Im Rahmen eines durch das BMBF geförderten Verbundprojektes (2012-2015) wurde eine kompakte Neutronenradiographieanlage für die Charakterisierung radioaktiver Abfälle entwickelt. Hierbei hat sich gezeigt, dass die Neutronenradiographie in Verbindung mit der Neutronenaktvierungsanalyse einen bedeutenden Mehrwert in Bereich der zerstörungsfreien Materialprüfung erzielen kann. Aufbauend auf diesen Erkenntnissen ist es das Ziel des beantragten Forschungsprojektes, die Radiographie mit schnellen Neutronen dahingehend weiterzuentwickeln, dass mit einer kompakten Anlage großvolumige Proben (bis zu 200-l) untersucht werden können. Bei der Überwachung von kerntechnischen Anlagenkomponenten besteht z.B. die Aufgabe, neben den reinen Werkstoffeigenschaften auch das Vorhandensein von Wasser zu prüfen. Insbesondere bei druck- und aktivitätsführenden Komponenten stellt dies eine erhöhte Herausforderung dar. Schwerpunkt der Forschungsarbeiten ist die Entwicklung eines geeigneten Detektorkonzeptes. Sowohl am PSI in der Schweiz, als auch am FRM-II in Garching bei München gibt es hierfür schon fortgeschrittene Forschungsansätze. Allerdings ist die dort entwickelte Technologie nicht direkt für die Werkstoffprüfung in kerntechnischen Anlagen anwendbar, da sie an einen Forschungsreaktor gekoppelt und somit ortsgebunden ist. Durch die synergetische Kopplung der Radiographie mit der Neutronenaktivierung kann ein bisher technisch nicht genutzter Informationsgewinn für die Werkstoffprüfung erzielt werden. Arbeitspaket 1: Einarbeitung und Vertiefung in das Thema; Arbeitspaket 2: Neutronenphysikalische Simulationen; Arbeitspaket 3: Überprüfung der IAEA-Datenbanken bzgl. der relevanten Wirkungsquerschnitte; Arbeitspaket 4: Studie zur Auswahl und Gestaltung des Szintillators; Arbeitspaket 5: Entwicklung des Gesamtanlagenkonzeptes Arbeitspaket 6: Experimentelle Studien; Arbeitspaket 7: Benchmark der Simulationsergebnisse mit den Experimenten; Arbeitspaket 8: Erstellung der Dissertation.
Ziel des Vorhabens ist die Weiterentwicklung eines kombinierten bildgebenden Systems (NeuRoFast), an der Neutronentomographieanlage ANTARES am FRM-II (Forschungs-Neutronenquelle Heinz Maier-Leibnitz / TU München), das es ermöglicht Neutronen- und Röntgen- Bildgebung gleichzeitig an einer Probe durchzuführen. Zusätzlich werden in NeuRoFast neue Kontrastverfahren für die Untersuchung dynamischer Prozesse im Bereich neuer Materialien für Energieanwendungen entwickelt und Pilotexperimente durchgeführt. NeuRoFast baut auf dem derzeit laufenden Projekt NeuRoTom auf und basiert auf zwei wesentlichen Erweiterungen des ANTARES durch den Projektpartner TU München: Einerseits soll die Implementierung weiterer fortgeschrittener Kontrastmodalitäten - auf der Basis der derzeitig laufenden Arbeiten - erfolgen. Insbesondere soll der gitter-basierte Neutronen und Röntgen- Phasen- und Dunkelfeldkontrast implementiert werden, da sich in bereits durchgeführten Demonstrationsversuchen ein großes Potential dieser Methoden zur Erforschung neuer Batteriesysteme sowie Brennstoff- und Elektrolysezellen abzeichnet. Andererseits soll ein neues Neutronendetektorsystem mit bislang ungekannten räumlichen (10 Mikrometer) und zeitlichen (10 Herz) Auflösungen entwickelt werden. Der ANTARES Messplatz am FRM-II hat die weltweit höchste Flussrate und Kollimation. Verbunden mit höchstmöglicher zeitlicher und örtlicher Auflösung wird in NeuRoFast dadurch ein weltweit einzigartiges Analysesystem geschaffen. Für die Erschließung neuer Anwendungsfelder für den ANTARES Setup am FRM-II müssen neue Verfahren für die Untersuchung von Energieanwendungen mit Neutronenbildgebung entwickelt werden. Im Fokus von NeuRoFast stehen die vielversprechenden Redox-Flow-Batterien (RFBs) sowie Elektrolyse mit Festelektrolytmembran (PEMELs), denen Schlüsselrollen für die Energiewende zugesprochen werden. Für PEMELs und RFBs werden in NeuRoFast daher dynamische in operando Kontrastverfahren am IMTEK entwickelt, die auf Lithium- und Wasserstoffisotopen beruhen. Dunkelfeld und Phasenkontrast-Bildgebung sollen zudem für die Untersuchung von Blasenbildungsdynamiken verwandt werden.
Ziel des Vorhabens ist die Weiterentwicklung eines kombinierten Tomographiesystems (NeuRoFast), an der Neutronenanlage ANTARES am FRM-II, dass es ermöglicht Neutronen- und Röntgen-Tomographie mit zusätzlichem Gitter-basiertem Phasen- und Dunkelfeld-Kontrast gleichzeitig an einer Probe durchzuführen. Diese neuen Methodologien soll auf zentrale Fragestellungen im Bereich neuer Polymerkompositmembranen für Redox Flowbatterien und Elektrolyse- und Brennstoffzellen angewandt werden. NeuRoFast baut auf dem derzeit laufenden Projekt NeuRoTom (Förderkennziffer: 05K13VF1) auf, und basiert auf zwei wesentlichen Erweiterungen des ANTARES durch den Projektpartner TUM: Einerseits soll die Implementierung weiterer fortgeschrittener Kontrastmodalitäten - auf der Basis der derzeitig laufenden Arbeiten - erfolgen. Insbesondere soll der gitter-basierte Neutronen und Röntgen-Phasen- und Dunkelfeldkontrast implementiert werden, da sich in bereits durchgeführten Demonstrationsversuchen ein großes Potential dieser Methoden zur Erforschung neuer Batteriesysteme sowie Brennstoff- und Elektrolysezellen abzeichnet. Andererseits soll ein neues Neutronendetektorsystem mit den derzeit höchstmöglichen zeitlichen und räumlichen Auflösungen angeschafft und implementiert werden. Verbunden mit höchstmöglicher zeitlicher und örtlicher Auflösung wird in NeuRoFast ein einzigartiges Analysesystem geschaffen. AP 1: Einbau eines kombinierten Gitter-basierten Röntgen- und Neutronen Phasenkontrast- und Dunkelfeld-Bildgebungsaufbaus AP 1.1: Entwicklung und Aufbau des Systems AP 1.1: Bildverarbeitung AP 1.3: Inbetriebnahme und Charakterisierung des Systems AP 2: Entwicklung und Implementierung eines zeitlich und räumlich höchstauflösenden 'Super-Resolution'-Neutronendetektors am FRM-II AP 2.1: Aufbau des Systems AP 2.2: Inbetriebnahme und Charakterisierung des Systems AP 2.3: Anwendungen.
Das Hauptziel des LET-Verbundes liegt in der Erarbeitung eines grundlegenden Verständnisses der erhöhten relativen biologischen Wirksamkeit (RBW) von dicht ionisierender Strahlung, also von Strahlung mit hohem LET (Linear Energy Transfer) im Vergleich zu Niedrig-LET-Strahlung. Insbesondere sollen Modelle zur Vorhersage der RBW in Abhängigkeit der von Ionen induzierten Ionisierungsdichte, also von LET und Teilchenenergien, anhand neuartiger experimenteller Ansätze validiert und ggf. verbessert werden. Das Arbeitsprogramm zielt auf ein enges Netzwerk zwischen der Gewinnung neuer strahlenbiologischer Daten für Bestrahlung mit fokussierten Niedrig-LET-Protonen oder weiteren leichten Ionensorten (Deuteronen, He- und Li-Ionen) an der Ionenmikrostrahlanlage SNAKE und für homogene Bestrahlung mit den gleichen Ionen, um einen direkten Vergleich mit Schwerionenbestrahlungen bei gleicher mittlerer Dosis zu erhalten. Damit wird die Weiterentwicklung und Validierung von Computermodellen zur Berechnung von RBW in Abhängigkeit des LET und der Ionengeschwindigkeit ermöglicht. Die Gewinnung von strahlenbiologisch relevanten Daten soll in enger Zusammenarbeit zwischen der Strahlenbiologischen Gruppe des Klinikums rechts der Isar der TU München und dem Institut für Angewandte Physik und Messtechnik der UniBwM erfolgen. Die Modellierung wird in enger Zusammenarbeit mit der GSI, Darmstadt und dem HHZM, München durchgeführt. Ergebnisse der Forschungsarbeiten werden eine noch präzisere Beschreibung der Wirkung von Hoch-LET-Strahlung erlauben, die sowohl für die Tumortherapie mit Ionenstrahlen als auch für die Abschätzung der Schädigungswirkung von Hoch-LET-Strahlung bei Strahlenunfällen, für das fliegende Personal und im Rahmen der bemannten Raumfahrt relevant sind. In einem interdisziplinären Ansatz zwischen Biologie und Physik sollen Doktoranden und Post-Doktoranden in einem für die Medizin und den Strahlenschutz höchst relevanten Forschungsfeld ausgebildet und qualifiziert werden.
Das Projekt untersucht die Folgen hypothetischer schwerer Unfälle im KKW Takahama, Japan, durch atmosphärische Freisetzungen von Radioaktivität. Die Ausbreitung wird mit dem Lagrangeschen Ausbreitungsmodell FLEXPART modelliert. In einem ersten Schritt wird meteorologischer Input aus ERA-Interim mit einer Auflösung von 0,75 Grad für ein halbes oder ganzes Jahr verwendet, um vorläufige Richtwerte zu gewinnen. Da das Gebiet durch komplexe Topographie gekennzeichnet ist, werden ausgewählte Episoden dann mit WRF und nachfolgend FLEXPART-WRF mit hoher Auflösung modelliert. Die Folgen werden durch die Kontamination der Bodenoberfläche, die integrierte Konzentration in der Atmosphäre und durch die Effektiv- und Schilddrüsendosen über alle wesentlichen Belastungspfade außer Ingestion charakterisiert.
1. Vorhabensziel: Es soll ein auf der Standard für die Fluenz schneller Neutronen aufgebaut werden. Dazu soll die Methode der zeitkorrelierten assoziierten Teilchen aus der H-3(d,n)He-4 Reaktion verwendet werden. Mit diesem Experiment soll die Nachweiswahrscheinlichkeit der von einem der Projektpartner entwickelten Spaltionisationskammern bestimmt werden . Daneben sollen Voruntersuchungen für ein Experiment am PTB Flugzeitspektrometer durchgeführt werden, mit dem zwei unterschiedliche Methoden zur Messung von inelastischen Neutronenstreuquerschnitten direkt miteinander verglichen werden können. Dabei handelt es sich zum einen um den direkten Nachweis der inelastisch gestreuten Neutronen und zum anderen um die Berechnung des inelastischen Streuquerschnitts aus den experimentell bestimmten Photonenemissionsquerschnitte. 2. Arbeitsplanung: Für den Fluenzstandard soll eine Streukammer mit einem Ti(T) Feststofftarget und einem Detektor für die assoziierten Alphateilchen aufgebaut werden. Außerdem muss eine Monte-Carlo Simulation des gesamten Experiments mit einer guten Beschreibung des Energie- und Winkelstragglings niederenergetischer Ionen durchgeführt werden. Für das Experiment am Neutronenflugzeitspektrometer muss die Abschirmung von zusätzlichen Photonendetektoren gegen das Neutronenproduktionstarget ausgelegt und die Detektoren in das Spektrometer integriert werden. Außerdem müssen Testmessungen durchgeführt werden. 3. Ergebnisverwertung:
Origin | Count |
---|---|
Bund | 12 |
Type | Count |
---|---|
Förderprogramm | 12 |
License | Count |
---|---|
offen | 12 |
Language | Count |
---|---|
Deutsch | 11 |
Englisch | 2 |
Resource type | Count |
---|---|
Keine | 5 |
Webseite | 7 |
Topic | Count |
---|---|
Boden | 4 |
Lebewesen & Lebensräume | 8 |
Luft | 8 |
Mensch & Umwelt | 12 |
Wasser | 3 |
Weitere | 12 |