künftiges Parabolspiegel-Solarkraftwerk mit Stirling-Motor. Der Parabolspiegel konzentriert das Sonnenlicht auf einen im Fokus montierten Stirling-Motor, der einen Generator antreibt. Der Spiegel und der die darauf montierte Stirling/Generator-Einheit folgt der Sonne. Die Auslastungsdaten stammen von einem 5-Jahres-Test von 3 Prototypen auf der Plataforma Solar de Almeria in Südspanien (#2). Die Materialdaten stammen vom Hersteller (Steinmüller&Partner). Die Kosten sind auf Basis einer "Farm" mit einer Gesamtkapazität von 1MW kalkuliert. Die Umrechnung DM:US-$ wurde mit 1:1.5 gewählt. Land- und Wasserbedarf (12m3/d) und die Effizenz der Solarstromerzeugun von 16% beruhen auf #1. Das verbesserte Distal-2-System kann volle Leistung bereits bei geringerer Solareinstrahlung erreichen, so dass eine höhere Effizienz und mehr Auslastung gegenüber Distal-1 erwartet werden. Die Kosten für eine einzelne Distal-2-Anlage waren 240.000 DM. Im Falle einer Kleinserienproduktion (100 Stück) kalkuliert der Hersteller Steinmüller & Partner mit 120.000 DM/Stk. Der Test von 3 Prototypen des Distal-2 begann im Mai 1997 auf der Plataforma Solar de Almeria. Auslastung: 1823h/a Brenn-/Einsatzstoff: Ressourcen Flächeninanspruchnahme: 150m² gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 30a Leistung: 0,01MW Nutzungsgrad: 100% Produkt: Elektrizität
künftiges Parabolspiegel-Solarkraftwerk mit Stirling-Motor. Der Parabolspiegel konzentriert das Sonnenlicht auf einen im Fokus montierten Stirling-Motor, der einen Generator antreibt. Der Spiegel und der die darauf montierte Stirling/Generator-Einheit folgt der Sonne. Die Auslastungsdaten stammen von einem 5-Jahres-Test von 3 Prototypen auf der Plataforma Solar de Almeria in Südspanien (#2). Die Materialdaten stammen vom Hersteller (Steinmüller&Partner). Die Kosten sind auf Basis einer "Farm" mit einer Gesamtkapazität von 1MW kalkuliert. Die Umrechnung DM:US-$ wurde mit 1:1.5 gewählt. Land- und Wasserbedarf (12m3/d) und die Effizenz der Solarstromerzeugun von 16% beruhen auf #1. Auslastung: 1823h/a Brenn-/Einsatzstoff: Ressourcen Flächeninanspruchnahme: 135m² gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 30a Leistung: 0,009MW Nutzungsgrad: 100% Produkt: Elektrizität
Kultusministerium - Pressemitteilung Nr.: 035/02 Magdeburg, den 15. März 2002 Jugend forscht 2002: 80 junge Forscherinnen und Forscher aus Sachsen-Anhalt nehmen am Landesfinale in Halle teil Am 19. und 20. März 2002 findet in Sachsen-Anhalt zum zwölften Mal ein Landeswettbewerb "Jugend forscht" statt. Der Firma Bombardier Transportation ist es zu danken, dass das Finale nun schon zum sechsten Mal in Halle ausgetragen wird. Im diesjährigen Landesfinale stellen sich 41 Projekte mit 22 Teilnehmerinnen und 58 Teilnehmern in den Fachgebieten Biologie, Chemie, Geografie/Raumwissenschaften, Mathematik/Informatik, Physik, Technik und Arbeitswelt vor. Die Projekte wurden in den drei Regionalrunden, die von den Unternehmen AVACON AG, Südzucker GmbH und der Bayer Bitterfeld GmbH betreut wurden, aus insgesamt 122 Projekten ausgewählt. Insgesamt nahmen in diesem Jahr 236 Schülerinnen und Schülern an dem Wettbewerb "Jugend forscht" teil - eine Rekordbeteiligung für Sachsen-Anhalt. Den Gewinnern im Landesausscheid winken in den sieben Fachgebieten jeweils folgende Preise: ein 1. Preis mit 250,00 ¿ ein 2. Preis mit 200,00 ¿ ein 3. Preis mit 150,00 ¿ Darüber hinaus werden durch Sponsoren zusätzliche Preisgelder für Forschungsprojekte zur Verfügung gestellt. Zu diesen Sponsoren gehören u.a. der Verein der Ingenieure, die Oberbürgermeisterin der Stadt Halle und der Oberbürgermeister der Stadt Magdeburg, die Stadtsparkassen Bernburg und Halle, die Ingenieurkammer Magdeburg, die Industrie- und Handelskammer, die Siemens-AG, das Kultusministerium, die Landesrektorenkonferenz Sachsen-Anhalt. Die Preisverleihung am 20. März 2002 wird Ministerpräsident Dr. Reinhard Höppner vornehmen. Projekte, die in beim Landeswettbewerb "Jugend forscht" in Halle vorgestellt werden: Fachgebiet Biologie: Wirtskreisuntersuchungen am Turnip Mosaik Virus (Gymnasium Richard von Weizsäcker, Thale) Wirken Moosextrakte als natürliche Fungizide? (Gymnasium Richard von Weizsäcker, Thale) Methode zur Bekämpfung des Befalls von Zuccinipflanzen durch Erysiphaceae (Ascaneum, Aschersleben) Drogensituation im Umfeld des Winckelmann Gymnasiums (Johann-Joachim-Winckelmann-Gymnasium, Seehausen) Biologische Sanierung kohlenwasserstoffkontaminierter Medien (Georg-Cantor-Gymnasium Halle) Tuberculose - eine überwundene Krankheit? (Gymnasium Stephaneum Aschersleben) Untersuchungen zu Mykorrhiza (Georg-Cantor-Gymnasium Halle) Vergleiche des Verhaltens von Syrischen Wild- und Laborgoldhamstern (Elisabeth-Gymnasium, Halle) Nachweis und Eigenschaften von Vitamin C in Apfelsorten sowie Kosmetika (Gymnasium Richard-von-Weizsäcker, Thale) Fachgebiet Chemie: Analyse der Folgeprodukte von Alliin (Ascaneum, Aschersleben) Aufarbeitung optisch aktiver Reaktionsprodukte (Georg-Cantor-Gymnasium Halle) Quicktest - der einfache und schnelle PETP-Flaschensensor (Elisabeth-Gymnasium Halle) Fachgebiet Geo- und Raumwissenschaften: Untersuchungen der Landschaft zwischen Havel und Elbe bei Havelberg (Schülerclub Pestalozzi-Gymnasium, Havelberg) Entwicklungen einer Planetariumssoftware unter Anwendung einer deterministischen Simulation (Otto-Baensch-Gymnasium, Zeitz) Waldbrandschutz - Waldbrandbekämpfung (Schüler-Institut SITI e.V. Gymnasium Havelberg) Stadtentwicklung von Hohenmölsen (Agricolagymnasium Hohenmölsen) Fachgebiet Mathematik/Informatik DCS 2.0 (Werner-von-Siemens-Gymnasium Magdeburg) PHP-Editor (Werner-von-Siemens-Gymnasium Magdeburg) Spieleprogrammierung mit VisualBasic 5,0 (Werner-von-Siemens-Gymnasium Magdeburg) xN-System (erweiterbares Netzwerksystem) (Stephaneum Aschersleben) ResPlan - komplexe Ressourcen-Planung mit Hilfe von Tabu Search und genetischen Algorithmen (Georg-Cantor-Gymnasium Halle) Fachgebiet Physik: Solar-Wasserstoff-Technologie (Werner-von-Siemens-Gymnasium Magdeburg) Erhöhung des Wirkungsgrades von Windrädern (Werner-von-Siemens-Gymnasium Magdeburg) Das Licht und seine Modelle (Gymnasium Schulpforte) Fachgebiet Technik: Fußgesteuerter Joystick (IGS "Willy Brandt" Magdeburg) Transientenerfassung im Energienetz mit Aufzeichnung im PC (AVACON AG, Krottorf) Dreh-Impuls-Kreisel (Werner-von-Siemens-Gymnasium Magdeburg) Styroporschneider-Steuerung (Schüler-Institut SITI e.V. Gymnasium Havelberg) Die intelligente Wäschespinne (Georg-Cantor-Gymnasium Halle) Entwicklung und Herstellung eines Prüfgerätes für Hydraulikmagnetventile (Mitteldeutsche Braunkohlegesellschaft mbH, Theißen) Modulare Modelle zur Herstellung von Sandformen (Schüler-Institut SITI e.V. Gymnasium Havelberg) Verbesserung des Wirkungsgrades eines Ottomotors durch den Einsatz eines Stirlingmotors (Sekundarschule Gröbzig) Fachgebiet Arbeitswelt Der GMS-Schutzengel (Otto-von-Guericke Universität, Magdeburg) System zur Unterstützung des Be- und Entkleidens Contergangeschädigter (Winckelmann-Gymnasium Stendal) Entwicklung eines Lötstiftes mit integrierter Lötzufuhr (Winckelmann-Gymnasium Stendal) Treppensteigende Transporthilfe (August-Bebel-Schule, Spergau) Sicheres und genaueres Arbeiten an Tischkreissägen mit Zeiteinsparung (Bombardier Transportation, Werk Ammendorf) Sehenswürdigkeiten der Stadt Halle - aufbereitet für einen gemeinsamen Stadtrundgang mit blinden Mitbürgern (Frieden-Gymnasium Halle) Interdisziplinär: Stärke in der Krebsschale - neues Konzept für biologisch abbaubare Materialien (Heppe GmbH, Queis) Impressum: Kultusministerium Pressestelle Turmschanzenstr. 32 39114 Magdeburg Tel: (0391) 567-3710 Fax: (0391) 567-3695 Mail: presse@mk.sachsen-anhalt.de Impressum:Ministerium für Bildung des LandesSachsen-AnhaltPressestelleTurmschanzenstr. 3239114 MagdeburgTel: (0391) 567-7777mb-presse@sachsen-anhalt.dewww.mb.sachsen-anhalt.de
Klimaschutzkonzept+ Energieautarke Deponiegasbehandlung mit Wärmenutzung und Eigenstromversorgung am Beispiel der Deponie Bengelbruck Abschlussbericht Ausführende Stelle Landratsamt Freudenstadt Abfallwirtschaftsbetrieb Herrenfelder Straße 14 72250 Freudenstadt Tel. 07441/920-0 Fax 07441/920-99-5052 www.landkreis-freudenstadt.de email: abfall@landkreis-freudenstadt.de Verfasser contec GmbH Raistinger Straße 4/1 71083 Herrenberg Tel. 07032/2 33 66 Fax 07032/2 33 67 email: info@contec-herrenberg.com Klimaschutzkonzept+ Energieautarke Deponiegasbehandlung mit Wärmenutzung und Eigenstromversorgung am Beispiel der Deponie Bengelbruck climate action plan+ energy self-sufficient landfill gas treatment with heat recovery and climate neutral internal powered supply by the example of the landfill Bengelbruck, Germany Inhalt Zusammenfassung - Summary 1. Ausgangssituation 2. Neues Entgasungs- und Verfahrenskonzept - Klimaschutzkonzept+ 3. Technische Projektumsetzung 4. Grundprinzip des Stirlingmotors 5. Technische Daten der Gas-Stirlingmotoren der Fa. CLEANERGY 6. Entgasungssituation vor/nach der Umsetzung des neuen Entgasungskonzepts 7. Erreichte und erwartete CO2-Einsparung der Maßnahmen 8. Energiebilanz des Klimaschutzkonzeptes+ 9. Erste Betriebserfahrungen mit den Stirlingmotoren 10. Genehmigungsverfahren und Emissionsgrenzwerte der Stirlingmotoren 11. Kostenzusammenstellung - Stirlingmotoren 12. Literatur 13. Projektförderung und Danksagung Anlagen - Technisches Datenblatt - Pressestimmen Zusammenfassung Das Thema Klimaschutz rückt bei Deponien in der Nachsorgephase zunehmend in den Fokus. Methan als Hauptbestandteil des Deponiegases hat eine 28mal klimaschädlichere Wirkung im Vergleich zu Kohlendioxid. Bei der konventionellen Entgasung lag der Schwerpunkt auf der Absaugung bei möglichst ho- hen Methangehalten. Dies fällt mit zunehmenden Deponiealter jedoch immer schwerer. Die herkömmliche Praxis, hierauf mit einer Rücknahme der Absaugmenge zu reagieren, hat zur Folge, dass der Erfassungsgrad des Entgasungssystems ab- und die Deponiegasemissionen zunehmen. Auf der Deponie Bengelbruck wurde ein unter Klimaschutzgesichtspunkten zukunftsweisendes neues Entgasungskonzept umgesetzt. Die Aerobisierung und in-situ-Stabilisierung der Deponie erfolgt unter Anwendung des inspiro©Verfahrens. Die Emissionsminderung beträgt bei Regel- betrieb aktuell ca. 15 t CO2 Eq/Tag. Die hierfür eingesetzte Anlagentechnik besteht aus einer RTO - Regenerative Thermische Oxida- tion - mit Wärmerückgewinnung für die Schwachgasbehandlung sowie zweier Stirlingmotoren für die energieautarke und klimaneutrale Eigenstromversorgung mit Deponiegas. Summary At landfills in the phase of post closure care, climate protection is increasingly becoming the focus. Methane CH4 as the main component of landfill gas has 28 times climate-damaging effect compared to carbon dioxide CO2. In the conventional venting of landfill, the main emphasis was on the extraction at the highest possible Methane concentrations. This is getting more and more difficult with the age of the landfill. The conventional practice is to respond with a taking back the extraction amount, with the result that the performance of the venting system remove and the gas emissions increase. One from the viewpoint climate protection sustained new concept of venting landfill gas was implemented at the landfill Bengelbruck. The aerobisation and in-situ-stabilization take place by using the inspiro©process. Currentley the emission reduction is in steady operation abaut 15 Mg CO2 eq/day. The purpose system technology used consists of an RTO - Regenerative Thermal Oxidation - with heat recorvery for the lean gas treatment an two Stirling engines for the energy self- sufficient and climate neutral internal powered supply by landfill gas. Seite 1
Das Projekt "Teil 1" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut für Technische Thermodynamik durchgeführt. Im Rahmen des Projektes werden dezentrale Systeme zur Verstromung von Abwärme untersucht, wobei thermische Energiespeicher eingesetzt werden, die zeitliche Variationen in Leistung und / oder Temperatur des verfügbaren Abwärmestromes kompensieren sollen. Ziel ist es, bisher ungenutzte Abwärmeströme zu nutzen. Zum Einsatz kommen sollen dabei möglichst kompakte Energieumwandlungsmodule, in die die drei thermischen Teilprozesse Übertragung der Abwärme, Speicherung und Kreisprozess integriert sind. Für die technologische Umsetzung dieser Teilprozesse können verschiedene Konzepte angewendet werden. Ziel des Projektes ist der Vergleich verschiedener Konfigurationen sowie eine Potenzialabschätzung für die speicherunterstützte Verstromung. Schwerpunkte bilden die Anpassung der Speichertechnik sowie die Auswahl eines geeigneten Kreisprozesses, wobei hier vor allem der ORC-Prozess (Organic Rankine Cycle) betrachtet wird, aber auch andere Konzepte (Dampfmotor, Kalina-Zyklus, Stirlingprozess) berücksichtigt werden. Zur Durchführung der Analyse wird ein modulares Simulationsprogramm entwickelt, das die Berechnung des transienten Verhaltens von Systemen zur speicherunterstützten Verstromung ermöglicht. Als Fallbeispiele werden der Abwärmestrom, die bei einem Elektroofen anfällt sowie eine Anlage zur Herstellung von Kalksandsteinen untersucht.
Das Projekt "HTW" wird vom Umweltbundesamt gefördert und von Hochschule für Technik und Wirtschaft Berlin, Fachbereich 01, Studiengang Umwelttechnik , Regenerative Energien durchgeführt. Bisher sind am EUREF Campus einige Erzeugungsanlagen (darunter kleine WKA, Solaranlagen, Stirling BHKW) installiert. Das Ziel des Vorhabens ist es, die installierte Leistung erneuerbarer Erzeuger so zu steigern, dass Sie bedarfsgerecht und effizient zur Eigenbedarfsdeckung beiträgt. Dazu gehört nicht nur der Strombedarf der Gebäude auf dem Campus, sondern auch die Einbindung der elektrischen Fahrzeugflotte in das Last- bzw. Energiemanagement. Die zukünftige Lösung sieht eine intelligente Regelung vor, welche die Erzeuger mit ihrem z.T. fluktuierenden Einspeiseverhalten mit den Verbrauchern so kombiniert, dass die Energieüberschüsse minimiert werden und eine Unterdeckung des Strombedarfs weitestgehend ausgeschlossen werden kann. Die intelligente Anwendung von Energiespeichern, sowohl fest installiert als auch durch bidirektionale Anbindung von Elektrofahrzeugen (Vehicle to Grid), spielt bei der Realisierung eine zentrale Rolle. Im ersten Schritt wird eine messdatengestützte Simulation der Last- bzw. Erzeugungsflüsse durchgeführt, die die Grundlage für die Dimensionierung der zukünftigen Erzeuger und Energiespeicher darstellt. Auf Basis der Ergebnisse kann die Realisierung der Anlagen vorgenommen werden. Um die Funktionalität nachzuweisen und die Regelungsstrategien zu optimieren, muss anschließend ein umfassendes Energiemonitoring vorgenommen werden. Dadurch kann die Erreichung der festgelegten Ziele überprüft, sowie die getroffenen Simulationsannahmen validiert werden.
Das Projekt "Teil 2" wird vom Umweltbundesamt gefördert und von Stadtwerke Esslingen am Neckar GmbH & Co. KG (SWE) durchgeführt. Im Rahmen des Projektes werden dezentrale Systeme zur Verstromung von Abwärme untersucht, wobei thermische Energiespeicher eingesetzt werden, die zeitliche Variationen in Leistung und / oder Temperatur des verfügbaren Abwärmestromes kompensieren sollen. Ziel ist es, bisher ungenutzte Abwärmeströme zu nutzen. Zum Einsatz kommen sollen dabei möglichst kompakte Energieumwandlungsmodule, in die die drei thermischen Teilprozesse Übertragung der Abwärme, Speicherung und Kreisprozess integriert sind. Für die technologische Umsetzung dieser Teilprozesse können verschiedene Konzepte angewendet werden. Ziel des Projektes ist der Vergleich verschiedener Konfigurationen sowie eine Potenzialabschätzung für die speicherunterstützte Verstromung. Schwerpunkte bilden die Anpassung der Speichertechnik sowie die Auswahl eines geeigneten Kreisprozesses, wobei hier vor allem der ORC-Prozess (Organic Rankine Cycle) betrachtet wird, aber auch andere Konzepte (Dampfmotor, Kalina-Zyklus, Stirlingprozess) berücksichtigt werden. Zur Durchführung der Analyse wird ein modulares Simulationsprogramm entwickelt, das die Berechnung des transienten Verhaltens von Systemen zur speicherunterstützten Verstromung ermöglicht. Als Fallbeispiele werden der Abwärmestrom, die bei einem Elektroofen anfällt sowie eine Anlage zur Herstellung von Kalksandsteinen untersucht.
Das Projekt "Teil A" wird vom Umweltbundesamt gefördert und von Hochschule Reutlingen, Reutlingen Research Institute (RRI) durchgeführt. Die Nutzung erneuerbarer Energien wie Biogas, Klär-, Gruben- und Deponiegas, im Bereich der Kraft-Wärmekopplung erfordert eine Energiewandlung, die sowohl robust, effizient und wartungsarm ist, als auch eine Umsetzung der genannten Gase mit geringen Schadstoffemissionen ermöglicht. Darüber hinaus ist eine dezentrale Energieversorgungsstruktur unentbehrlich, um die kostenintensive nachträgliche Einrichtung von Fernwärmenetzen zu vermeiden. Daraus ergibt sich die Notwendigkeit für kleine, dezentrale BHKW-Einheiten, die eine direkte Wärmenutzung vor Ort erlauben. Beide Anforderungen erfüllen Stirlingmotor-BHKW. Infolge der kontinuierlichen, äußeren Verbrennung kann der Brennstoff stabil, effizient und mit geringen Emissionen umgesetzt werden. Außerdem ist der Stirlingmotor aufgrund des geschlossenen Kreisprozesses unempfindlich gegenüber Verschmutzungen beispielsweise durch die Verbrennungsprodukte, sodass größere Wartungsintervalle erreichbar sind als bei Motoren mit innerer Verbrennung. Stirlingmotor-BHKW können zudem im kleinen und kleinsten Leistungsbereich bis herunter auf 1 kW elektrische Leistung ohne nennenswerte Wirkungsgradeinbußen eingesetzt werden. Durch die vergleichsweise geringen elektrischen Wirkungsgrade von Mikrogasturbinen und insbesondere Stirling-BHKW können diese Anlagen in vielen Fällen nicht mit üblichen Motor-BHKW konkurrieren. Gleichzeitig sind Mikrogasturbinen und Stirling-BHKW bezogen auf die elektrische Leistung teurer als Motor-BHKW. Dennoch gibt es potenzielle Einsatzbereiche für diese beiden Technologien im Schwachgasbereich, die anhand von exemplarischen Wirtschaftlichkeitsberechnungen und Potenzialabschätzungen aufgezeigt werden. Ziel des Projektes ist die wissenschaftliche Begleitung von Stirlingmotor-BHKW im Betrieb mit Bio-, Gruben- und Klärgas und Mikrogasturbinen im Betrieb mit Biogas an sechs verschiedenen Standorten im Feld. Neben der Auswertung von Leistungs- und Emissionsdaten sollen auch allgemeine Erfahrungen gesammelt und notiert werden, um eventuell vorhandene technische Risiken aufzudecken und bewerten zu können. Parallel dazu wird die Wirtschaftlichkeit der Geräte untersucht.
Das Projekt "Teil B" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Landesanstalt für Agrartechnik und Bioenergie (740) durchgeführt. Die Nutzung erneuerbarer Energien wie Biogas, Klärgas, Grubengas und Deponiegas, im Bereich der Kraft-Wärmekopplung erfordert eine Energiewandlung, die sowohl robust, effizient und wartungsarm ist, als auch eine Umsetzung der genannten Gase mit geringen Schadstoffemissionen ermöglicht. Darüber hinaus ist eine dezentrale Energieversorgungsstruktur unentbehrlich, um die kostenintensive nachträgliche Einrichtung von Fernwärmenetzen zu vermeiden. Daraus ergibt sich die Notwendigkeit für kleine, dezentrale BHKW-Einheiten, die eine direkte Wärmenutzung vor Ort erlauben. Beide Anforderungen erfüllen Stirlingmotor-BHKW. Infolge der kontinuierlichen, äußeren Verbrennung kann der Brennstoff stabil, effizient und mit geringen Emissionen umgesetzt werden. Außerdem ist der Stirlingmotor aufgrund des geschlossenen Kreisprozesses unempfindlich gegenüber Verschmutzungen beispielsweise durch die Verbrennungsprodukte, sodass größere Wartungsintervalle erreichbar sind als bei Motoren mit innerer Verbrennung. Stirlingmotor-BHKW können zudem im kleinen und kleinsten Leistungsbereich bis herunter auf 1 kW elektrische Leistung ohne nennenswerte Wirkungsgradeinbußen eingesetzt werden. Durch die vergleichsweise geringen elektrischen Wirkungsgrade von Mikrogasturbinen und insbesondere Stirling-BHKW können diese Anlagen in vielen Fällen nicht mit üblichen Motor-BHKW konkurrieren. Gleichzeitig sind Mikrogasturbinen und Stirling-BHKW bezogen auf die elektrische Leistung teurer als Motor-BHKW. Dennoch gibt es potenzielle Einsatzbereiche für diese beiden Technologien im Schwachgasbereich, die anhand von exemplarischen Wirtschaftlichkeitsberechnungen und Potenzialabschätzungen aufgezeigt werden. Ziel des Projektes ist die wissenschaftliche Begleitung von Stirlingmotor-BHKW im Betrieb mit Biogas, Grubengas und Klärgas und Mikrogasturbinen im Betrieb mit Biogas an sechs verschiedenen Standorten im Feld. Neben der Auswertung von Leistungs- und Emissionsdaten sollen auch allgemeine Erfahrungen gesammelt und notiert werden, um eventuell vorhandene technische Risiken aufzudecken und bewerten zu können. Parallel dazu wird die Wirtschaftlichkeit der Geräte untersucht.
Das Projekt "Teil C" wird vom Umweltbundesamt gefördert und von Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg durchgeführt. Die Nutzung erneuerbarer Energien wie Biogas, Klär-, Gruben- und Deponiegas, im Bereich der Kraft-Wärmekopplung erfordert eine Energiewandlung, die sowohl robust, effizient und wartungsarm ist, als auch eine Umsetzung der genannten Gase mit geringen Schadstoffemissionen ermöglicht. Darüber hinaus ist eine dezentrale Energieversorgungsstruktur unentbehrlich, um die kostenintensive nachträgliche Einrichtung von Fernwärmenetzen zu vermeiden. Daraus ergibt sich die Notwendigkeit für kleine, dezentrale BHKW-Einheiten, die eine direkte Wärmenutzung vor Ort erlauben. Beide Anforderungen erfüllen Stirlingmotor-BHKW. Infolge der kontinuierlichen, äußeren Verbrennung kann der Brennstoff stabil, effizient und mit geringen Emissionen umgesetzt werden. Außerdem ist der Stirlingmotor aufgrund des geschlossenen Kreisprozesses unempfindlich gegenüber Verschmutzungen beispielsweise durch die Verbrennungsprodukte, sodass größere Wartungsintervalle erreichbar sind als bei Motoren mit innerer Verbrennung. Stirlingmotor-BHKW können zudem im kleinen und kleinsten Leistungsbereich bis herunter auf 1 kW elektrische Leistung ohne nennenswerte Wirkungsgradeinbußen eingesetzt werden. Durch die vergleichsweise geringen elektrischen Wirkungsgrade von Mikrogasturbinen und insbesondere Stirling-BHKW können diese Anlagen in vielen Fällen nicht mit üblichen Motor-BHKW konkurrieren. Gleichzeitig sind Mikrogasturbinen und Stirling-BHKW bezogen auf die elektrische Leistung teurer als Motor-BHKW. Dennoch gibt es potenzielle Einsatzbereiche für diese beiden Technologien im Schwachgasbereich, die anhand von exemplarischen Wirtschaftlichkeitsberechnungen und Potenzialabschätzungen aufgezeigt werden. Ziel des Projektes ist die wissenschaftliche Begleitung von Stirlingmotor-BHKW im Betrieb mit Bio-, Gruben- und Klärgas und Mikrogasturbinen im Betrieb mit Biogas an sechs verschiedenen Standorten im Feld. Neben der Auswertung von Leistungs- und Emissionsdaten sollen auch allgemeine Erfahrungen gesammelt und notiert werden, um eventuell vorhandene technische Risiken aufzudecken und bewerten zu können. Parallel dazu wird die Wirtschaftlichkeit der Geräte untersucht.
Origin | Count |
---|---|
Bund | 83 |
Land | 2 |
Type | Count |
---|---|
Förderprogramm | 81 |
Text | 3 |
unbekannt | 1 |
License | Count |
---|---|
geschlossen | 2 |
offen | 81 |
unbekannt | 2 |
Language | Count |
---|---|
Deutsch | 85 |
Englisch | 10 |
Resource type | Count |
---|---|
Archiv | 2 |
Datei | 2 |
Dokument | 2 |
Keine | 58 |
Webseite | 25 |
Topic | Count |
---|---|
Boden | 47 |
Lebewesen & Lebensräume | 49 |
Luft | 37 |
Mensch & Umwelt | 85 |
Wasser | 34 |
Weitere | 83 |