Die stratosphärische Ozonschicht absorbiert die UV-C und UV-B Sonnenstrahlung und schützt damit Pflanzen, Tiere und Menschen vor Strahlenschäden. Durch anthropogen emittierte Fluorchlorkohlenwasserstoffe (FCKWs) wird die Ozonschicht abgebaut. Da FCKWs seit dem Montrealer Protokoll stark zurückgegangen sind, werden halogenierte Verbindungen wie Chlormethan (CH3Cl), die aus natürlichen Quellen freigesetzt werden, für den Abbau der Ozonschicht in der Stratosphäre zunehmend relevant. CH3Cl ist das am häufigsten vorkommende chlorhaltige Spurengas in der Erdatmosphäre, das für etwa 17% der durch Chlor katalysierten Ozonzerstörung in der Stratosphäre verantwortlich ist. Daher wird CH3Cl vornehmlich die zukünftigen Gehalte an stratosphärischem Chlor bestimmen. Die aktuellen Schätzungen des globalen CH3Cl-Budgets und die Verteilung der Quellen und Senken sind sehr unsicher. Ein besseres Verständnis des atmosphärischen CH3Cl-Budgets ist daher das Hauptziel dieses Projektes.Die Analyse stabiler Isotopenverhältnisse von Wasserstoff (H), Kohlenstoff (C) und Chlor (Cl) hat sich zu einem wichtigen Werkzeug zur Untersuchung des atmosphärischen CH3Cl-Budgets entwickelt. Das zugrundeliegende Konzept besteht darin, dass das atmosphärische Isotopenverhältnis einer Verbindung wie CH3Cl gleich der Summe der Isotopenflüsse aus allen Quellen angesehen werden kann, korrigiert um den gewichteten durchschnittlichen kinetischen Isotopeneffekt aller Abbauprozesse. Dadurch ist es möglich, die Bedeutung wichtiger Quellen und Senken mit bekannten Isotopensignaturen zu entschlüsseln. Eine Grundvoraussetzung für detaillierte Hochrechnungen des globalen Budgets ist die Bestimmung der durchschnittlichen Isotopenverhältnisse von H, C und Cl des troposphärischen CH3Cl. Aufgrund der relativ geringen Konzentration von atmosphärischem CH3Cl von ~550 ppbv stellt dies eine große messtechnische Herausforderung dar. Daher liegt der Schwerpunkt dieses Antrags auf der erfolgreichen Entwicklung von Dreifachelement-Isotopenmethoden zur genauen Messung von atmosphärischem CH3Cl.Im ersten Schritt wird ein Probenahmesystem für große Luftmengen konstruiert und für die Messungen der stabilen Isotopenverhältnisse von CH3Cl optimiert. Das Probenahmegerät wird zunächst im Labor getestet und dann zum Sammeln von Luftproben an drei verschiedenen Orten eingesetzt: an der Universität Heidelberg, am Hohenpeißenberg und im Schneefernerhaus. Die Probenahmen werden über einen Zeitraum von einem Jahr durchgeführt, um möglichst auch saisonale Schwankungen zu erfassen. Die Isotopenverhältnisse der Proben werden mit modernsten massenspektrometrischen Methoden im Labor gemessen. Die Ergebnisse aller Standorte und Zeitpunkte werden in der Gesamtheit evaluiert, um die durchschnittlichen stabilen H-, C und Cl-Isotopenwerte einschließlich ihrer saisonalen Schwankungen darzustellen. Abschließend werden die Daten hinsichtlich ihrer Anwendbarkeit für komplexe numerische Modelle kritisch diskutiert.
'- Ist die Luftkonzentration an Tochterprodukten des Radons mindestens teilweise verantwortlich fuer die Entstehung der Atemwegskarzinome? Umweltbezug: 1. Berechnung der von den Radon-Tochterprodukten in den Bronchien erzeugten Strahlendosen. 2. Wenn in einer bestimmten Region die Bronchialdosis zu hoch resultiert, muessen die bestehenden Gebaeude ev. saniert oder fuer neue Gebaeude spezifische Baureglemente (Lueftung der Keller) erlassen werden.
Das Bundes-Amt für Strahlen-Schutz stellt sich vor - Informationen in Leichter Sprache - Dieses Zeichen ist ein Gütesiegel. Texte mit diesem Gütesiegel sind leicht verständlich. Leicht Lesen gibt es in drei Stufen. B1: leicht verständlich - A2: noch leichter verständlich - A1: am leichtesten verständlich Das BfS arbeitet für die Sicherheit und den Schutz vor verschiedenen Strahlungen. Strahlung ist eine Art von Energie. Sie breitet sich überall aus und man kann sie meistens nicht sehen. Bei der Sonnen-Strahlung kann man zum Beispiel nur das Licht sehen. Sie kann auch durch manche Dinge hindurch gehen. Zum Beispiel Röntgen-Strahlung. Röntgen-Strahlung geht durch die Haut und die Muskeln. Auf Bildern kann man dann die Knochen sehen. So kann ein Arzt oder eine Ärztin erkennen, ob jemand sich zum Beispiel einen Arm oder ein Bein gebrochen hat. Wenn Strahlung sehr hoch ist, kann das für die Gesundheit von allen Lebewesen gefährlich sein. Man kann zum Beispiel Krebs davon bekommen. Die Aufgabe vom BfS ist es die Menschen und die Umwelt vor Schäden zu schützen, die durch Strahlungen entstehen können. In Kern-Kraft-Werken wird Strom gemacht. In bestimmten Teilen von einem Kern-Kraft-Werk ist die Strahlung sehr hoch. Bei einem Unfall kann es passieren, dass Strahlung in die Umgebung kommt. Das BfS hat Pläne gemacht, was man bei so einem Unfall machen muss. Das BfS kümmert sich auch darum, dass Gefahren verhindert werden. Es gibt Geräte und Einrichtungen, die mit Strahlung arbeiten. Diese müssen sicher sein. Dabei hilft das BfS . Solche Geräte können zum Beispiel Röntgen-Geräte in der Medizin oder bei Gepäck-Kontrollen am Flughafen sein. Es ist dem BfS wichtig, dass die Bevölkerung vor Strahlen-Belastungen geschützt ist. Es sollen auch alle Personen sicher sein, die am Arbeitsplatz mit Strahlung zu tun haben. Das sind zum Beispiel die Mitarbeiterinnen und Mitarbeiter von der Gepäck-Kontrolle, Mitarbeiterinnen und Mitarbeiter in Kern-Kraft-Werken. Außerdem sollen alle Patientinnen und Patienten in der Medizin vor hohen Strahlen-Belastungen geschützt sein. Welche Strahlung gibt es? Es gibt 2 unterschiedliche Arten von Strahlung: Die ionisierende Strahlung und die nicht-ionisierende Strahlung . Wenn Menschen mit Strahlung zu tun haben, sollen sie sicher und geschützt sein. Das ist die Aufgabe vom BfS . Was ist ionisierende Strahlung? Ionisierende Strahlung kann in der Natur vorkommen. Zum Beispiel in großen Höhen. Dort kommt die ionisierende Strahlung aus dem Weltall. Ionisierende Strahlung kann auch von Menschen künstlich gemacht werden. Zum Beispiel: Wenn man einen Atom-Kern in mehrere Teile zerlegt. Dabei entsteht ionisierende Strahlung. Wo wird ionisierende Strahlung verwendet? In der Medizin. Zum Beispiel in Röntgen-Geräten. In der Forschung In der Technik Im Kern-Kraft-Werk. Ionisierende Strahlung kann durch Körper hindurch gehen. Dann gibt sie Energie ab. Wenn die Energie hoch ist, kann sie Schäden im Körper verursachen. Das heißt, dass man davon krank werden kann. Ionisierende Strahlung ist zum Beispiel: Röntgen-Strahlung. Sie wird in der Medizin verwendet. Damit kann geschaut werden, wie die Knochen von Patienten aussehen. Natürliche Radioaktivität. Das ist Radioaktivität, die in der Natur vorkommt. Zum Beispiel durch Strahlung aus dem Weltall. Die Strahlung kann gefährlich sein. Deshalb müssen Menschen vor zu hoher natürlicher Radioaktivität geschützt werden. Radioaktive Stoffe in Kern-Kraft-Werken Die Arbeiterinnen und Arbeiter in den Kern-Kraft-Werken müssen vor diesen Stoffen geschützt werden. Auch die Bevölkerung muss davor geschützt werden. Was ist Radioaktivität? Wenn Stoffe ionisierende Strahlung abgeben, sind sie radioaktiv. Radioaktivität ist die Eigenschaft eines Stoffes, ionisierende Strahlung abzugeben. Was ist nicht-ionisierende Strahlung? Bei der nicht-ionisierenden Strahlung entsteht keine Radioaktivität. Nicht-ionisierende Strahlung ist zum Beispiel: UV -Strahlung: Das ist die Abkürzung für ultra-violette Strahlung. UV -Strahlung ist ein Teil vom Licht. Man kann sie aber nicht sehen. Sie kommt bei Sonnenschein vor. UV -Strahlung kann für die Haut schädlich sein. Davon bekommt man Sonnenbrand. Man kann davon auch krank werden. Deshalb soll man bei starkem Sonnenschein zum Schutz einen Sonnen-Hut aufsetzen. Oder man soll in den Schatten gehen. Die Haut soll man mit einer Sonnen-Schutz-Creme eincremen. Mobil-Funk-Strahlung: Mobil-Funk-Strahlung braucht man, um mit dem Handy zu telefonieren. Was ist das BfS ? Das BfS ist eine Einrichtung, die zum Bundes-Ministerium für Umwelt, Naturschutz und nukleare Sicherheit gehört. Bei der nuklearen Sicherheit geht es zum Beispiel um die Sicherheit in Kern-Kraft-Werken. Das BfS ist 1989 gegründet worden. Es ist eine selbständige Behörde, die wissenschaftlich und technisch arbeitet. Eine Behörde ist eine Einrichtung vom Staat. Behörden sind dafür zuständig, dass bestimmte Aufgaben vom Staat für die Bürgerinnen und Bürger erledigt werden. Hier arbeiten Personen mit viel Fach-Wissen zusammen. Welche Aufgaben hat das BfS ? Das BfS ist zuständig für folgende Bereiche: Das BfS soll die Gesundheit von der Bevölkerung vor Schäden durch Strahlung schützen. Das BfS soll die Umwelt vor Schäden durch Strahlungen schützen. Das BfS soll für die Sicherheit von technischen Geräten sorgen. Wenn bei technischen Geräten mit Strahlung gearbeitet wird, müssen sie sicher sein. Bei Röntgen-Geräten in der Medizin oder bei der Gepäck-Kontrolle am Flughafen dürfen Menschen nicht gefährdet sein. Das BfS ist zuständig für den radiologischen Notfall-Schutz. Das ist der Schutz vor Strahlung, wenn ein Notfall passiert. Das heißt: wenn zum Beispiel in einem Kern-Kraft-Werk ein Unfall passiert, kann Strahlung in die Umwelt kommen. Das BfS hat Pläne gemacht, was man bei so einem Unfall machen muss. Stand: 30.06.2025
Es wird eine Methode entwickelt, welche den empfindlichen Nachweis durch UV und Roengenstrahlen induzierter Veraenderungen in der DNS ermoeglicht. Dazu werden in Kaninchen nach Injektionen bestrahlte DNS Antikoerper gebildet. Strahlenschaeden koennen mit ihrer Hilfe durch einen Radioimmunoverdraengungsassay in sehr geringen Mengen auch dort nachgewiesen werden, wo eine Markierung der DNS nicht moeglich ist.
Hohe Neutronenfluesse, die im Inneren von Schnellen Bruetern oder an der ersten Wand der projektierten Fusionsreaktoren auftreten, fuehren zu Strahlenschaeden, von denen das Volumenschwellen, bedingt durch Porenbildung im Material, von hoher Bedeutung fuer die Sicherheit und Rentabilitaet bestimmter Reaktorkonzeptionen ist. In nahezu allen Staaten, die sich mit Kernenergie beschaeftigen, versucht man deshalb, die zur Porenbildung fuehrenden Prozesse besser zu verstehen und schwellresistente Materialien zu entwickeln. Als eine geeignete Untersuchungsmethode hierfuer erwies sich die Simulation von Neutronenschaeden mit hochenergetischen schweren Ionen. Damit ist es moeglich, innerhalb einiger Minuten bis Stunden Strahlenschaeden zu erzeugen, wie sie im Reaktor erst nach Jahren auftreten. Neue Experimente ueber Diffusionsvorgaenge und das Verhalten von Ausscheidungen in NiCrAl-Legierungen bei Schwerionenbestrahlung sind in Vorbereitung. Dazu wurde ein neuer Targethalter konzipiert und gebaut, der schnelle Aufheiz- und Abkuehlvorgaenge erlaubt. Hierdurch werden unerwuenschte Ausheileffekte vermieden. Zur Untersuchung der Materialien wurde ein 100kV-Elektronenmikroskop installiert.
Tierexperimentelle Arbeiten ueber Strahlenspaetschaeden an Leber und Magen-Darmtrakt. 1) Strahlenbedingter Leberkarzinom. 2) Strahlenbedingte Gefaessschaeden am Magen und Darm. 3) Strahlenspaetschaeden am Dickdarm des Menschen. 1) und 2) sind tierexperimentelle Untersuchungen. 3) sind bioptische Untersuchungen.
Die bisherigen Vorstellungen ueber die Hoehe des Strahlenkrebsrisikos muessen anhand neuerer und neuester Erkenntnisse revidiert werden. Dies sollte bei einer Novellierung der Strahlenschutzgesetzgebung Beruecksichtigung finden.
Im Institut fuer Medizin (IME) wurde ein 3-Compartmentmodell der Phagozytose eines 99m-Tc-markierten Testcolloids in v. Kupfferschen Sternzellen der Leber des Menschen entwickelt. Durch Compartmentanalyse koennen die entsprechenden Uebergangsraten sowie der Zeitverlauf der Phagozytose beim Menschen in vivo bestimmt werden. Es werden Patienten mit metastasierenden Tumoren und Erkrankungen, an denen das Immunsystem beteiligt ist, untersucht.
Wasserstoff zeigt im Vergleich zu anderen Elementen eine sehr hohe Beweglichkeit in Metallen. Allerdings werden bei der Bestimmung der Diffusionskoeffizienten oftmals erhebliche systematische Fehler beobachtet. So weichen die von verschiedenen Arbeitsgruppen fuer die Wanderung von Wasserstoff in Zirkon bestimmte Diffusionskoeffizienten im mittleren Temperaturbereich von 200 - 600 Grad C bis zu etwa zwei Groessenordnungen voneinander ab. Es schien moeglich, dass diese Abweichungen auf den Einfluss sauerstoffhaltiger Oberflaechenschichten zurueckzufuehren sind, da der Wasserstoff bei allen bisherigen Untersuchungen durch mindestens eine solche Schicht hindurchdiffundieren musste. Die Diffusionskoeffizienten fuer Tritium in diesen Oberflaechenschichten sind im Vergleich zur Beweglichkeit im Metall um mehr als sieben Groessenordnungen kleiner, so dass bereits duenne Schichten eine erhebliche Verzoegerung in der Diffusion bewirken koennen. Es wurde deshalb eine neue Methode entwickelt, bei der die Diffusion in den Oberflaechenschichten vermieden wird. Ausserdem wurde der Einfluss der Sauerstoff-Konzentration auf die Beweglichkeit von Tritium in Zircaloy bestimmt. Diese Arbeiten, welche auch fuer die Kernbrennstoff-Wiederaufbereitung von erheblicher Bedeutung sind, werden fortgesetzt. Im Vordergrund stehen dabei die Untersuchungen ueber den Einfluss von Fremdstoffen und Strahlenschaeden auf die Tritium-Diffusion in Zirkon und Zirkon-Legierungen.
Kontinuierliche Kulturen; Strahlenschaeden; Systemtheorie.
| Origin | Count |
|---|---|
| Bund | 203 |
| Land | 6 |
| Type | Count |
|---|---|
| Ereignis | 1 |
| Förderprogramm | 183 |
| Text | 9 |
| unbekannt | 16 |
| License | Count |
|---|---|
| geschlossen | 23 |
| offen | 185 |
| unbekannt | 1 |
| Language | Count |
|---|---|
| Deutsch | 191 |
| Englisch | 43 |
| Leichte Sprache | 1 |
| Resource type | Count |
|---|---|
| Datei | 1 |
| Dokument | 6 |
| Keine | 154 |
| Multimedia | 1 |
| Unbekannt | 2 |
| Webseite | 50 |
| Topic | Count |
|---|---|
| Boden | 209 |
| Lebewesen und Lebensräume | 209 |
| Luft | 209 |
| Mensch und Umwelt | 209 |
| Wasser | 209 |
| Weitere | 204 |