Der interoprable INSPIRE-Viewdienst (WMS) Production and Industrial Facilities gibt einen Überblick über die Anlagen nach Bundesimmissionsschutzgesetz (BImSchG) in Brandenburg. Der Datenbestand beinhaltet die Punktdaten zu BImSchG-Betriebsstätten und BImSchG-Anlagen (ohne Anlagenteile).
Datenquelle ist das Anlageninformationssystem "LIS-A". Gemäß der INSPIRE-Datenspezifikation "Production
and Industrial Facilities" (D2.8.III.8_v3.0) liegen die Inhalte der BImSchG-Anlagen INSPIREkonform vor. Der WMS beinhaltet 2 Layer: "ProductionFacility" (Betriebsstätte) und "ProductionInstallation" (Anlage). Der ProductionFacility-Layer wird gem. INSPIRE-Vorgaben nach Wirstschaftszweigen (BImSchG-Kategorie 1. Ordnung) untergliedert in:
- PF.PowerGeneration: Wärmeerzeugung, Bergbau und Energie (BImSchG-Kategorie: Nr. 1)
- PF.ConstructionMaterialProduction: Steine und Erden, Glas, Keramik, Baustoffe (BImSchG-Kategorie: Nr. 2)
- PF.MetalProcessingAndProduction: Stahl, Eisen und sonstige Metalle einschließlich Verarbeitung (BImSchG-Kategorie: Nr. 3)
- PF.ChemicalProcessing: Chemische Erzeugnisse, Arzneimittel, Mineralölraffination und Weiterverarbeitung
(BImSchG-Kategorie: Nr. 4)
- PF.PlasticsManufacturing: Oberflächenbehandlung mit organischen Stoffen, Herstellung von bahnenförmigen Materialien aus Kunststoffen, sonstige Verarbeitung von Harzen und Kunststoffen (BImSchGKategorie: Nr. 5)
- PF.WoodAndPaperProcessing: Holz, Zellstoff (BImSchG-Kategorie: Nr. 6)
- PF.FoodAndAgriculturalProduction: Nahrungs-, Genuss- und Futtermittel, landwirtschaftliche Erzeugnisse
(BImSchG-Kategorie: Nr. 7)
- PF.WasteProcessing: Verwertung und Beseitigung von Abfällen und sonstigen Stoffen(BImSchGKategorie:
Nr. 8)
- PF.MaterialStorage: Lagerung, Be- und Entladen von Stoffen und Gemischen(BImSchG-Kategorie: Nr. 9)
- PF.OtherProcessing: Sonstige Anlagen (BImSchG-Kategorie: Nr. 10) Maßstab: 1:500000; Bodenauflösung: nullm; Scanauflösung (DPI): null
Eine im Gegensatz zum Kabel frei verspannte, nicht durchgehend isolierte elektrische Leitung zur Versorgung größerer Verbraucher mit Hochspannung. Hochspannungsfreileitungen bestehen aus Kupfer, Aluminium (mit Stahlseele) oder Stahl. Träger der Hochspannungsfreileitungen sind die Hochspannungsmasten.
Das Projekt SteelBlade beschäftigt sich mit der Entwicklung und Konstruktion eines Onshore Rotorblattes für Windenergieanlagen (WEA), das für den Einsatz des Werkstoffs Stahl optimiert wird. Leichtbau- und Optimierungsmethoden aus der Luft- und Raumfahrt sollen dabei den effizienten Einsatz des Werkstoffes sichern, sodass die Rotorblattkonstruktion in einem für das System Windenergieanlage verträglichen Bereich liegen wird. Durch eine gleichzeitige Akustik-Optimierung der Struktur kann die Umweltbelastung durch Schallemissionen für Mensch und Tier kontrolliert und eventuell sogar weiter gesenkt werden. Der Fokus bei der Entwicklung des Stahlrotorblattes liegt auf der Konstruktion der inneren Struktur sowie der Auslegung einer Blattaußenhülle, die auf Basis aerodynamischer Gesichtspunkte entwickelt wurde. Die Konstruktion des Stahlrotorblattes erfolgt durch den konsequenten Transfer innovativer Leichtbautechniken aus der Luft- und Raumfahrt sowie dem Automobilbau in den Windenergieanlagenbau mit dem Ziel, dass das Gesamtgewicht des Stahlblattes auf dem Niveau des GFK-Blattes liegt. Im Rahmen des Projektes werden zunächst die technische, wirtschaftliche und nachhaltige Machbarkeit konkret nachgewiesen. Dabei werden insbesondere auch Transport-, Standardisierungs- und Nachhaltigkeitspotentiale berücksichtigt. Bei der Auslegung wird neben den strukturellen und dynamischen Eigenschaften des Rotorblattes ebenfalls das strukturdynamische Verhalten der gesamten WEA über den vollen Betriebsbereich ermittelt. Die Gesamtanlagensimulation wird basierend auf einer flexiblen Mehrkörpersimulation (MKS) im Zeitbereich durchgeführt und ermöglicht eine genaue Auflösung der dynamischen, nichtlinearen Lasten im Antriebsstrang, deren Kenntnis für die Lebensdauervorhersage sowie der Ermittlung der Belastungen der einzelnen Komponenten der WEA erforderlich ist. Im Rahmen dieses Projektes wird das dynamische Verhalten der gesamten WEA sowie der Schallemission untersucht.
Hauptziel des beantragten Projektes Hybrid-Fire ist, eine neue Methode zur hybriden Beheizung von Ofenanlagen zu entwickeln die es ermöglich CO2-arm bzw. CO2-frei zu Arbeiten. Die Grundlagen hierfür soll umweltfreundlich erzeugter H2 sowie Elektroenergie darstellen. Durch Kombination eines Erdgas-Brenners, dessen Brenngas teilweise durch H2 ersetzt wird, mit einem bzw. mehreren Mikrowellenplasmabrennern soll durch gezielte Steuerung dies ermöglicht werden. Am Beispiel von ausgewählten keramischen Massenerzeugnissen aus dem Bereich Feuerfest (MgO-Stein), Technischer Keramik (ZrO2) sowie Baukeramik (Ziegel, Fließe) sowie am Beispiel Stahlschmelze aus dem Metallurgiesektor, soll gezeigt werden, dass diese zurzeit stark CO2-lastige Verfahren CO2-arm bzw. -neutral betrieben werden können. Hierzu wird an den ausgewählten Erzeugnissen (keram. Werkstoff sowie Stahl) umfangreiche Forschungsarbeit in mikrowellenplasmabeheizten Ofen, in elektrisch beheizten sowie in industriell oft gasbeheizten Öfen zur Eigenschaftsentwicklung betrieben. Im Lauf des Projektes ist geplant einen hybrid-beheizten Demonstrator zu konzipieren und für umfangreiche Versuche mit den genannten Produktgruppen zu bauen. Aufgrund der Änderungen in der Beheizungsart ist damit zu rechnen, dass geänderte Anteile an H2O-dampf bzw. H2-gehalte u.a. Abgasbestandteile die Eigenschaften beeinflussen. Hierzu können Änderungen in der Sinter- bzw. Schmelztechnologie bzw. auch am Werkstoff erforderlich werden. Im letzten Teil des Projektes sollen die gewonnenen Erkenntnisse im Industrieeinsatz (Feuerfesthersteller, Stahlgießerei) zum Einsatz unter industriellen Bedingungen kommen und erprobt werden. Am Ende des Projektes soll es möglich sein die Erkenntnisse auch auf weitere Ofenanlagen zu übertragen bzw. auch auf andere Industriezweige mit ähnlichen temperaturintensiven Technologien zu adaptieren.
1
2
3
4
5
…
193
194
195