Dieses Projekt, das verschiedene Arbeiten zu dem Forschungsthema zusammenfasst und das von verschiedenen Seiten gefoerdert wurde und wird, zielt auf die Optimierung und Weiterentwicklung von Rohrschalldaempfern, z.B. Abgasschalldaempfern hin, bei denen die Stroemung einen wesentlichen Einfluss hat. Dabei werden sowohl Reflexions- als auch Dissipationsschalldaempfer betrachtet. Im Zusammenhang mit resonanzartigen Schalldaempfern spielen stroemungsakustische Instabilitaeten eine wichtige Rolle, die nicht generell unterdrueckt werden muessen, sondern in Spezialfaellen eine positive Rolle spielen, z.B. zur Erhoehung der Resonatorguete eingesetzt werden koennen. Fuer diese Untersuchungen wurde und wird eine Messmethode und die dazu notwendinge Apparatur zur Bestimmung der akustischen Streufaktoren (Reflexions- und Transmissionsfaktoren) von durchstroemten Objekten aufgebaut und weiterentwickelt.
Der von den Ventilatoren abgestrahlte Schall setzt sich im allgemeinen aus diskreten und breitbandigen Anteilen zusammen. Gegenwaertig erfolgt meist eine Abschaetzung des Breitbandschalls auf der Grundlage empirischer oder halbempirischer Beziehungen aus typischen Kenngroessen des Ventilators (u.a. geometrischen, kinematischen, aerodynamischen) und einer maschinenspezifischen Konstante. Die maschinenspezifische Konstante muss experimentell ermittelt werden. Eine durchgaengige Berechnung des Laerms von Ventilatoren, d.h. eine Berechnung der tatsaechlichen Quellen aus den Stromfeldgroessen, ist bislang nicht moeglich. Sie waere deshalb von Vorteil, weil die Kenntnis empirischer Maschinenkonstanten entfiele und eine Optimierung der zu erwartenden Schallabstrahlung bereits in der aerodynamischen Entwurfsphase eines Ventilators moeglich wuerde. Ziel des Projekts ist, die akustischen Quellen mit elementaren Groessen der Stroemung im Laufrad eines Ventilators zu korrelieren. Hierzu werden experimentelle und numerische Methoden wie instationaere Druck- und Geschwindigkeitsmessungen, numerische Stroemungssimulation, Korrelationstechnik usw. eingesetzt.
Für prozesslufttechnische Anlagen gilt, dass Lärm und Geräusche wie andere Umweltemissionen, z. B. Abgas und Feinstaub, zu behandeln und entsprechende Regeln und Normen einzuhalten sind. Das Ziel des Projektes besteht daher in der möglichst energieeffizienten Gestaltung dieser obligatorischen akustischen Funktionen. Lärmmindernde Bauteile erhöhen direkt den laufenden Energieverbrauch, indem z. B. Schalldämpfer zwar Lärm reduzieren, aber auch Druckverluste verursachen. Für deren Überwindung ist viel Energie in Gestalt erhöhter Ventilatorleistung aufzuwenden. In der akustisch-energetischen Gesamtoptimierung stecken erhebliche Einspareffekte. Die Verbesserung der Energieproduktivität in Industrie und Gewerbe ist ein Eckpfeiler des Energieforschungsprogrammes, da mit der Kosteneinsparung auch eine gesteigerte Wettbewerbsfähigkeit der Unternehmen verbunden ist. Im Projekt wird das vorhandene theoretische Rüstzeug praxisbezogen vertieft, um leistungsfähige Methoden und Instrumente für Auslegung, Planung und Bewertung akustisch-energetischer Effizienz zu schaffen. Optimierte System- und Designkonzepte sowie hochwirksame Bauteile und Materialien werden entwickelt und eingesetzt.
Durch den Einsatz von Wärmepumpen in Wäschetrocknern wird der Energieverbrauch gegenüber konventionellen Wäschetrocknern signifikant reduziert. Eine weitere Verbreitung wird durch deren höheres Geräuschniveau erschwert, welches durch den prinzipiell erhöhten Strömungswiderstand und den höheren Volumenstrom für den Wärmepumpen-Prozess bedingt ist. Für die Vorhersage und Optimierung der Strömungsgeräusche stehen derzeit keine geeigneten Methoden zur Verfügung. Im Rahmen von HELNOISE sollen entsprechende Werkzeuge für Wärmepumpentrockner, speziell für die Luftführung und den neuen Ventilator, weiterentwickelt werden. Ziel ist es, Radiallüfter und Luftführungen zu entwickeln, die im Hinblick auf die Gesamtakustik und den Energieverbrauch optimiert sind. Hierzu sollen die folgenden Arbeiten durchgeführt werden. Unter Berücksichtigung der Aeroakustik werden verschiedene hoch-effiziente Radiallüfter entworfen und die Kennlinien mit Hilfe der Computational Fluid Dynamics (CFD) berechnet. Darauf basierend werden die für die Akustik entscheidenden instationären Strömungsfelder berechnet (Arbeitsgruppe Strömungssimulation von Prof. Frank, HTW, Teilprojekt A). Verschiedene hochauflösende, experimentelle Methoden dienen zur Validierung der numerischen Ergebnisse. Diese Datensätze der instationären Druckschwankungen bilden die Rechenbasis, mit deren Hilfe die Schallabstrahlung von Ventilatoren in das akustische Fernfeld vorherbestimmt werden kann (Arbeitsgruppe Akustiksimulation von Prof. Ochmann, Beuth, Teilprojekt B). Hierfür werden die Randdaten der Geschwindigkeit und des Druckes auf einer die Strömungsmaschine umgebenden Hüllfläche bestimmt und als Eingabedaten für ein Randelementeverfahren (Boundary Element Method, BEM) verwendet. Als integrale Optimierungsgröße wird die abgestrahlte Schallleistung berechnet. Die gemeinsam erzielten Ergebnisse werden an einem realen Lüfter-Prototypen experimentell überprüft, die Methoden validiert und das Gesamtsystem optimiert.
Für prozesslufttechnische Anlagen gilt, dass Lärm und Geräusche wie andere Umweltemissionen, z. B. Abgas und Feinstaub, zu behandeln und entsprechende Regeln und Normen einzuhalten sind. Das Ziel des Projektes besteht daher in der möglichst energieeffizienten Gestaltung dieser obligatorischen akustischen Funktionen. Lärmmindernde Bauteile erhöhen direkt den laufenden Energieverbrauch, indem z. B. Schalldämpfer zwar Lärm reduzieren, aber auch Druckverluste verursachen. Für deren Überwindung ist viel Energie in Gestalt erhöhter Ventilatorleistung aufzuwenden. In der akustisch-energetischen Gesamtoptimierung stecken erhebliche Einspareffekte. Die Verbesserung der Energieproduktivität in Industrie und Gewerbe ist ein Eckpfeiler des Energieforschungsprogrammes, da mit der Kosteneinsparung auch eine gesteigerte Wettbewerbsfähigkeit der Unternehmen verbunden ist. Im Projekt wird das vorhandene theoretische Rüstzeug praxisbezogen vertieft, um leistungsfähige Methoden und Instrumente für Auslegung, Planung und Bewertung akustisch-energetischer Effizienz zu schaffen. Optimierte System- und Designkonzepte sowie hochwirksame Bauteile und Materialien werden entwickelt und eingesetzt.
Zielsetzung und Anlass des Vorhabens: Schallemissionen von Abgasanlagen haben einen hohen Anteil bei Emissionen von technischen Gebäudeanlagen und Hausgeräten. Sie betreffen 1.) schutzbedürftige Räume im Gebäude und 2.) benachbarte Anwesen durch Schallausbreitung über die Schornsteinmündung ins Freie und unterliegen z. T. gesetzlich geregelten Anforderungen und Bestimmungen zu Grenzwerten (DIN 4109, TA Lärm etc.). Der Stand der Technik zur Lärmminderung an Abgasanlagen ist nahezu ausschließlich durch die marktüblichen, sog. Passivschalldämpfer bestimmt. Damit lässt sich allerdings nur in einem Frequenzbereich zwischen 500 und 2000 Hz eine ausreichende Schalldämpfung erzielen. Die typischen Abgasgeräusche liegen jedoch im Bereich zwischen 50 und 250 Hz, in dem wiederum die Schallreduzierung (Einfügungsdämpfung) durch die bisher verwendeten Passivschalldämpfer nur sehr gering ist. Die Betroffenen müssen diesen Stand der Technik akzeptieren und mit unangenehmen, dröhnenden Geräuschen in ihrem Gebäude bzw. ihrer Nachbarschaft leben. In dem vorliegenden Projekt, das aus einer Grundlagenforschung des Fraunhofer-Instituts für Bauphysik zum Thema aktive Schallbekämpfung hervorgeht, sollte der Bereich der tieffrequenten Störgeräusche im Abgassystem untersucht und Bauteile entwickelt bzw. qualifiziert werden, die diese Geräusche wirkungsvoll bekämpfen. Fazit: Der Aktiv-Schalldämpfer (ASD) dämpft den tieffrequenten Bereich einer Feuerstätte auf äußerst kurzer Baulänge sehr effektiv. Er ist einsetzbar für Anlagen mit Abgastemperaturen bis 200 C und Anschlussmaßen von Rohrdurchmessern 80 bis 300 mm. Der Aktiv-Schalldämpfer kann sowohl im Heizraum in die Verbindungsleitung als auch im Freien an der Kaminmündung eingebaut werden. Er ist kombinierbar mit reaktiven Resonatoren und Passiv-Schalldämpfern, die das dämpfende Frequenzspektrum vergrößern.
| Origin | Count |
|---|---|
| Bund | 32 |
| Type | Count |
|---|---|
| Förderprogramm | 32 |
| License | Count |
|---|---|
| offen | 32 |
| Language | Count |
|---|---|
| Deutsch | 28 |
| Englisch | 5 |
| Resource type | Count |
|---|---|
| Keine | 20 |
| Webseite | 12 |
| Topic | Count |
|---|---|
| Boden | 18 |
| Lebewesen und Lebensräume | 20 |
| Luft | 32 |
| Mensch und Umwelt | 32 |
| Wasser | 17 |
| Weitere | 32 |