solche Senken in der kondensierten Phase sind in der Lage, einen wichtigen Teil der fehlenden SOA Masse in Modellen, die oft als aqSOA bezeichnet wird, zu erklären. Jedoch implizieren Beobachtungen, dass es immer noch große Unsicherheiten in der SOA Bildung gibt. Herkömmliche aqSOA Quellen können offenbar nicht vollständig das fehlende SOA erklären. Weiterhin wurde gezeigt das, Multiphasenprozesse lichtabsorbierende partikuläre Verbindungen herstellen können. Die Bildung von solchen lichtabsorbierenden Spezies können neue photochemische Prozesse in Aerosolen und/oder in Gas/Partikel-Grenzflächen bewirken. Eine signifikante Menge an Literatur über photoinduzierten Ladungs- oder Energietransfer in organischen Molekülen existiert für andere Bereiche der Wissenschaft. Solche organischen Moleküle können Aromaten, substituierte Carbonyle und/oder stickstoffhaltige Verbindungen sein, welche allgegenwärtig in troposphärischen Aerosolen sind. Während die Wasserphotochemie aufgezeigt hat, dass viele dieser Prozesse, den Abbau von gelösten organischen Stoffen beschleunigen, ist nur wenig über solche Prozesse in/auf Aerosolpartikeln bekannt.Daher soll in PHOTOSOA, die Photosensibilisierung in der Troposphäre studiert werden, da diese eine wichtige Rolle bei der SOA-Bildung und Alterung spielen kann. Solche Photosensibilisierungen können neue chemische Pfade eröffnen, die bisher unberücksichtigt sind, obwohl sie die atmosphärische chemische Zusammensetzung beeinflussen können und so dazu beitragen die aktuellen SOA Unterschätzung abzubauen. Dieses Projekt zielt auf die Verringerung solcher Unsicherheiten, durch die Kombination von Laboruntersuchungen fokussiert auf die Chemie von Triplett-Zuständen von relevanten Photosensibilisatoren in verschiedenen Phasen und ihre Rolle bei der SOA-Bildung, ab. Die Grundlagenforschung zu diesen Prozessen ist erforderlich, um ihre troposphärische Bedeutung abschätzen zu können.

Betriebsstabile Deammonifikation mit Swinging Redox

Seit dem Jahr 2009 werden an der Technischen Universität München, vom Lehrstuhl für Siedlungswasserwirtschaft, Untersuchungen zur Deammonifikation im SBR durchgeführt, bei der mittels Intervallsteuerung und spezieller Regelstrategie das gleichmäßige Schwingen des Redoxpotentials (ORP) im Fokus steht. Postuliert wird bei dieser Methode die Unterstützung eines enzymgebundenen Ladungsaustauschs zur Regeneration der Biozönose im wechselnden Milieu von Oxidation und Reduktion. Die ORP-Amplituden zeigen während der aeroben und anoxischen Phasen typische Signale, die mit den Stickstoff-Konzentrationen korrelieren. Als Resümee ist herauszustellen, dass der Prozess mit Kläranlagen-Belebtschlamm und deammonifizierendem Schlamm aus vorangegangenen Untersuchungen angefahren werden kann. Gesamtstickstoff-Abbaugrade von 90 % werden bei einer Betriebs-Temperatur von 30 °C und Belastung von mehr als 380 gN/(m3 d) erreicht. Nach zwei Jahren Betriebserfahrung mit der Behandlung von KA-Zentraten aus Garching und Ingolstadt in mehreren 150 l SBR-Technikumsanlagen wurde von 2010 bis 2012 im Klärwerk Landsberg an einer Pilotanlage mit 20 m3 SBR eine automatische Steuerung entwickelt, die eine betriebsstabile Prozessführung ermöglicht. Seitdem sind im Rahmen von Master- und Studienarbeiten die optimalen Betriebsbereiche zur Deammonifikation im Technikum präzisiert worden. Um Substrat-Hemmung sowie Nitrat-Akkumulation zu vermeiden, ist bei der Prozessregelung strickt auf Konzentrationsgradienten und ORP-Amplituden-Grenzwerte zu achten. Für die Einfahrphase hat sich die Zugabe von einem Viertel Kläranlagen-Zulauf zum Zentrat bewährt, um besonders im Teillastbereich ein ausreichendes Reduktionspotential vorzugeben. Weitere Additive sind im Regelbetrieb nicht erforderlich. Die jüngsten Ergebnisse zeigen, dass bei Voll-Last, das heißt bei einer Abbauleistung von mehr als 360 gN/(m3 d) und Zulaufkonzentrationen von 1.400 mg/l NH4-N, auch die Nitrat-Konzentration im Ablauf auf weniger als 5 % reduziert werden kann. Mit der Online-Messung von ORP, LF und pH ist der Prozess stabil zu führen. Ammonium, Nitrat und TS werden zwei bis dreimal pro Woche gemessen.

Untersuchungen zu einem möglichen N-Feedbackmechanismus der Regulation der sym-biontischen N2-Fixierung bei Leguminosen

Der Mechanismus der Regulation der symbiontischen N2-Fixierung auf Ganzpflanzenebene ist unklar. Ein Verständnis dieses Prozesses könnte eine wesentliche Schubwirkung haben, etwa für züchterische Anstrengungen, Sorten mit während der Hülsenfüllung länger andauernder N2-Fixierung zu erzeugen. Es existiert eine Vielzahl mit unterschiedlichsten methodischen Ansätzen erzielter Hinweise dafür, dass eine N-Feedbackwirkung ein wesentliches Bindeglied der Regulation der N2-Fixierung auf Ganzpflanzenebene darstellt. Diese Hinweise sind jedoch nur indirekter Natur und die genaue Funktionsweise einer solchen N-Feedbackwirkung ist nicht geklärt. Eine Hypothese sieht einen Zusammenhang mit der Sauerstoffdiffusion ins Knöllchen, wobei die experimentell gewonnen Daten zur Stützung dieser Hypothese in einzelnen Punkten unsicher erscheinen. Darüber hinaus gibt es unterschiedliche Angaben in welchem Organ der Pflanze eine N-Anreicherung für eine N-Feedbackwirkung erfolgen muss und welche Verbindungen dabei eine Rolle spielen. Das vorliegende Projekt nimmt sich dieser offenen Fragen an. Ziel ist es, ein vertieftes Verständnis der N-Feedbackregulation der N2-Fixierung bei Leguminosen zu gewinnen. Als experimentelle Grundlage dient dabei die bei einigen Leguminosenarten während der Hülsenfüllung zu beobachtende N-Feedbackwirkung infolge der Mobilisierung von N aus während dieser Zeit absterbenden alten (tief inserierten) Blättern. Die detaillierte Untersuchung dieses Phänomens soll klären 1) welche N-haltig(en) Verbindung(en) dabei eine Rolle spielen, 2) wann und wo sie für eine Wirkung akkumulieren müssen und welche Rolle dabei neu fixierter N und die Geschwindigkeit seines Abtransportes aus den Knöllchen spielt, 3) ob die Wirkung über die Sauerstoffpermeabilität der Knöllchen vermittelt wird und schließlich 4) ob der Mechanismus bei unterschiedlichen Leguminosenarten vergleichbar ist.

Indikator: Eutrophierung von Nord- und Ostsee durch Stickstoff

Die wichtigsten Fakten Deutschland hat sich verpflichtet, zur Erreichung der Meeresschutzziele maximale Bewirtschaftungszielwerte für Gesamtstickstoff am Übergangspunkt limnisch-marin (Binnengewässer/Meer) einzuhalten. Im abflussgewichteten Mittel wird diese Zielkonzentration bei den Nordseezuflüssen bereits eingehalten, für die Ostsee jedoch noch überschritten. Einige der Nord- und Ostseezuflüsse weisen noch sehr hohe Gesamtstickstoffkonzentrationen auf. Für die Zielerreichung ist es jedoch erforderlich, dass jeder Fluss das das Bewirtschaftungsziel erreicht. Damit die Stickstoffkonzentrationen in den Flüssen weiter sinken, müssen vor allem Maßnahmen in der Landwirtschaft und im Abwassermanagement ergriffen werden. Welche Bedeutung hat der Indikator? Der „gute ökologische Zustand“ gemäß der Oberflächengewässerverordnung wird in den deutschen Gebieten der Nord- und Ostseeeinzugsgebiete weiterhin verfehlt. Die wichtigste Ursache dafür sind zu hohe Nährstoffbelastungen durch Stickstoff und Phosphor (⁠ Eutrophierung ⁠). Die negativen Auswirkungen der Eutrophierung sind im Rahmen des Indikators „Ökologischer Zustand der Übergangs- und Küstengewässer“ beschrieben. Nährstoffe werden vor allem über Flüsse in die Meere eingetragen. Der Indikator betrachtet die Konzentration des Gesamtstickstoffs der in Deutschland in Nord- und Ostsee einmündenden Flüsse und des Grenzflusses Rhein (die Oder ist ausgenommen). Witterungsbedingt können diese Konzentrationen stark schwanken, da in niederschlagsreichen Jahren mehr Stickstoff aus den Böden ausgewaschen wird. In Bezug auf den Nährstoff Phosphor wurde bisher davon ausgegangen, dass die Erreichung der Orientierungswerte in den Flüssen ausreichend für den guten Zustand der Küsten- und Meeresgewässer ist (siehe Indikator „Eutrophierung von Flüssen durch Phosphor“ ). Wie ist die Entwicklung zu bewerten? Um die Ziele der EU-Wasserrahmenrichtlinie (WRRL 2000/60/EG) und der EU-Meeresstrategie-Rahmenrichtlinie (MSRL 2008/56/EG) zu erreichen, gibt die Oberflächengewässerverordnung (OGewV 2016) für die in Nord- und Ostsee mündenden Flüsse sogenannte Bewirtschaftungszielwerte vor: 2,6 Milligramm Gesamtstickstoff pro Liter (mg/l) für in die Ostsee und 2,8 mg/l für in die Nordsee mündende Flüsse. Diese Zielwerte wurden auch für die Nachhaltigkeitsstrategie der  Bundesregierung übernommen. Die durchschnittlichen Stickstoffkonzentrationen sind vor allem wegen der Verbesserung der Abwasserreinigung gesunken. In den letzten Jahren stagnieren sie jedoch. Während das hier gezeigte Mittel aller Flüsse sich dem Zielwert nähert oder diesen auch erreicht, liegen die maximalen Konzentrationen einzelner Flüsse noch deutlich darüber. Die Ostseezuflüsse weisen höhere maximale Konzentrationen auf als die Nordseezuflüsse. Die minimalen Konzentrationen unterschreiten die Bewirtschaftungszielwerte bereits. Zur Bewertung der Zielerreichung wird jedoch, nicht wie hier das abflussgewichtete Mittel aller Zuflüsse bewertet, sondern jeder Nord- und Ostseezufluss muss den Bewirtschaftungszielwert im langjährigen Mittel erreichen. Der Bund gibt über Verordnungen wie die Oberflächengewässerverordnung, die Düngeverordnung und die Abwasserverordnung den Rechtsrahmen zur weiteren Reduzierung von Nährstoffeinträgen vor, die Länder setzen diese Verordnungen um und kontrollieren ihre Einhaltung. Maßnahmen zur Senkung der Nährstoffeinträge werden im Rahmen der Umsetzung der Nitrat-RL, der WRRL und der MSRL ergriffen. Gegenwärtig geht die größte Belastung von der Landwirtschaft aus. Die Novelle der Düngeverordnung wird mittelfristig zu einem Rückgang dieser Belastung führen (siehe auch ⁠ Indikator ⁠ „Stickstoffüberschuss der Landwirtschaft“ ). Um die Zielwerte zu erreichen, sind darüber hinaus voraussichtlich noch weitere Maßnahmen in der Landwirtschaft erforderlich. Wie wird der Indikator berechnet? An den Mündungen der Flüsse in Nord- und Ostsee liegen Messstellen (Gewässergütemessstellen). An diesen wird die Stickstoffkonzentration mindestens monatlich gemessen. Diese Messwerte dienen, gemittelt über ein Jahr, als Grundlage für den ⁠ Indikator ⁠. Um witterungsbedingte Schwankungen auszugleichen, wird der Indikator als ⁠ gleitendes Mittel ⁠ der letzten 5 Jahre berechnet und die einzelnen Flüsse werden entsprechend ihrer Abflussspende gewichtet. Darüber hinaus werden die maximalen und minimalen Konzentrationen als gleitende 5-Jahres Mittel berechnet. Ausführliche Informationen zum Thema finden Sie in den Daten-Artikeln "Flusseinträge und direkte Einträge in die Nordsee" und "Nährstoffeinträge über Flüsse und Direkteinleiter in die Ostsee" .

Untersuchungen ueber den Einfluss von Standort, Witterung und Bewirtschaftungsmassnahmen auf den Stickstoffhaushalt von Obstanlagen

Der Stickstoff-(N)-Haushalt weist in Obstanlagen grosse Unterschiede auf je nach Art der Standortsverhaeltnisse, der Witterung und der Bewirtschaftungsmassnahmen. Diese Unterschiede an Beispielen zu erfassen und auszuwerten als Grundlage fuer die Bemessung einer den Forderungen nach hohen Ertraegen, hoher Qualitaet und verminderter Gewaesserkontamination Rechnung tragenden Duengungspraxis, ist das Ziel des Vorhabens. Dazu werden in langfristigen Untersuchungen auf verschiedenen Standorten bei unterschiedlicher Bodenpflege und Duengung N-Vorrate, N-Nachlieferungsraten und N-Gehalte des Draenwassers ermittelt. Das Schwergewicht liegt dabei auf der Ermittlung der N-Nachlieferung durch den Brutversuch. Die Untersuchungen werden ergaenzt durch Bestimmungen des N-Gehaltes der Obstbaumblaetter und des Grasunterwuchses.

Forschergruppe (FOR) 496: Poplar - a model to address tree-specific questions, Environment-dependent regulation of nitrogen import system in poplar

Poplar could succeed in nutrient rich areas as well as in nutrient poor forests soils where plants live in symbiosis with certain soil fungi to enable sufficient nutrition. Due to its huge demand, nitrogen, as major nutrient, is of special interest for poplar nutrition. In this project we want to characterize nitrate, ammonium and amino acid transporters from poplar roots that are differentially regulated as result of nitrogen nutrition (shortage or nitrogen excess), or by plant/fungus interaction. The kinetic parameters of selected transporters will be determined by heterologous expression. Tissue and organ specific expression of certain transporter genes will be investigated by Northern blot and RT-PCR and by the utilization of poplar transformants containing promoter-GFP fusions. GFP fusions with truncated promoters will also be used for the identification of cis-elements responsible for the nitrogen-dependent expression of selected transporter genes. In addition, the global impact of nitrogen nutrition on poplar gene expression will be investigated using macro and micro arrays hybridization and probes of poplar roots grown at different nitrogen sources and concentrations as well as mycorrhizas.

MINCA - MItigation der StickstoffbelastuNg auf der CAtchment-Skala

Die Intensivierung der Landwirtschaft und insbesondere der Einsatz von Düngemitteln ist der Schlüssel zur Ernährungssicherung einer wachsenden Weltbevölkerung. Der im Dünger enthaltene Stickstoff geht jedoch nicht nur in die pflanzliche Biomasse ein und wird schließlich geerntet, sondern wird auch als reaktiver Stickstoff (Nr) über verschiedene gasförmige und hydrologische Pfade in die Umwelt abgegeben. Dies führt zu gravierenden Umweltproblemen wie Eutrophierung, Treibhausgasemissionen oder Grundwasserverschmutzung. Wir gehen davon aus, dass wissenschaftlich fundierte Stickstoffminderungsstrategien es ermöglichen, die N2O- und NH3-Emissionen zu reduzieren und die NO3-Einträge in die Gewässer zu verringern, während die Erträge erhalten bleiben. Ziel des MINCA-Projekts ist daher die Etablierung eines gekoppelten, prozessbasierten hydro-biogeochemischen Modells zur Identifizierung von Feldbewirtschaftungsstrategien zu nutzen, die es ermöglichen, den Nr-Überschuss zu reduzieren und damit die N-Belastung in landwirtschaftlich dominierten Landschaften zu mindern. Unser besonderes Interesse gilt den Nr-Umwandlungsmechanismen an den Schnittstellen von Feldern, Grundwasser, Uferzone und Bächen. Um das derzeit begrenzte Verständnisses der zeitlichen und räumlichen hydro-biogeochemischen Flüsse bei der Nr-Transformation in der Landschaft zu überwinden, werden wir innovative Feldexperimente mit einem prozessbasierten Modellierungsansatz kombinieren. Der N-Zyklus in hydro-biogeochemischen Modellen ist jedoch komplex und die Validierung der zugrunde liegenden Prozesse datenintensiv. Die Messungen werden daher auf vier verschiedenen landwirtschaftlichen-, einem Grünland- und einem Waldgebiet durchgeführt. MINCA besteht aus vier eng miteinander verbundenen Arbeitspaketen (WP). In WP1 werden bereits laufende Messung der Wasser- und Stickstoffflüsse im Vollnkirchener Bach Studiengebiet beschrieben. Die bereits relativ umfangreichen kontinuierlichen Messungen, z.B. N2O-Emissionen, Bodenfeuchte, Abfluss und Gewässerqualität, sollen durch weitere Messungen wie NO3-Auswaschung und -Konzentrationen, saisonale Blattflächenindices, Erträge, Biomasse und deren C- und N-Gehalt ergänzt werden. Zusätzlich werden 15N2O und 15NO3 Isotopomer in Feldkampagnen gemessen. Komplexe Messungen für Modellversuche in WP1, modellbasierte hochskalierungs-Methoden im Rahmen von WP2 und Parameterreduktion, Unsicherheitsanalyse und Prozessplausibilitätsprüfung von WP3 erlauben es uns zu erkennen, wann und wo N-Belastung in der Landschaft auftreten. Dieses vertiefte Wissen wird die Grundlage für die Entwicklung von wissenschaftlich fundierten Mitigationsszenarien im WP4 bilden. Das gekoppelte Modell wird im Echtzeit-Modus ausgeführt, um die vom Bundesministerium für Ernährung und Landwirtschaft erstrebten Zielwerte von reduziertem Nr-Überschuss zu erreichen. Maßgeschneiderte in-situ-Experimente zu N2O-Emissionen und NO3-Auswaschung werden die Wirksamkeit des Minderungspotenzials aufzeigen.

1 2 3 4 571 72 73