API src

Found 4560 results.

Related terms

Effekte von UV-Exposition auf die Differenzierung von humanen dermalen Stammzellen in der Melanom-Genese, Teilprojekt B

Das Projekt "Effekte von UV-Exposition auf die Differenzierung von humanen dermalen Stammzellen in der Melanom-Genese, Teilprojekt B" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Technische Universität Darmstadt, Fachgebiet Zellbiologie und Epigenetik, AG Cardoso.

Strom und Mobilfunk: Messgeräteverleih liefert Fakten über Strahlung im Alltag

Strom und Mobilfunk: Messgeräteverleih liefert Fakten über Strahlung im Alltag Ausgabejahr 2025 Datum 20.03.2025 Personen-Exposimeter im Einsatz Mobiltelefone, Sendemasten, Hochspannungsleitungen, Elektrogeräte im Haushalt – im täglichen Leben begegnen uns viele Quellen elektromagnetischer oder magnetischer Felder. Wie stark man diesen Feldern tatsächlich ausgesetzt ist, kann man mit Leih-Messgeräten des Bundesamtes für Strahlenschutz ( BfS ) selbst überprüfen. Gut ein Jahr nach dem Start dieses Angebots zieht das BfS Bilanz: Bereits über 160 Menschen haben den Messgeräteverleih genutzt und ihren Alltag auf elektromagnetische Felder hin erkundet. Bei allen blieben die gemessenen Werte deutlich unter den Grenzwerten. Das Feedback der Nutzer*innen war bisher durchweg positiv. "Obwohl Grenzwerte vor nachgewiesenen Wirkungen von elektromagnetischen und magnetischen Feldern schützen, sorgt sich ein Teil der Bevölkerung wegen sogenannter Handystrahlung oder vermeintlichem Elektrosmog" , sagt BfS -Präsidentin Inge Paulini. "Mit unserem Messgeräteverleih geben wir beunruhigten oder interessierten Menschen Fakten an die Hand: Mit konkreten Messwerten können wir die Strahlung im Alltag sichtbar machen und der vermuteten Strahlenbelastung gegenüberstellen." Individuelle Auswertung der Messdaten Seit Februar 2024 bietet das BfS spezielle Messgeräte, sogenannte Personen-Exposimeter, zum Ausleihen an. Man kann zwischen zwei Gerätetypen wählen: Die eine Gerätevariante erfasst niederfrequente Magnetfelder, wie sie von Hochspannungsleitungen und der elektrischen Hausinstallation erzeugt werden. Die andere Gerätevariante misst hochfrequente elektromagnetische Felder. Diese gehen zum Beispiel von Mobilfunk, Radio, Fernsehen und WLAN aus. Das Messgerät wird in einer Tasche am Körper getragen Das Gerät, für das man sich entscheidet, trägt man über 24 Stunden bei sich. Die Expert*innen des Kompetenzzentrums Elektromagnetische Felder im BfS werten die Messdaten danach aus und erstellen für jede Nutzerin und jeden Nutzer einen individuellen Messbericht. Er dient der persönlichen Information. Für weiterführende wissenschaftliche oder gutachterliche Zwecke ist das Mess-Angebot nicht geeignet. Messen schafft Vertrauen BfS-Präsidentin Dr. Inge Paulini "Begleitende Vor- und Nachbefragungen zeigen, dass ein beachtlicher Teil der Teilnehmenden die magnetischen und elektromagnetischen Felder im Alltag überschätzt" , sagt Paulini. Das Messangebot werde als vertrauenswürdig wahrgenommen und könne dazu beitragen Besorgnis abzubauen. "Wir sehen darin einen Beleg dafür, dass Sorgen im Hinblick auf Mobilfunk oft auf einen Mangel an wissenschaftlichen Informationen zurückzuführen sind." Dem lasse sich wirksam begegnen, betont Paulini: "Messen kann helfen, Wissen und Vertrauen aufzubauen." Seit Februar 2024 wurden über 160 Messungen durchgeführt und ausgewertet. Insgesamt stehen sechs Messgeräte für niederfrequente Magnetfelder und zehn Messgeräte für hochfrequente elektromagnetische Felder zur Verfügung. Die Kosten für Ausleihe und Auswertung betragen 45 Euro. Weitere Informationen über den Messgeräteverleih gibt es unter www.bfs.de/messgeraeteverleih Messwerte liegen deutlich unter Grenzwerten Ergebnisse der Nachbefragung Bei den bisherigen Messungen blieben alle Messergebnisse weit unter den Grenzwerten der Verordnung über elektromagnetische Felder (26. BImSchV ). Sowohl für die niederfrequenten Magnetfelder als auch für die hochfrequenten elektromagnetischen Felder lag die durchschnittliche Grenzwert -Ausschöpfung unter einem Prozent. Der höchste 24-Stunden- Mittelwert betrug bei den niederfrequenten Magnetfeldern etwa ein Prozent, bei den hochfrequenten elektromagnetischen Feldern etwa 0,2 Prozent. 85 Prozent der Teilnehmer*innen einer Nachbefragung bewerteten die Grenzwertausschöpfungen als niedriger oder viel niedriger als erwartet. Stand: 20.03.2025

Felder um Hochspannungsleitungen: Freileitungen und Erdkabel

Felder um Hochspannungsleitungen: Freileitungen und Erdkabel Ob im Haushalt, bei der Arbeit oder unterwegs – überall wo Elektrizität erzeugt, übertragen oder genutzt wird, können wir elektrischen und magnetischen Feldern ausgesetzt sein. Hoch- und Höchstspannungsleitungen , die zum Transport und zur Verteilung von Elektrizität dienen, tragen ihren Teil zur Exposition ( d.h. Ausgesetztsein gegenüber elektromagnetischen Feldern) bei. Das BfS hat 2009 in einer Studie untersucht, wie stark die Felder um Hochspannungs-Freileitungen und -Erdkabel sind. Die höchsten Magnetfeldstärken befanden sich direkt unter 380 kV -Freileitungen und über 380 kV -Erdkabeln. Lange Hochspannungs-Gleichstromleitungen sind in Deutschland noch nicht gebaut. Deshalb gibt es noch keine Messergebnisse. In der Umgebung von Gleich- und Wechselstromleitungen treten elektrische und magnetische Felder auf. In der Regel machen aber elektrische Hausinstallationen und elektrische Geräte, die mit niedriger Spannung betrieben werden, den Hauptanteil der Feldbelastung aus. Wichtig ist: je weiter Hoch- oder Höchstspannungsleitungen, elektrische Geräte und Leitungen der Hausinstallation entfernt sind, desto geringer ist ihr Beitrag zur Gesamtexposition ( d.h. Ausgesetztsein gegenüber elektromagnetischen Feldern). Elektrische Felder Elektrische Felder werden vom Erdreich und von gewöhnlichen Baumaterialien gut abgeschirmt. Deshalb spielen sie bei Erdkabeln keine Rolle, treten aber im Freien in der Umgebung von Freileitungen auf. Die elektrische Feldstärke hängt vor allem von der Betriebsspannung einer Leitung ab. Unter 380 kV -Wechselstrom-Freileitungen (Höchstspannungsleitungen) können Feldstärken auftreten, die über dem Grenzwert für niederfrequente elektrische Felder liegen. Dieser gilt verbindlich nur für Orte, an denen sich Menschen längere Zeit aufhalten, wie zum Beispiel Wohngrundstücke oder Schulhöfe. Maßgeblich ist, wie der Ort üblicherweise genutzt wird. Bei Hoch- und Mittelspannungsleitungen wird der Grenzwert in der Regel auch direkt unterhalb der Leitungen eingehalten. Für Niederspannungsleitungen gilt der Grenzwert nicht, die elektrischen Feldstärken sind wegen der niedrigen Spannung aber klein. Von Gleichstromleitungen gehen statische elektrische Felder aus. Anders als die von Wechselstrom erzeugten niederfrequenten Felder wechseln sie nicht fortlaufend ihre Richtung. Längere Hochspannungs-Gleichstromleitungen sind in Deutschland erst in der Planung. Messwerte aus der Umgebung der Leitungen liegen noch nicht vor. Magnetische Felder Magnetische Felder treten bei Freileitungen und Erdkabeln auf. Sie werden durch das Erdreich oder durch Baumaterialien nicht abgeschirmt und dringen daher in Gebäude und auch in den menschlichen Körper ein. Magnetfelder entstehen, wenn Strom fließt. Weil die Magnetfeldstärke von der Stromstärke abhängt, schwanken die Feldstärken mit den Stromstärken in den Leitungen. Zu Tageszeiten, zu denen viel Strom genutzt oder weitergeleitet wird, ist deshalb auch das Magnetfeld um eine Leitung herum stärker. Die höchsten Feldstärken sind direkt unter Freileitungen und über Erdkabeln zu finden. Mit seitlichem Abstand zu einer Trasse nehmen sie deutlich ab. Bei Freileitungen hängt die Feldverteilung vor allem von der Masthöhe sowie vom Durchhang und der Anordnung der Leiterseile ab. Der Durchhang der Leiterseile wird unter anderem vom Abstand benachbarter Masten entlang der Trasse (Spannfeldlänge) und von der transportierten Strommenge bestimmt: Je mehr Strom fließt, desto wärmer werden die Seile. Dabei dehnen sie sich aus und hängen stärker durch. Der gleiche Effekt tritt im Sommer bei hohen Temperaturen auf. Im Winter kann Eis auf den Leitungen dazu führen, dass sie stärker durchhängen. Der geringere Abstand zum Boden kann dann einen Anstieg der Feldstärkewerte zur Folge haben. Bei Erdkabeln sind die Verlegetiefe, die Kabelanordnung und natürlich die Stromstärke entscheidend für die Magnetfeldstärken und deren Verteilung. Von Gleichstromleitungen gehen statische Magnetfelder aus. Anders als die von Wechselstrom erzeugten niederfrequenten Felder wechseln sie nicht fortlaufend ihre Richtung. Studie: Exposition durch magnetische Felder Das Bundesamt für Strahlenschutz ( BfS ) hat in einer Studie zur Erfassung der niederfrequenten magnetischen Exposition der Bürger in Bayern festgestellt, dass Personen, die nach eigener Auskunft im Umkreis von 100 Metern um eine Hochspannungsleitung wohnten, nur geringfügig (etwa 10 Prozent) höheren Feldern ausgesetzt waren als die anderen Studienteilnehmer. Die Expositionen wurden dabei über 24 Stunden erfasst und gemittelt. Elektrische und magnetische Felder von Freileitungen und Erdkabeln im Vergleich In einer 2009 abgeschlossenen Studie hat das BfS die Feldstärken in der Umgebung von Wechselstrom-Freileitungen und -Erdkabeln der Hoch- und Höchstspannungsebene messen lassen. Die höchsten Magnetfeldstärken wurden unter 380 kV -Freileitungen und über 380 kV -Erdkabeln gemessen. Sie betrugen 1 Meter über dem Erdboden 4,8 (Freileitung) beziehungsweise 3,5 (Erdkabel) Mikrotesla ( µT ). Magnetfelder an 380 kV Hochspannungs-Freileitungen und Erdkabeln: Die Abbildung zeigt die höchsten Werte, die nur bei maximaler Auslastung erreicht werden können. Der zum Zeitpunkt der Messung fließende Strom wurde bei den Betreibern der Leitungen abgefragt und die gemessenen Feldstärken wurden zusätzlich auf den Zustand hochgerechnet, der bei maximaler Stromübertragungsmenge auftreten kann (siehe Grafik). Bei den untersuchten Anlagen wurde auch unter dieser Bedingung der Grenzwert von 100 Mikrotesla in einer Messhöhe von 1 Meter über dem Erdboden eingehalten. Im Vergleich zu Freileitungstrassen nehmen die Magnetfelder bei Erdkabeln mit zunehmendem Abstand von der Trassenmitte deutlich früher und schneller ab, wie die nebenstehende Abbildung zeigt. Längere Hochspannungs-Gleichstromleitungen sind in Deutschland erst in der Planung. Messwerte aus der Umgebung der Leitungen liegen noch nicht vor. Mit baulichen und technischen Maßnahmen kann der Höchstwert von 40 Millitesla, den der Rat der Europäischen Union zum Schutz der Gesundheit empfiehlt, bei der geplanten Stromstärke deutlich unterschritten werden. Dies gilt für alle Bereiche, die für die Allgemeinbevölkerung zugänglich sind. Auch der Grenzwert von 500 Mikrotesla, der in Deutschland seit 2013 für Gleichstromanlagen gilt, wird voraussichtlich deutlich unterschritten. Die Grenzwerte für Gleichstromleitungen und Wechselstromleitungen weichen voneinander ab, weil die Wirkungen von statischen und niederfrequenten Feldern unterschiedlich sind. Stand: 28.02.2025

Radon - Anzahl der Radonmessungen (langzeit)

Der Kartendienst (WMS Gruppe) stellt Daten der Radonmessungen des Saarlandes dar.:Die Daten sind nach Gemeinden aufgeschlüsselt und in vier Radonaktivitätskategorien (0-99 Bq/m³; 100-299 Bq/m³; 300-1000 Bq/m³; > 1000 Bq/m³), sowie nach der Messzeit (kurzzeit = bis zu mehreren Monaten; langzeit = mind. 1 Jahr) eingeteilt. Die Werte in den Kategorien sind die Anzahl der Messungen bis heute.

Radon - Anzahl der Radonmessungen (kurzzeit)

Der Kartendienst (WMS Gruppe) stellt Daten der Radonmessungen des Saarlandes dar.:Die Daten sind nach Gemeinden aufgeschlüsselt und in vier Radonaktivitätskategorien (0-99 Bq/m³; 100-299 Bq/m³; 300-1000 Bq/m³; > 1000 Bq/m³), sowie nach der Messzeit (kurzzeit = bis zu mehreren Monaten; langzeit = mind. 1 Jahr) eingeteilt. Die Werte in den Kategorien sind die Anzahl der Messungen bis heute.

Radon - Radonmessung

Der Kartendienst (WMS Gruppe) stellt Daten der Radonmessungen des Saarlandes dar.:Der Kartendienst stellt Daten der Radonmessungen des Saarlandes dar.

Strahlenschutz in der Klinik - Expositionen von Klinikpersonal bei nuklearmedizinischen Therapien, Teilprojekt E

Das Projekt "Strahlenschutz in der Klinik - Expositionen von Klinikpersonal bei nuklearmedizinischen Therapien, Teilprojekt E" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Sarad GmbH.

Wegweiser Notfallschutz

Wegweiser Notfallschutz Radiologische Notfälle: Notfallszenarien, Folgen und Schutzmaßnahmen Werden radioaktive Stoffe in stark erhöhtem Maße freigesetzt, spricht man von einem radiologischen Notfall . Je nach Art eines radiologischen Notfalls arbeiten Bundes- und Länderbehörden, Anlagenbetreiber und/oder Katastrophenschutz im In- und Ausland eng zusammen, um die Bevölkerung rechtzeitig und wirkungsvoll zu schützen. Automatische Messnetze des BfS und weiterer Institutionen überwachen kontinuierlich die radiologische Lage in der Umwelt Deutschlands. Werden radioaktive Stoffe in stark erhöhtem Maße freigesetzt, spricht man von einem radiologischen Notfall . Die bekanntesten radiologischen Notfälle mit massiven Freisetzungen radioaktiver Stoffe in die Umwelt ereigneten sich 1986 in Tschornobyl ( russ. : Tschernobyl) in der Ukraine und 2011 in Fukushima in Japan. Was ist ein radiologischer Notfall? Quelle: christian aslund/EyeEm/Stock.adobe.com 2011: Der Unfall von Fukushima 1986: Der Unfall von Tschornobyl (russ.: Tschernobyl) Notfallszenarien und Schutzmaßnahmen Welche und wie viele radioaktive Stoffe in einem radiologischen Notfall austreten können und welche Auswirkungen auf die Umwelt und die körperliche und psychische Gesundheit der Bevölkerung in Deutschland zu erwarten sind, ist abhängig von der Art des Unfalls (Notfallszenario) . Bundes- und Länderbehörden, Anlagenbetreiber und/oder Katastrophenschutz im In- und Ausland arbeiten je nach Art eines radiologischen Notfalls eng zusammen, um die Bevölkerung rechtzeitig und wirkungsvoll zu schützen. Sie ergreifen bei Überschreitung der gesetzlich festgelegten Notfall-Dosiswerte unterschiedliche Maßnahmen zum Schutz der Bevölkerung und der Einsatzkräfte : Frühe Schutzmaßnahmen werden von den Katastrophenschutzbehörden der Bundesländer angeordnet und umgesetzt. Solche Maßnahmen sind etwa die Evakuierung von Menschen aus Gebieten, die in hohem Maße von radioaktiven Kontaminationen betroffen sein können, oder die Anordnung, dass Menschen zum Schutz vor radioaktiven Stoffen in Gebäuden bleiben sollen. Zum Schutz der Schilddrüse vor radioaktivem Jod kann für Menschen unter 45 Jahren in einem bestimmten Umkreis um einen Freisetzungsort auch die Einnahme von hochdosierten Jodtabletten angeordnet werden. Vorsorgende Maßnahmen, damit Menschen so wenig radioaktive Stoffe wie möglich mit der Nahrung aufnehmen, können etwa Ernte- und Verkaufsbeschränkungen für Lebensmittel sein. Welche Folgen hat ein radiologischer Notfall für Umwelt und Gesundheit? Video: Abläufe im radiologischen Notfallschutz Jodtabletten richtig einnehmen Nationale und internationale Zusammenarbeit In Deutschland sind die Aufgaben im nationalen radiologischen Notfallschutz auf verschiedene Behörden und Organisationen verteilt. Zum Beispiel tritt bei radiologischen Notfällen mit überregionalen Folgen für die Umwelt ein besonderer Krisenstab unter der Leitung des Bundesumweltministeriums zusammen: das Radiologische Lagezentrum des Bundes . Es stellt unter anderem Bundes- und Länderbehörden ein einheitliches Lagebild zur radiologischen Situation zur Verfügung, koordiniert radiologische Messungen , empfiehlt Schutzmaßnahmen und informiert die Bevölkerung. Da Strahlung nicht vor Ländergrenzen Halt macht, kooperiert Deutschland im radiologischen Notfallschutz auf internationaler Ebene bilateral mit Nachbarländern sowie europaweit und weltweit. Wer macht was im radiologischen Notfall? BfS unterstützt Bundesumweltministerium und Länderbehörden Das BfS ist Teil des Radiologischen Lagezentrums des Bundes . Automatische Messnetze des BfS und weiterer Institutionen überwachen kontinuierlich die radiologische Lage in der Umwelt Deutschlands . In einem radiologischen Notfall werden die Messungen intensiviert und durch mobile Messsysteme am Boden und/oder in der Luft ergänzt. Mitarbeitende des BfS üben regelmäßig die Abläufe im Ernstfall – mit Messfahrzeugen am Boden und mit Hubschraubern in der Luft . Im Informationssystem IMIS laufen alle Messergebnisse zusammen. Europäische und weltweite Messnetze wie das International Monitoring System der CTBTO ergänzen die Messungen auf internationaler Ebene. Auch radiologische Messungen am Menschen führt das BfS durch. Medien zum Thema Mehr aus der Mediathek Strahlenschutz im Notfall Auch nach dem Ausstieg Deutschlands aus der Kernkraft brauchen wir einen starken Notfallschutz. Wie das funktioniert, erklärt das BfS in der Mediathek. Stand: 10.10.2024

Vorprüfung BZA Ahaus

Das Projekt "Vorprüfung BZA Ahaus" wird/wurde ausgeführt durch: Öko-Institut. Institut für angewandte Ökologie e.V..In Ahaus (Nordrhein-Westfalen) wird seit einigen Jahren ein Lager betrieben, in dem die Zwischenlagerung von abgebrannten Brennelementen aus Kernkraftwerken genehmigt ist. Die vorhandenen Stellplätze sind bisher nur zu einem sehr geringen Teil belegt worden. Der Betreiber hat nun beantragt, einen Teil des Lagers für eine auf 10 Jahre befristete Zwischenlagerung von sonstigen radioaktiven Betriebsabfällen aus Kernkraftwerken zu nutzen, da sich für die Zwischenlagerung dieser Abfälle in Deutschland Engpässe abzeichnen. Zuständige Behörde ist in diesem Fall das Regierungspräsidium Münster, während für die Genehmigung der Lagerung abgebrannter Brennelemente das Bundesamt für Strahlenschutz zuständig ist. Das Regierungspräsidium Münster hat das Öko-Institut mit der Beurteilung möglicher Umweltauswirkungen im Rahmen der Vorprüfung der Umweltverträglichkeit der geänderten Nutzung des Lagers beauftragt.

Vergleich des Umfangs der bisher durchgeführten PSA für deutsche Kernkraftwerke

Das Projekt "Vergleich des Umfangs der bisher durchgeführten PSA für deutsche Kernkraftwerke" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit,Bundesamt für Strahlenschutz. Es wird/wurde ausgeführt durch: Öko-Institut. Institut für angewandte Ökologie e.V..

1 2 3 4 5454 455 456