Hauptziel des beantragten Projektes Hybrid-Fire ist, eine neue Methode zur hybriden Beheizung von Ofenanlagen zu entwickeln die es ermöglich CO2-arm bzw. CO2-frei zu Arbeiten. Die Grundlagen hierfür soll umweltfreundlich erzeugter H2 sowie Elektroenergie darstellen. Durch Kombination eines Erdgas-Brenners, dessen Brenngas teilweise durch H2 ersetzt wird, mit einem bzw. mehreren Mikrowellenplasmabrennern soll durch gezielte Steuerung dies ermöglicht werden. Am Beispiel von ausgewählten keramischen Massenerzeugnissen aus dem Bereich Feuerfest (MgO-Stein), Technischer Keramik (ZrO2) sowie Baukeramik (Ziegel, Fließe) sowie am Beispiel Stahlschmelze aus dem Metallurgiesektor, soll gezeigt werden, dass diese zurzeit stark CO2-lastige Verfahren CO2-arm bzw. -neutral betrieben werden können. Hierzu wird an den ausgewählten Erzeugnissen (keram. Werkstoff sowie Stahl) umfangreiche Forschungsarbeit in mikrowellenplasmabeheizten Ofen, in elektrisch beheizten sowie in industriell oft gasbeheizten Öfen zur Eigenschaftsentwicklung betrieben. Im Lauf des Projektes ist geplant einen hybrid-beheizten Demonstrator zu konzipieren und für umfangreiche Versuche mit den genannten Produktgruppen zu bauen. Aufgrund der Änderungen in der Beheizungsart ist damit zu rechnen, dass geänderte Anteile an H2O-dampf bzw. H2-gehalte u.a. Abgasbestandteile die Eigenschaften beeinflussen. Hierzu können Änderungen in der Sinter- bzw. Schmelztechnologie bzw. auch am Werkstoff erforderlich werden. Im letzten Teil des Projektes sollen die gewonnenen Erkenntnisse im Industrieeinsatz (Feuerfesthersteller, Stahlgießerei) zum Einsatz unter industriellen Bedingungen kommen und erprobt werden. Am Ende des Projektes soll es möglich sein die Erkenntnisse auch auf weitere Ofenanlagen zu übertragen bzw. auch auf andere Industriezweige mit ähnlichen temperaturintensiven Technologien zu adaptieren.
Landwirtschaftliche Nutzpflanzen spielen eine wichtige Rolle im globalen Wasserkreislauf. Der Klimawandel kann jedoch die Physiologie der Pflanzen, die Agrar-Ökosysteme und die Wechselwirkungen innerhalb des Land-Atmosphäre-(L-A) Systems durch veränderte Energie-, Wasser- und Kohlenstoffflüsse verändern. Für die Vorhersage zukünftiger hydroklimatischer Bedingungen und die Bewertung landwirtschaftlicher Landnutzungspraktiken, insbesondere im Hinblick auf die zunehmende Häufigkeit von Extremereignissen, ist es von entscheidender Bedeutung, Kenntnisse über die Transpirations- (T) und Evaporationsraten (E) von Pflanzen auf lokaler Ebene, deren zeitliche Dynamik und ihre Verbindung zum L-A-System zu gewinnen. Im Rahmen von Projekt 3 (P3) werden wir Messungen der Wasserflüsse und ihrer Isotopie entlang des L-A-Systems verwenden, um wasserbezogene Prozesse mit hoher zeitlicher (< täglich) und räumlicher Auflösung (<1 m2) zu untersuchen, z. B. mit Hilfe von Bestands- und Blattkammern für ET und T sowie Membransonden für die Messung der stabilen Bodenwasserisotopie. Diese gekoppelten Messungen bilden eine neuartige Isotopenmessplattform, die es uns ermöglichen wird, den Beitrag verschiedener Bodentiefen zur Wurzelwasseraufnahme (RWU) und Wurzelwasseraufnahmemustern von zwei Feldfrüchten (Mais und Weizen) innerhalb von LAFO systematisch zu bestimmen. Darüber hinaus werden die Wasserdurchgangszeiten bestimmt sowie die Evapotranspiration-Auftrennung (ET) durchgeführt und bewertet. Die Analysen werden artenspezifisch sein und den Einfluss unterschiedlicher Umweltbedingungen (z. B. der Bodenfeuchtigkeit und des Wasserdampfdruckdefizits) auf RWU, Wasserdurchgangszeiten, ET und die Auftrennung von ET in Pflanzen-T und Boden-E untersuchen. Die Ergebnisse von P3 werden mit P4, P7, P 9-P11 (Output) ausgetauscht und diskutiert und dazu verwendet, eine bessere Modelldarstellung für T/ET zu entwickeln, um die mit den T/ET-Schätzungen verbundenen Unsicherheiten zu verringern (P4 und P7). Eine verbesserte T/ET-Darstellung wird zu den LAFI-Hauptzielen (O) O1, O2, O3, OS, OE und den LAFI-Haupthypothesen (H) H1, H2, H3, HS, HE beitragen. Es ist eine wichtige Grundlage für die systemübergreifenden Arbeitsgruppen CCWG-SenSyn, CCWG-DL und CCWG-MME. Unsere Ergebnisse werden dazu beitragen, die Anfälligkeit von Kulturpflanzen für zukünftige, klimatisch bedingte Veränderungen in Niederschlag und der Bodenfeuchtigkeit zu bewerten.
Die Rudolf Rieker GmbH aus Leingarten (Baden-Württemberg) ist ein mittelständischer Fachbetrieb für die Induktionshärtung von Stahlwerkstücken mit über 100 Beschäftigten. Das im Jahr 1978 von Rudolf Rieker gegründete Unternehmen deckt als eine der größten Induktionshärtereien Europas mit seinem Maschinenpark nahezu jegliche Art der induktiven Wärmebehandlung ab. Das Härten von Stahlerzeugnissen und -werkstücken ist ein wichtiger Arbeitsschritt in der Stahlproduktion. Beim Induktionshärten werden im Werkstück Wirbelströme zwecks Erhitzung induziert, mit der ein Übergang in der Gitterstruktur des Stahls zu einem austenitischen Gefüge verbunden ist. Im Anschluss muss das Werkstück sehr schnell heruntergekühlt werden. Dies wandelt das austenitische Gefüge in ein martensitisches Gefüge um, wodurch die gewünschten Härten erzielt werden. Eine Sonderanwendung ist das Tiefkühlen um den Restaustenit umzuwandeln. Üblicherweise nutzt man hierfür flüssigen Stickstoff, der in einer Kältekammer versprüht wird. Jedoch ist die Bereitstellung von flüssigem Stickstoff mit nicht unerheblichem Energieaufwand in Herstellung, Transport und Lagerung sowie mit Risiken im Betrieb verbunden. Die Rudolf Rieker GmbH investiert mit Hilfe des Umweltinnovationsprogramms daher in eine innovative Kältekammer, welche zusammen mit der Refolution Industriekälte GmbH entwickelt wurde. Durch dieses Verfahren können erstmals Temperaturen von – 85 Grad Celsius durch eine Luftkältemaschine im Bereich der Restaustenitumwandlung erzielt werden. Den deutlich höheren Investitionskosten verglichen mit konventionellen Verfahren stehen dabei deutliche Einsparpotenziale bei Energie und Treibhausgasemissionen (THG) gegenüber. Während im konventionellen Verfahren auch Energiemengen für Herstellung, Transport und Lagerung der Fernkälte anfallen, ist für das neu entwickelte Verfahren nur noch der Energiebedarf zum Betrieb der Luft-Kältemaschinen vor Ort zu betrachten, welcher durch Wärmerückgewinnung innerhalb der Wechselkühlkammern um ca. 30 Prozent gesenkt werden kann. Insgesamt wird eine Energieeinsparung von ca. 410 Megawattstunden angestrebt, was ungefähr einer Einsparung von 60 - 68 Prozent im Vergleich zum herkömmlichen Verfahren entspricht. Durch die höhere Energieeffizienz nehmen außerdem auch die mit der Energiebereitstellung verbundenen CO 2 -Emissionen ab. Ein Drittel der in Deutschland tätigen Lohnhärtereien bieten die Tieftemperaturbehandlung an. Da diese losgelöst von der Art des Erhitzens stattfinden kann, ist davon auszugehen, dass die innovative Kältetechnologie für die gesamte Bandbreite als Tiefkühlbehandlung geeignet ist.
Branche: Metallverarbeitung
Umweltbereich: Klimaschutz
Fördernehmer: Rudolf Rieker GmbH
Bundesland: Baden-Württemberg
Laufzeit: seit 2023
Status: Laufend