API src

Found 270 results.

Related terms

Stadtklimaanalyse Hamburg 2023

Die Stadtklimaanalyse Hamburg 2023 basiert auf einer modellgestützten Analyse zu den klimaökologischen Funktionen für das Hamburger Stadtgebiet. Die Berechnung mit FITNAH 3D erfolgte in einer hohen räumlichen Auflösung (10 m x 10 m Raster) und liefert Daten und Aussagen zur Temperatur und Kaltluftentstehung in Hamburg. Die Untersuchung wurde auf der Annahme einer besonders belastenden Sommerwetterlage für Mensch und Umwelt mit geringer Luftbewegung und hoher Temperaturbelastung erstellt. Als Grundlage für die flächenbezogenen Bewertungen und deren räumliche Abgrenzungen diente der ALKIS-Datensatz „Bodennutzung“ der Freien und Hansestadt Hamburg, Landesbetrieb Geoinformation und Vermessung (LGV) mit Stand Dezember 2022. Weitere Informationen zur Stadtklimaanalyse Hamburg 2023 sind unter folgendem Link abrufbar: https://www.hamburg.de/landschaftsprogramm/18198308/stadtklima-naturhaushalt/ Dort stehen der Erläuterungsbericht, die Analyse- und Bewertungskarten sowie eine Erläuterungstabelle für den Datensatz, der als Grundlage für die Ebenen 11 bis 14 dient, zum Download zur Verfügung. Die Ebenen des Geodatensatzes „Stadtklimaanalyse Hamburg 2023“ werden wie folgt präzisiert: 01 Windvektoren um 4 Uhr (aggregierte 100 m Auflösung) Die bodennahe Temperaturverteilung bedingt horizontale Luftdruckunterschiede, die wiederum Auslöser für lokale thermische Windsysteme sind. Ausgangspunkt dieses Prozesses sind die nächtlichen Temperaturunterschiede, die sich zwischen Siedlungsräumen und vegetationsgeprägten Freiflächen einstellen. An den geneigten Flächen setzt sich abgekühlte und damit schwerere Luft in Richtung zur tiefsten Stelle des Geländes als Kaltluftabfluss in Bewegung. Das sich zum nächtlichen Analysezeitpunkt 4 Uhr ausgeprägte Kaltluftströmungsfeld wird über Vektoren abgebildet, die für eine übersichtlichere Darstellung auf 100 m x 100 m Kantenlänge aggregiert werden. 02 Flurwinde und Kaltluftabflüsse Bei den nächtlichen Windsystemen werden Flurwinde von Kaltluftabflüssen unterschieden. Flurwinde werden durch den horizontalen Temperaturunterschied zwischen kühlen Grünflächen und warmer Bebauung ausgelöst. Kaltluftabflüsse bilden sich über Oberflächen mit Hangneigungen von mehr als 1 ° aus. 03 Bereiche mit besonderer Funktion für den Luftaustausch Diese Durchlüftungszonen verbinden Kaltluftentstehungsgebiete (Ausgleichsräume) und Belastungsbereiche (Wirkungsräume) miteinander und sind aufgrund ihrer Klimafunktion elementarer Bestandteil des Luftaustausches. Es handelt sich i.d.R. um gering überbaute und grüngeprägte Strukturen, die linear auf die jeweiligen Wirkungsräume ausgerichtet sind und insbesondere am Stadtrand das Einwirken von Kaltluft aus den Kaltluftentstehungsgebieten des Umlandes begünstigen. 04 Kaltlufteinwirkbereich innerhalb von Bebauung und Verkehrsflächen Hierzu zählen Siedlungs- und Verkehrsflächen, die sich im „Einwirkbereich“ eines klimaökologisch wirksamen Kaltluftstroms mit einem Wert von mehr als 5 m³/(s*m) befinden. Hier ist sowohl im bodennahen Bereich als auch darüber hinaus eine entsprechende Durchlüftung vorhanden. Die Eindringtiefe der Kaltluft beträgt, abhängig von der Bebauungsstruktur, zwischen ca. 100 m und bis zu 700 m. Darüber hinaus spielt auch die Hinderniswirkung des angrenzenden Bebauungstyps eine wesentliche Rolle. 05 Gebäude (Bestand und Planung) Mithilfe der Gebäudegrenzen werden Effekte auf das Mikroklima sowie insbesondere das Strömungsfeld berücksichtigt. Als Grundlage dient der ALKIS-Datensatz „Gebäude“ der Freien und Hansestadt Hamburg, Landesbetrieb Geoinformation und Vermessung (LGV) mit Stand Dezember 2022. Dieser Datensatz wurde anhand ausgewählter, zum Zeitpunkt der Bearbeitung im Verfahren sowie in Planung befindlicher Bebauungspläne und Großprojekte modifiziert. 06 Windgeschwindigkeit um 4 Uhr Siehe Hinweise zur Ebene 01 Windvektoren um 4 Uhr (aggregierte 100 m Auflösung). Die Rasterzellen stellen ergänzend zu den Windvektoren die Windgeschwindigkeit flächenhaft in 10 m x 10 m Auflösung dar. 07 Kaltluftvolumenstromdichte um 4 Uhr Der Kaltluftvolumenstrom beschreibt diejenige Menge an Kaltluft in der Einheit m³, die in jeder Sekunde durch den Querschnitt beispielsweise eines Hanges oder einer Kaltluftleitbahn fließt. Der Volumenstrom ist ein Maß für den Zustrom von Kaltluft und bestimmt neben der Strömungsgeschwindigkeit die Größenordnung des Durchlüftungspotenzials. Zum Zeitpunkt 4 Uhr morgens ist die Intensität der Kaltluftströme voll ausgeprägt. 07a Kaltluftvolumenstromdichte um 4 Uhr in den Grün- und Freiflächen Reduzierung der Ebene 07 Kaltluftvolumenstromdichte um 4 Uhr auf die Grün- und Freiflächen. 08 Lufttemperatur um 4 Uhr Der Tagesgang der Lufttemperatur ist direkt an die Strahlungsbilanz eines Standortes gekoppelt und zeigt daher i.d.R. einen ausgeprägten Abfall während der Abend- und Nachtstunden. Dieser erreicht kurz vor Sonnenaufgang des nächsten Tages ein Maximum. Das Ausmaß der Abkühlung kann je nach meteorologischen Verhältnissen, Lage des Standorts und landnutzungsabhängigen physikalischen Boden- bzw. Oberflächeneigenschaften große Unterschiede aufweisen. Besonders auffällig ist das thermische Sonderklima der Siedlungsräume mit seinen gegenüber dem Umland modifizierten klimatischen Verhältnissen. 08a Lufttemperatur um 4 Uhr im Siedlungsraum Reduzierung der Ebene 08 Lufttemperatur um 4 Uhr auf die Siedlungsflächen. 08b Lufttemperatur um 4 Uhr in den Verkehrsflächen Reduzierung der Ebene 08 Lufttemperatur um 4 Uhr auf die Verkehrsflächen. 09 Lufttemperatur um 14 Uhr Die Lufttemperatur am Tage ist im Wesentlichen durch die großräumige Temperatur der Luftmasse in einer Region geprägt und wird weniger stark durch Verschattung beeinflusst, wie es bei der PET der Fall ist (Erläuterung „PET“ siehe Ebene 10 und 13). Daher weist die für die Tagsituation modellierte Lufttemperatur eine homogenere Ausprägung auf. 10 Physiologisch Äquivalente Temperatur (PET) um 14 Uhr Meteorologische Parameter wirken nicht unabhängig voneinander, sondern in biometeorologischen Wirkungskomplexen auf das Wohlbefinden des Menschen ein. Zur Bewertung werden Indizes verwendet (Kenngrößen), die Aussagen zur Lufttemperatur und Luftfeuchte, zur Windgeschwindigkeit sowie zu kurz- und langwelligen Strahlungsflüssen kombinieren. Wärmehaushaltsmodelle berechnen den Wärmeaustausch einer „Norm-Person“ mit seiner Umgebung und können so die Wärmebelastung eines Menschen abschätzen. Die hier genutzte Kenngröße PET (Physiologisch Äquivalente Temperatur, VDI 3787, Blatt 9) bezieht sich auf außenklimatische Bedingungen und zeigt eine starke Abhängigkeit von der Strahlungstemperatur. Mit Blick auf die Wärmebelastung ist sie damit vor allem für die Bewertung des Aufenthalts im Freien am Tage sinnvoll einsetzbar. 11 Bewertung nachts Siedlungs- und Verkehrsflächen: mittlere Lufttemperatur um 4 Uhr Zur Bewertung der bioklimatischen Situation wird die nächtliche Überwärmung in den Nachtstunden (4 Uhr morgens) herangezogen und räumlich differenziert betrachtet. Der nächtliche Wärmeinseleffekt wird anhand der Differenz zwischen der durchschnittlichen Lufttemperatur einer Siedlungs- oder Verkehrsfläche und der gesamtstädtischen Durchschnittstemperatur von etwa 17,1 °C bewertet. Die mittlere Überwärmung pro Blockfläche wird in fünf Bewertungsstufen untergliedert und reicht von sehr günstig (≥ 15,8 °C) bis sehr ungünstig (>= 20 °C). 12 Bewertung nachts Grün- und Freiflächen: bioklimatische Bedeutung Bei der Bewertung der bioklimatischen Bedeutung von grünbestimmten Flächen ist insbesondere die Lage der Grün- und Freiflächen zu Leitbahnen sowie zu bioklimatisch ungünstig oder weniger günstig bewerteten Siedlungsflächen entscheidend. Es handelt sich um eine anthropozentrisch ausgerichtete Wertung, die die Ausgleichsfunktionen der Flächen für den derzeitigen Siedlungsraum berücksichtigt. Die klimaökologischen Charakteristika der Grün- und Freiflächen werden anhand einer vierstufigen Skala (sehr hohe bioklimatische Bedeutung bis geringe bioklimatische Bedeutung) bewertet. 13 Bewertung tags Siedlungs- und Verkehrsflächen: bioklimatische Bedeutung (PET 14 Uhr) Zur Bewertung der Tagsituation wird der humanbioklimatische Index PET um 14:00 Uhr herangezogen. Für die PET existiert in der VDI-Richtlinie 3787, Blatt 9 eine absolute Bewertungsskala, die das thermische Empfinden und die physiologischen Belastungsstufen quantifiziert. Die Bewertung der thermischen Belastung im Stadtgebiet Hamburg orientiert sich daran und reicht auf einer fünfstufigen Skala von extrem belastet (> 41 °C) bis schwach belastet ( 41 °C) zu einer sehr geringen Aufenthaltsqualität führt. 14 Bewertung tags Grün- und Freiflächen: Aufenthaltsqualität (PET 14 Uhr) Die Zuweisung der Aufenthaltsqualität von Grün- und Freiflächen in der Bewertungskarte beruht auf der jeweiligen physiologischen Belastungsstufe. Es werden vier Bewertungsstufen unterschieden. Eine hohe Aufenthaltsqualität ergibt sich aus einer schwachen oder nicht vorhandenen Wärmebelastung (PET 41 °C) zu einer sehr geringen Aufenthaltsqualität führt.

Climate impact of aviation

Aviation affects the climate. Combustion of kerosene fuel results in carbon dioxide (CO2), but also other climate-impacting substances whose effects are referred to as "non-CO2 climate effects". What are these substances and how strong are their effects? How strong would the climate impact of air traffic be in the future if flying continues to grow as hitherto? How can the impact of air traffic on the climate be reduced through technical, organizational and regulatory measures? This brochure presents the current state of knowledge on the climate impact of air traffic in a generally understandable way. It shows possibilities at technical and legal level for reducing the impact on the climate, but also what passengers can do. The information brochure was produced by the German Aerospace Center on behalf of the German Federal Environment Agency. Quelle: www.umweltbundesamt.de

Klimawirkung des Luftverkehrs

Luftverkehr beeinträchtigt das Klima. Durch die Verbrennung des Treibstoffs Kerosin entstehen Kohlendioxid (CO2), aber auch weitere klimawirksame Substanzen, deren Wirkung als "nicht-CO2-Klimaeffekte" bezeichnet werden. Welche Substanzen sind es und wie stark wirken sie? Wie stark würde die Klimawirkung des Luftverkehrs in Zukunft ausfallen, wenn das Fliegen weiterhin wächst wie bisher? Wie kann der Einfluss des Luftverkehrs aufs Klima durch technische, organisatorische und regulatorische Maßnahmen gemindert werden? Die Broschüre stellt den Kenntnisstand zur Klimawirkung des Luftverkehrs allgemeinverständlich dar. Sie zeigt Möglichkeiten auf technischer und gesetzlicher Ebene zur Verminderung der Klimawirkung, aber auch, was Passagiere tun können. Die Informationsschrift wurde im Auftrag des Umweltbundesamtes vom Deutschen Zentrum für Luft- und Raumfahrt erstellt. Quelle: www.umweltbundesamt.de

Oberflächentemperaturen bei Tag und Nacht 2000

Die Einbeziehung klimatologischer Gesichtspunkte in die Bewertung der Umweltsituation städtischer Ballungsgebiete und deren räumliche Planung setzt zunächst eine Definition des Begriffes Stadtklima voraus. Unter Stadtklima versteht man nach Schirmer et al. (1987) “das gegenüber dem Umland stark modifizierte Mesoklima von Städten und Industrieballungsräumen. Es umfasst das gesamte Volumen der bodennahen Luftschicht oberhalb und in unmittelbarer Umgebung der Stadt bzw. der städtischen Grenzschicht. Verursacht wird es durch die Art und Dichte der Bebauung, das Wärmespeicherungsvermögen der Baustoffe, die Versiegelung des Bodens, das Fehlen von Vegetation, durch einen veränderten Wasserhaushalt und die vermehrte Emission von Abgasen, Aerosolen und Abwärme.” Bewertungs- und Untersuchungsansätze Für die Bewertung der jeweiligen Klimasituation fehlen verbindliche Grenz- und Richtwerte analog den Luftgüte-Werten des Bundes-Immissionsschutz-Gesetzes. Empfehlenden Charakter besitzt eine Richtlinie der Kommission Reinhaltung der Luft im VDI (vgl. Verein Deutscher Ingenieure (VDI) 3787 Blatt 2 1998). Diese hat das Ziel, Bewertungsverfahren der Human-Biometeorologie als Standard für die auf Menschen bezogene Berücksichtigung von Klima und Lufthygiene (Bioklima) bei der Stadt- und Regionalplanung bereitzustellen. Die Human-Biometeorologie beschäftigt sich mit den Wirkungen von Wetter, Witterung, Klima und Lufthygiene auf den menschlichen Organismus. Im vorliegenden ersten Teil dieser Richtlinie werden die human-biometeorologischen Wirkungskomplexe zusammengestellt und die empfohlenen Bewertungsmethoden für den Bereich “Klima” erläutert. Insbesondere steht hierbei der thermische Wirkungskomplex im Vordergrund, der in der Stadt- und Regionalplanung mit dem Ziel eingesetzt werden soll, gesunde Wohn- und Arbeitsbedingungen zu sichern. Mit seiner Hilfe können planerische Fragestellungen aus bioklimatologischer Sicht behandelt werden. Als Idealzustand sollte ein Stadtklima angestrebt werden, das weitgehend frei von Schadstoffen ist und den Stadtbewohnern eine möglichst große Vielfalt an Atmosphärenzuständen unter Vermeidung von Extremen bietet (vgl. Deutsche Meteorologische Gesellschaft 1989). Zur Erfassung des städtischen Klimas bietet sich neben der Anwendung der Methoden der klassischen klimatologischen Forschung mit Messfahrten und Messgängen (vgl. Karten 04.02 – 04.05) auch die Berechnung der Temperaturen der einzelnen Oberflächenelemente (Dächer, Straßen, Baumkronen usw.) mittels Thermal-Infrarot (IR)-Rasteraufnahmen an. Dabei wird von dem physikalischen Prinzip ausgegangen, dass alle Körper entsprechend ihrer Oberflächentemperatur Wärmestrahlung abgeben (vgl. Methode). Indikatoren Als Steuerungsgröße für den Wärmehaushalt der Erdoberfläche kommt der Wärmestrahlung und damit der Oberflächentemperatur als Bestandteil der Strahlungsbilanz jedes Körpers eine große Bedeutung zu. Während tagsüber der kurzwellige Strahlungsbereich vor allem mit der direkten Einstrahlung der Sonnenenergie und ihrer Absorption bzw. Reflexion (Albedo, vgl. Tab. 1) an der Körperoberfläche bestimmend ist, beeinflusst nachts der langwellige Bereich mit dem Bodenwärmestrom ausschließlich das thermische Ausstrahlungsverhalten eines Körpers. Je nach Art und Beschaffenheit von Oberflächen ergeben sich deshalb bei gleichen Einstrahlungs- und Ausstrahlungsbedingungen u.U. erhebliche Unterschiede in der Oberflächentemperatur (vgl. Abb. 1). Digitale Thermalkarten Für (städtische) Klimaanalysen liegt der wesentliche Nutzen von Thermalkarten in ihrem flächenhaften, digital verarbeitbaren Informationsgehalt . Es ist zu unterscheiden zwischen Infrarot-Aufnahmen mit Thermal-Scannern von Flugzeugen aus und den für die vorliegenden Karten benutzten Satellitendaten . Unter Berücksichtigung der Größe Berlins und des engeren Verflechtungsraumes von fast 2 000 km² ermöglicht nur ein satellitengestütztes Verfahren die jeweils fast zeitgleiche Erfassung der langwelligen Eigenstrahlung der Erde (Oberflächentemperatur) in einer aufeinanderfolgenden Nacht-/Tagsituation. Andererseits sind die Überfliegungszeiten des Satelliten nicht beeinflussbar und in diesem Falle für den Berliner Raum als nicht optimal einzuschätzen (vgl. Datengrundlage). Die Interpretation der IR-Thermalbilder erlaubt es, einzelnen Oberflächenelementen und Raumeinheiten über die spezielle erfasste Situation hinaus qualitativ allgemeine thermische Eigenschaften zuzuordnen. Diese Umsetzung setzt jedoch großes klimatisches Fachwissen und die Nutzung weiterer Datengrundlagen wie Nutzungs- und Reliefkarten voraus, da die Ausprägung der Oberflächentemperatur verschiedener Nutzungsstrukturen im Rasterbild stets das Ergebnis komplexer physikalischer Prozesse ist, an denen verschiedene horizontale und vertikale Wärmeflüsse und Energieumsätze (Verdunstung, Kondensation) beteiligt sind. Unter Einbeziehung weiterer klimatologischer Parameter wie Lufttemperatur und Windgeschwindigkeit können Oberflächentemperaturkarten zusätzlich als Unterstützung für die Bestimmung von Klimafunktionsräumen herangezogen werden (vgl. Karte 04.07).

Oberflächentemperaturen bei Tag und Nacht 1991

Die Einbeziehung klimatologischer Gesichtspunkte in die Bewertung der Umweltsituation städtischer Ballungsgebiete und deren räumliche Planung setzt zunächst eine Definition des Begriffes Stadtklima voraus. Unter Stadtklima versteht man nach Schirmer et al. (1987) “das gegenüber dem Umland stark modifizierte Mesoklima von Städten und Industrieballungsräumen. Es umfasst das gesamte Volumen der bodennahen Luftschicht oberhalb und in unmittelbarer Umgebung der Stadt bzw. der städtischen Grenzschicht. Verursacht wird es durch die Art und Dichte der Bebauung, das Wärmespeicherungsvermögen der Baustoffe, die Versiegelung des Bodens, das Fehlen von Vegetation, durch einen veränderten Wasserhaushalt und die vermehrte Emission von Abgasen, Aerosolen und Abwärme.” Für die Bewertung der jeweiligen Klimasituation fehlen verbindliche Grenz- und Richtwerte. Als Idealzustand sollte ein Stadtklima angestrebt werden, das weitgehend frei von Schadstoffen ist und den Stadtbewohnern eine möglichst große Vielfalt an Atmosphärenzuständen unter Vermeidung von Extremen bietet (vgl. Deutsche Meteorologische Gesellschaft 1989). Zur Erfassung des städtischen Klimas bietet sich neben der Anwendung der Methoden der klassischen klimatologischen Forschung mit Messfahrten und Messgängen (vgl. Karten 04.02 – 04.05) auch die Berechnung der Temperaturen der einzelnen Oberflächenelemente (Dächer, Straßen, Baumkronen usw.) mittels Thermal-Infrarot(IR)-Rasteraufnahmen an. Dabei wird von dem physikalischen Prinzip ausgegangen, dass alle Körper entsprechend ihrer Oberflächentemperatur Wärmestrahlung abgeben (vgl. Methode). Als Steuerungsgröße für den Wärmehaushalt der Erdoberfläche kommt der Wärmestrahlung und damit der Oberflächentemperatur als Bestandteil der Strahlungsbilanz jedes Körpers eine große Bedeutung zu. Während tagsüber der kurzwellige Strahlungsbereich vor allem mit der direkten Einstrahlung der Sonnenenergie und ihrer Absorption bzw. Reflexion (Albedo, vgl. Tab.1) an der Körperoberfläche bestimmend ist, beeinflusst nachts der langwellige Bereich mit dem Bodenwärmestrom ausschließlich das thermische Ausstrahlungsverhalten eines Körpers. Je nach Art und Beschaffenheit von Oberflächen ergeben sich deshalb bei gleichen Einstrahlungs- und Ausstrahlungsbedingungen u.U. erhebliche Unterschiede in der Oberflächentemperatur (vgl. Abb.1). Für (städtische) Klimaanalysen liegt der wesentliche Nutzen von Thermalkarten in ihrem flächenhaften, digital verarbeitbaren Informationsgehalt . Es ist zu unterscheiden zwischen Infrarot-Aufnahmen mit Thermal-Scannern von Flugzeugen aus und den für die vorliegenden Karten benutzten Satellitendaten . Unter Berücksichtigung der Größe Berlins und des engeren Verflechtungsraumes von fast 2 000 km2 ermöglicht nur ein satellitengestütztes Verfahren die jeweils fast zeitgleiche Erfassung der langwelligen Eigenstrahlung der Erde (Oberflächentemperatur) in einer aufeinanderfolgenden Nacht-/Tagsituation. Andererseits sind die Überfliegungszeiten des Satelliten nicht beeinflussbar und in diesem Falle für den Berliner Raum als nicht optimal einzuschätzen (vgl. Datengrundlage). Die Interpretation der IR-Thermalbilder erlaubt es, einzelnen Oberflächenelementen und Raumeinheiten über die spezielle erfasste Situation hinaus qualitativ allgemeine thermische Eigenschaften zuzuordnen. Diese Umsetzung setzt jedoch großes klimatisches Fachwissen und die Nutzung weiterer Datengrundlagen wie Nutzungs- und Reliefkarten voraus, da die Ausprägung der Oberflächentemperatur verschiedener Nutzungsstrukturen im Rasterbild stets das Ergebnis komplexer physikalischer Prozesse ist, an denen verschiedene horizontale und vertikale Wärmeflüsse und Energieumsätze (Verdunstung, Kondensation) beteiligt sind. Unter Einbeziehung weiterer klimatologischer Parameter wie Lufttemperatur und Windgeschwindigkeit können Oberflächentemperaturkarten zusätzlich als Unterstützung für die Bestimmung von Klimafunktionsräumen herangezogen werden (vgl. Karte 04.07).

Kalenderwochen 7 und 8/2019

Aktuelle Arbeiten - Endlager Morsleben Übersicht über die wesentlichen Arbeiten in den Kalenderwochen 7 und 8/2019 Sichere Stilllegung des Endlagers Die BGE muss die Funktionalität von Stilllegungsmaßnahmen aufzeigen. Für die Optimierung von  Planungsunterlagen müssen Untersuchungen durchgeführt werden. Bergleute stellen neue Bohrungen im Vor-Ort-Versuch (in situ Versuch) für eine Streckenabdichtung im Steinsalz her. Eine Kamerabefahrung der Bohrungen soll weitere Erkenntnisse über den Baustoff und die Kontaktzonen zwischen Salz und Baustoff bringen (siehe hierzu auch Wochenbericht KW27/28 2018) . Gewährleistung der Betriebssicherheit Bergleute müssen das Endlager nach Berg- und Atomrecht betreiben. Mitarbeiter der Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) führen von der 3. Ebene (Sohle) der Grube Bartensleben aus elektromagnetische Reflexionsmessungen durch. Die Daten dienen dazu, das geologische Lagerstättenmodell zu detaillieren und ein dreidimensionales Modell zu erstellen. Die Messungen dauern an (siehe hierzu auch den Einblick im Wochenbericht KW 37/38 2018) . Bergleute kontrollieren die Ventilatoren des Abluftbauwerks am Schacht Marie. Die Ventilatoren saugen die verbrauchte Luft (Abwetter) aus dem Grubengebäude an und geben diese über den Schlot des Bauwerks an die Umgebung ab. Die Wartung findet zweimal im Jahr statt. Mitarbeiter des Tagesbetriebs tauschen eine Pumpe im Löschwasserwerk des Endlagers. Das Wasserwerk versorgt netzunabhängig acht Hydranten auf dem Betriebsgelände mit Löschwasser. Mitarbeiterinnen und Mitarbeiter des Landesamts für Umweltschutz des Landes Sachsen-Anhalt nehmen auf dem Gelände der Schächte Marie und Bartensleben Proben von Schwebeteilchen in der Luft (Aerosole). Die Untersuchungen erfolgen gemäß der Richtlinie zur Emissions- und Immissionsüberwachung kerntechnischer Anlagen (REI). Mitarbeiterinnen und Mitarbeiter des Strahlenschutzes absolvieren ein Störfalltraining gemäß den Vorgaben der REI. Das Training dient der Vorbereitung auf die Überwachung der unmittelbaren Umgebung des Endlagers Morsleben bei einer Freisetzung von radioaktiven Stoffen aufgrund eines Störfalls. Die Schulung wird monatlich durchgeführt. Im Gespräch Im Rahmen unserer Öffentlichkeitsarbeit können sich alle interessierten Bürgerinnen und Bürger über das Endlager Morsleben informieren und mit uns ins Gespräch kommen. Darüber hinaus tauschen wir uns mit Wissenschaftlerinnen und Wissenschaftlern fachlich aus und lassen diese Rückmeldungen in unsere Arbeit einfließen. In der Infostelle Morsleben besuchen ca. 70 Gäste die Informationsveranstaltung „Betrifft: Morsleben – Was wurde erreicht? Was ist für 2019 geplant?“ . Einblick Aufgenommen im April 2018 Jeden Monat findet ein Einsatztraining statt, das die Mitarbeiterinnen und Mitarbeiter des Strahlenschutzes auf die Überwachung der unmittelbaren Umgebung des Endlagers Morsleben im Fall der Freisetzung von radioaktiven Stoffen vorbereitet. Auf dem Bild baut eine Mitarbeiterin einen Staubsammler auf, mit dem radioaktive Schwebeteilchen gesammelt werden können um sie anschließend im Labor gammaspektrometrisch hinsichtlich ihrer Gesamt-Alpha- und –Betakonzentration (unterschiedliche Arten von radioaktiver Strahlung) auswerten zu können. Ein mögliches Szenario für die Freisetzung radioaktiver Stoffe aus dem Endlager Morsleben wäre ein Brand im Kontrollbereich: In diesem Störfallszenario könnten unter Umständen radioaktive Stoffe mit den Brandgasen aus dem Endlager entweichen. Nach Meldung des Störfalls würden die Strahlenschützer zuerst die aktuellen meteorologischen Daten (Windrichtung, -geschwindigkeit, Strahlungsbilanz und Niederschlag) ermitteln und damit die Ausbreitungsrichtung der radioaktiven Stoffe bestimmen. Anschließend würde an zuvor festgelegten Orten ein Messprogramm gemäß der REI für den Störfall/Unfall durchgeführt werden. Es umfasst die Bestimmung der lokal auf den Körper pro Stunde einwirkende Strahlung (Gamma-Ortsdosisleistung) sowie die Ermittlung der Konzentration von radioaktiven Stoffen in der Luft, an der Bodenoberfläche und im Weide-/Wiesenbewuchs. Die Daten würden der Lagebeurteilung dienen und eine Entscheidungsgrundlage der Einsatzkräfte für das weitere Vorgehen bilden. Über die Aktuellen Arbeiten Mit den aktuellen Arbeiten bieten wir Ihnen einen regelmäßigen Überblick zu den wichtigsten Arbeiten und Meilensteinen im Endlager Morsleben. Die Arbeiten sind den wesentlichen Projekten zugeordnet, um den Fortschritt der einzelnen Projekte nachvollziehbar zu dokumentieren. Wir bitten zu beachten, dass nicht alle Arbeiten, die täglich über und unter Tage stattfinden, an dieser Stelle dokumentiert werden können. Bei Bedarf steht Ihnen das Team der Infostelle Morsleben gerne für weitere Auskünfte zur Verfügung. Links zum Thema Alle Wochenberichte im Überblick Meldung: „Betrifft: Morsleben“ vom 15. Februar 2019 – BGE zieht Bilanz für 2018 und zeigt Perspektive für 2019 (21. Februar 2019)

Grundwassertemperatur 2010

Die Grundwassertemperatur im Ballungsraum von Berlin ist bzw. wird durch den Menschen tiefgreifend verändert. Die seit den 1980er Jahren im oberflächennahen Grundwasser des Landes Berlin durchgeführten Temperaturmessungen zeigen, dass im zentralen Innenstadtbereich die Durchschnittstemperatur z. T. um mehr als 4 °C gegenüber dem dünner besiedelten Umland erhöht ist. Die Temperaturmessungen belegen, dass sich dieser Temperaturanstieg zunehmend auch in größeren Tiefen mit mehr als 20 m bemerkbar macht. Die Ursachen für die Temperaturerhöhung sind vielfältig und stehen im direkten Zusammenhang mit der fortschreitenden baulichen Entwicklung und den vorhandenen Nutzungen an der Erdoberfläche. Es lassen sich dabei direkte von indirekten Beeinflussungen der Grundwassertemperatur unterscheiden (s. a. Abb. 1): Unter einer direkten Beeinflussung der Grundwassertemperatur werden alle Wärmeeinträge in das Grundwasser durch das Abwasserkanalnetz, Fernheizleitungen, Stromtrassen und unterirdische Bauwerke wie Tunnel, U-Bahnschächte, Tiefgaragen etc. verstanden. Sie umfassen auch Wärmeeinträge, die mit der Grundwasserwärmenutzung und -speicherung in Verbindung stehen. Unter einer indirekten Beeinflussung der Grundwassertemperatur werden Prozesse im Zuge der Urbanisierung verstanden, die mit der Veränderung des Wärmehaushalts der bodennahen Atmosphäre entstehen. Nach Gross (1991) sind als wichtige Größen zu nennen: Die Störung des Wasserhaushalts durch einen hohen Versiegelungsgrad Die Veränderung der Bodeneigenschaften durch eine Anhäufung von Baukörpern (Veränderung der Oberflächenwärmeleitung und -wärmekapazität) Die Änderung des Strahlungshaushaltes durch Veränderungen in der Luftzusammensetzung Die anthropogene Wärmeerzeugung (Hausbrand, Industrie, Verkehr). Durch die o. g. Unterschiede wird im Vergleich zum Umland eine Veränderung des Wärmehaushalts hervorgerufen. Die Stadt heizt sich langsam auf, speichert insgesamt mehr Wärme und gibt diese wieder langsam an die Umgebung ab, d. h., sie kann allgemein als ein riesiger Wärmespeicher betrachtet werden. Langfristig führt dieser Prozess zu einer Erhöhung des langjährigen Mittels der Luft- bzw. Bodentemperatur (vgl. Karte 04.02, SenStadt 2001). Die langfristige Erwärmung des oberflächennahen Bodens führt auch zu einer Erwärmung des Grundwassers. Da die Temperatur die physikalischen Eigenschaften sowie die chemische und biologische Beschaffenheit des Grundwassers beeinflusst, können eine Qualitätsverschlechterung des Grundwassers und eine Beeinträchtigung der Grundwasserfauna die Folge sein. Berlin bezieht sein Trinkwasser zu 100 % aus dem Grundwasser, welches fast ausschließlich im Land Berlin gewonnen wird. Auch einen Großteil des Brauchwassers für industrielle Zwecke liefert das Grundwasser. Daher ist der Schutz des Grundwassers vor tief greifenden Veränderungen wie z. B. einer signifikanten Grundwassertemperaturerhöhung oder -erniedrigung von hoher Bedeutung – speziell vor dem Hintergrund einer nachhaltigen Wasserwirtschaft. Seit 1978 werden in tiefen Grundwassermessstellen, die über das ganze Stadtgebiet des Land Berlin verteilt sind, verstärkt Temperaturprofile aufgenommen und zu raumzeitlichen Darstellungen des Grundwassertemperaturfeldes verarbeitet und ausgewertet. Das vorliegende Kartenwerk soll die Fortschreibung der vorliegenden Dokumentation zur zeitlichen Veränderung der Grundwassertemperatur unter dem Stadtgebiet sein und als Genehmigungsgrundlage für Grundwassertemperatur verändernde Maßnahmen dienen. Zusätzlich kann es in Kombination mit anderen thematischen Karten wie z. B. der Geologie und Hydrogeologie zur Entscheidungsfindung und Vorplanung einer energetischen Bewirtschaftung des Grundwassers herangezogen werden. Die Untergrundtemperatur ist z. B. eine wichtige Größe für die Auslegung von Erdwärmesondenanlagen. Innerhalb der letzten Jahre ist eine stark ansteigende Nachfrage nach Erdwärmesonden in Kombination mit Wärmepumpen zum Heizen und anderen thermischen Nutzungen des Untergrundes z. B. zur Klimatisierung von Gebäuden zu beobachten. Gerade im urbanen Bereich können die unterschiedlichsten thermischen Nutzungen auf engstem Raum miteinander konkurrieren. Um die Auswirkungen dieser Nutzungen zu überwachen, kommt der regelmäßigen Überwachung der Grundwassertemperatur eine zunehmend wichtige Bedeutung zu. Grundwassertemperatur und Temperaturjahresgang Die wesentliche Wärmequelle für den oberflächennahen Untergrund bis in ca. 20 m Tiefe ist die Sonneneinstrahlung, die auf die Erdoberfläche trifft. Diese ist maßgeblich für die Oberflächentemperatur verantwortlich. Der oberflächennahe Boden wird durch die eingestrahlte Sonnenenergie erwärmt und dieser gibt die Wärme an die Atmosphäre und den Untergrund ab. Die Jahressumme des Strahlungsanteils der auf eine horizontale Oberfläche auftrifft (die sog. Globalstrahlung) beträgt im Land Berlin im Mittel rd. 1.000 kWh pro m² und Jahr. Wieviel Energie letztendlich über die Erdoberfläche in den Untergrund eingetragen wird, ist sehr stark von deren Oberflächenbeschaffenheit abhängig. Dabei spielen Faktoren wie z. B. die Farbe, der Feuchtegehalt sowie die Art und der Grad der Bodenbedeckung eine wichtige Rolle. Grundsätzlich unterliegen die Temperaturen an der Erdoberfläche und somit auch der Wärmeeintrag bzw. -austrag periodischen Schwankungen mit einem Zyklus von einem Jahr, entsprechend dem Verlauf der Jahreszeiten. Die Oberflächentemperatur dringt mit abnehmender Intensität in den Untergrund ein. Die Eindringtiefe und die Geschwindigkeit mit der die Wärme transportiert wird, ist abhängig von der Wärmeleitfähigkeit des Untergrundes. Beim Wärmetransport im Untergrund kann zwischen konduktivem und konvektivem Wärmetransport unterschieden werden. Während beim konvektiven Wärmetransport die Wärmebewegung durch Materie wie z. B. Grund- und Sickerwasser erfolgt, wird beim konduktiven Transport Energie durch Stoßfortpflanzung zwischen den Molekülen transportiert. Im Gegensatz zur Sonneneinstrahlung als Hauptwärmequelle der Erdoberfläche besitzt der aus dem Erdinnern zur Oberfläche gerichtete Erdwärmestrom , der seinen Ursprung in der Wärmeentwicklung beim Zerfall radioaktiver Isotope hat, nur eine untergeordnete Bedeutung. In der kontinentalen Erdkruste ist die Wärmestromdichte – definiert als Wärmestrom pro Flächeneinheit senkrecht zur Einheitsfläche – regional verschieden. Nach Hurtig & Oelsner (1979) und Honarmand & Völker (1999) beträgt die mittlere Wärmestromdichte im Land Berlin zwischen ca. 80 und 90 mW/m². Daraus berechnet sich als Jahressumme eine Energiemenge von rd. 0,75 kWh pro m² und Jahr und ist somit also rd. 1/1.000 geringer als die Globalstrahlung. Die Temperatur oberflächennaher Grundwässer wird also im Wesentlichen durch den Energieaustausch zwischen Sonne, Erdoberfläche und Atmosphäre, untergeordnet durch den aus dem Erdinneren zur Oberfläche gerichteten Wärmestrom bestimmt. Die regionale Jahresdurchschnittstemperatur an der Oberfläche in Berlin beträgt unter anthropogen unbeeinflussten Verhältnissen ca. 8,0 bis 8,5 °C. Während die tageszeitlichen Schwankungen nur eine Tiefe von bis zu 1,0 m erfassen, reichen die jahreszeitlichen bis in eine Tiefe zwischen 15 und max. 25 m. Ab dieser Tiefe, in der jahreszeitliche Einflüsse nicht mehr zu registrieren sind, – der sog. neutralen Zone -, steigt die Temperatur in Abhängigkeit von der Wärmeleitfähigkeit der Gesteine und der regionalen Wärmestromdichte an (Abb. 2). Im Berliner Raum beträgt der durchschnittliche Temperaturanstieg im Bereich bis ca. 300 m Tiefe 2,5 bis 3 °C / 100 m. Oberflächengestalt und Grundwassersituation Das in nahezu ostwestlicher Richtung verlaufende Warschau-Berliner Urstromtal trennt die Barnim-Hochfläche im Norden von der Teltow-Hochfläche und der Nauener Platte im Süden der Stadt (Abb. 3). Die Geländehöhen des Urstromtales betragen 30 bis 40 m NHN, während die Hochflächen durchschnittlich 40 bis 60 m über NHN liegen. Einzelne Höhen erheben sich bis über 100 Meter über das Meeresniveau (vgl. Karte 01.08, SenStadt 2010a). In Berlin ist der Porenraum der überwiegend sandig und kiesigen Sedimente der oberen 150 bis 200 Metern vollständig bis nahe an die Oberfläche mit Grundwasser erfüllt, das zur Trinkwasserversorgung der Stadt genutzt wird. Der Abstand vom Grundwasser bis zur Geländeoberkante (Grundwasserflurabstand) schwankt je nach Morphologie und Geologie zwischen 0 m und wenigen Metern im Urstromtal sowie fünf bis über 30 Meter auf den Hochflächen (vgl. Karte 02.07, SenStadt 2010b). Die Grundwasserentnahmen zur Trink- und Brauchwassergewinnung haben zur Ausbildung von weit gespannten Senktrichtern der Grundwasseroberfläche geführt, die die natürlichen Flurabstände und Grundwasserfließgeschwindigkeiten erhöhen sowie die natürlichen Grundwasserfließrichtungen verändern. Dadurch sind in den Bereichen, in denen Brunnengalerien in der Nähe von Flüssen und Seen Grundwasser fördern, influente Verhältnisse entstanden, d. h. das Oberflächenwasser infiltriert als Uferfiltrat in das Grundwasser. Da das Oberflächenwasser aber durch vielfache Kühlwassereinleitungen von Heizkraftwerken ganzjährig erwärmt ist (wie z. B. im Bereich der Spree), führt diese Infiltration im Einzugsbereich des Oberflächengewässers zwangsläufig zu einer Erwärmung des Grundwassers. Besiedlungsstruktur und klimatische Verhältnisse Das Land Berlin besitzt eine polyzentrale Besiedlungsstruktur, die durch das Vorhandensein zweier Hauptzentren, mehrerer kleinerer Stadtzentren sowie einem dichten Nebeneinander von Wohnen, Grünflächen, Gewerbe und Industrie charakterisiert ist. Größere Gewerbegebiete und Industrieansiedlungen liegen bevorzugt an den vom Stadtkern radial zum Stadtrand gerichteten Siedlungs- und Entwicklungsachsen sowie an kanalisierten Oberflächengewässern. Stark vereinfacht lassen sich folgende Unterscheidungen treffen (Abb. 4): Gebiete ohne Besiedlung, überwiegend Vegetation mit geringer bis mittlerer Siedlungsdichte und mit hoher Siedlungsdichte, Stadtzentren und Industrieansiedlungen. Bei der Betrachtung der lokalklimatischen Verhältnisse in Berlin zeigt vor allem für die baulich hochverdichtete Innenstadt tief greifende Veränderungen im Wärmehaushalt gegenüber dem Umland. Durch anthropogene Aktivitäten wird Energie als Wärme in die Stadtatmosphäre abgegeben. So beträgt die mittlere Jahreslufttemperatur im Außenbezirk Dahlem 8,9 °C, im Innenstadtbereich sind dagegen die durchschnittlichen Temperaturen bereits bis auf über 10,5 °C angestiegen (vgl. Karte 04.02, SenStadt 2001).

Grundwassertemperatur 2012

Die Grundwassertemperatur im Ballungsraum von Berlin ist bzw. wird durch den Menschen nachhaltig verändert. Die seit den 1980er Jahren im oberflächennahen Grundwasser des Landes Berlin durchgeführten Temperaturmessungen zeigen, dass im zentralen Innenstadtbereich die Durchschnittstemperatur z. T. um mehr als 4 °C gegenüber dem dünner besiedelten Umland erhöht ist. Die Temperaturmessungen belegen, dass sich dieser Temperaturanstieg zunehmend auch in größeren Tiefen mit mehr als 20 m bemerkbar macht. Die Ursachen für die Temperaturerhöhung sind vielfältig und stehen im direkten Zusammenhang mit der fortschreitenden baulichen Entwicklung und den vorhandenen Nutzungen an der Erdoberfläche. Es lassen sich dabei direkte von indirekten Beeinflussungen der Grundwassertemperatur unterscheiden (s. a. Abbildung 1): Unter einer direkten Beeinflussung der Grundwassertemperatur werden alle Wärmeeinträge in das Grundwasser durch das Abwasserkanalnetz, Fernwärmeleitungen, Stromtrassen und unterirdische Bauwerke wie Tunnel, U-Bahnschächte, Tiefgaragen etc. verstanden. Sie umfassen auch Wärmeeinträge, die mit der Grundwasserwärmenutzung und -speicherung in Verbindung stehen. Unter einer indirekten Beeinflussung der Grundwassertemperatur werden Prozesse im Zuge der Urbanisierung verstanden, die mit der Veränderung des Wärmehaushalts der bodennahen Atmosphäre entstehen. Nach Gross (1991) sind als wichtige Größen zu nennen: Die Störung des Wasserhaushalts durch einen hohen Versiegelungsgrad. Die Veränderung der thermischen Oberflächeneigenschaften wie Oberflächenwärmeleitung und -wärmekapazität durch Versiegelung und Anhäufung von Baukörpern. Die Änderung des Strahlungshaushalts durch Veränderungen in der Luftzusammensetzung. Die anthropogene Wärmeerzeugung (Hausbrand, Industrie, Verkehr). Im Vergleich zum Umland wird durch diese Unterschiede eine Veränderung im Wärmehaushalt hervorgerufen. Die Stadt heizt sich langsam auf, speichert insgesamt mehr Wärme und gibt diese wieder langsam an die Umgebung ab, d. h., sie kann allgemein als ein riesiger Wärmespeicher betrachtet werden. Langfristig führt dieser Prozess zu einer Erhöhung des langjährigen Mittels der Lufttemperatur (vgl. Karte Langjähriges Mittel der Lufttemperatur 1961-1990, Karte 04.02 ). Von der langfristigen Erwärmung ist auch das oberflächennahe Grundwasser betroffen. Die physikalischen Eigenschaften, die chemische und biologische Beschaffenheit des Grundwassers ist temperaturabhängig. Die Folge einer Erwärmung können eine Qualitätsverschlechterung des Grundwassers und eine Beeinträchtigung der Grundwasserfauna zur Folge haben. Berlin bezieht sein Trinkwasser zu 100 % aus dem Grundwasser, welches fast ausschließlich im Land Berlin gewonnen wird. Auch einen Großteil des Brauchwassers für industrielle Zwecke wird dem Grundwasser entnommen. Daher ist dem Schutz des Grundwassers vor tiefgreifenden Veränderungen wie z. B. einer deutlichen Grundwassertemperaturerhöhung oder -erniedrigung eine große Bedeutung beizumessen – insbesondere vor dem Hintergrund einer nachhaltigen Wasserwirtschaft. Seit 1978 werden zur Bestandsaufnahme und Beobachtung der Veränderungen in tiefen Grundwassermessstellen, die über das ganze Stadtgebiet des Landes Berlin verteilt sind, verstärkt Temperaturprofile aufgenommen. Das vorliegende Kartenwerk soll die Fortschreibung der vorliegenden Dokumentation zur zeitlichen Veränderung der Grundwassertemperatur unter dem Stadtgebiet sein, als Genehmigungsgrundlage für Grundwassertemperatur verändernde Maßnahmen dienen und Eingangsdaten für die Planung und Auslegung von Anlagen zur Erdwärmenutzung zur Verfügung stellen. Zusätzlich kann es in Kombination mit anderen thematischen Karten wie z. B. der Geologischen Skizze ( Karte 01.17 ), der Grundwassergleichenkarte (Karte 02.12) oder der Potenzialkarten ( Karte 02.18 ) zur Entscheidungsfindung und Vorplanung einer energetischen Bewirtschaftung des Grundwassers herangezogen werden. Die Untergrundtemperatur ist z. B. eine wichtige Größe für die Auslegung von Erdwärmesondenanlagen. Grundwassertemperatur und Temperaturjahresgang Die wesentliche Wärmequelle für den oberflächennahen Untergrund bis in ca. 20 m Tiefe ist die Sonneneinstrahlung, die auf die Erdoberfläche trifft. Diese ist maßgeblich für die Oberflächentemperatur verantwortlich. Der oberflächennahe Boden wird durch die eingestrahlte Sonnenenergie erwärmt und dieser gibt die Wärme an die Atmosphäre und den Untergrund ab. Die Jahressumme des Strahlungsanteils der auf eine horizontale Oberfläche auftrifft (die sog. Globalstrahlung) beträgt im Land Berlin im Mittel rd. 1.000 kWh pro m² und Jahr. Sehr viele Einzelparameter an der Grenzfläche Luft/Erde beeinflussen das thermische Lokalklima. Die Farbe, Zusammensetzung, Oberflächenrauigkeit, Bedeckung, der Versiegelungsgrad, der Wasserhaushalt sowie die Ausrichtung zum solaren Strahlungseinfall urbaner Oberflächen entscheiden darüber, wie viel Energie aufgenommen und in der Bausubstanz „gespeichert“ bzw. von dieser an die Atmosphäre bzw. den Untergrund abgegeben wird. Grundsätzlich unterliegen die Temperaturen an der Erdoberfläche und somit auch der Wärmeeintrag bzw. -austrag periodischen Schwankungen mit einem Zyklus von einem Jahr, entsprechend dem Verlauf der Jahreszeiten. Die Oberflächentemperatur dringt mit abnehmender Intensität in den Untergrund ein. Die Eindringtiefe und die Geschwindigkeit, mit der die Wärme transportiert wird, ist abhängig von der Wärmeleitfähigkeit des Untergrundes. Beim Wärmetransport im Untergrund kann zwischen einem konduktiven und konvektiven Wärmetransport unterschieden werden. Während beim konvektiven Wärmetransport die Wärmebewegung durch Materie wie z. B. Grund- und Sickerwasser erfolgt, wird beim konduktiven Transport Energie durch Stoßfortpflanzung zwischen den Molekülen transportiert. Im Gegensatz zur Sonneneinstrahlung als Hauptwärmequelle des oberflächennahen Bereichs besitzt der aus dem Erdinnern zur Oberfläche gerichtete Erdwärmestrom , der seinen Ursprung in der Wärmeentwicklung beim Zerfall radioaktiver Isotope hat, nur eine untergeordnete Bedeutung. In der kontinentalen Erdkruste ist die Wärmestromdichte – definiert als Wärmestrom pro Flächeneinheit senkrecht zur Einheitsfläche – regional verschieden. Nach Hurtig & Oelsner (1979) und Honarmand & Völker (1999) beträgt die mittlere Wärmestromdichte im Land Berlin zwischen ca. 80 und 90 mW/m². Daraus berechnet sich als Jahressumme eine Energiemenge zwischen rd. 0,7 und 0,8 kWh pro m² und Jahr und ist somit also rd. 1/1.000 geringer als die Globalstrahlung. Die Temperatur oberflächennaher Grundwässer wird im Wesentlichen durch den Energieaustausch zwischen Sonne, Erdoberfläche und Atmosphäre, untergeordnet durch den aus dem Erdinneren zur Oberfläche gerichteten Wärmestrom bestimmt. Die regionale Jahresdurchschnittstemperatur an der Oberfläche in Berlin beträgt unter anthropogen unbeeinflussten Verhältnissen ca. 8,0 bis 8,5 °C. Während die täglichen Schwankungen nur eine Tiefe von max. 1 m erfassen, reichen die jahreszeitlichen Schwankungen bis in eine Tiefe zwischen 15 und max. 25 m. Ab dieser Tiefe, in der jahreszeitliche Einflüsse nicht mehr zu registrieren sind, – der sog. neutralen Zone -, steigt die Temperatur in Abhängigkeit von der Wärmeleitfähigkeit der Gesteine und der regionalen Wärmestromdichte an (Abb. 2). Im Berliner Raum beträgt der durchschnittliche Temperaturanstieg im Bereich bis ca. 300 m Tiefe 2,5 bis 3 °C / 100 m. Oberflächengestalt und Grundwassersituation Das in nahezu ostwestlicher Richtung verlaufende Warschau-Berliner Urstromtal trennt die Barnim-Hochfläche im Norden von der Teltow-Hochfläche und der Nauener Platte im Süden der Stadt (Abb. 3). Die Geländehöhen des Urstromtales betragen 30 bis 40 m über NHN, während die Hochflächen durchschnittlich 40 bis 60 m über NHN liegen. Einzelne Höhen erheben sich bis über 100 m über das Meeresniveau (vgl. Karte der Geländehöhen, Karte 01.08). In Berlin ist der Porenraum der überwiegend sandig und kiesigen Sedimente der oberen 150 bis 200 m vollständig bis nahe an die Oberfläche mit Grundwasser erfüllt, das zur Trinkwasserversorgung der Stadt genutzt wird. Der Abstand vom Grundwasser bis zur Geländeoberkante (Grundwasserflurabstand) schwankt je nach Morphologie und Geologie zwischen 0 m und wenigen Metern im Urstromtal sowie fünf bis über 30 m auf den Hochflächen (vgl. Karte Flurabstand des Grundwassers, Karte 02.07 ). Die Grundwasserentnahmen zur Trink- und Brauchwassergewinnung haben zur Ausbildung von weit gespannten Senktrichtern der Grundwasseroberfläche geführt, die die natürlichen Flurabstände und Grundwasserfließgeschwindigkeiten erhöhen sowie die natürlichen Grundwasserfließrichtungen verändern. Dadurch sind in den Bereichen, in denen Brunnengalerien in der Nähe von Flüssen und Seen Grundwasser fördern, influente Verhältnisse entstanden, d. h. das Oberflächenwasser infiltriert als Uferfiltrat in das Grundwasser. Da das Oberflächenwasser aber durch vielfache Kühlwassereinleitungen von Heizkraftwerken ganzjährig erwärmt ist (wie z. B. im Bereich der Spree), führt diese Infiltration im Einzugsbereich des Oberflächengewässers zwangsläufig zu einer Erwärmung des Grundwassers. Besiedlungsstruktur und klimatische Verhältnisse Das Land Berlin besitzt eine polyzentrale Besiedlungsstruktur, die durch das Vorhandensein zweier Hauptzentren, mehrerer kleinerer Stadtzentren sowie einem dichten Nebeneinander von Wohnen, Grünflächen, Gewerbe und Industrie charakterisiert ist. Größere Gewerbegebiete und Industrieansiedlungen liegen bevorzugt an den vom Stadtkern radial zum Stadtrand gerichteten Siedlungs- und Entwicklungsachsen sowie an kanalisierten Oberflächengewässern. Vereinfacht lassen sich folgende Unterscheidungen treffen (Abb. 4): Grün- und Freiflächen Wohnnutzung (geringe bis mittlere Siedlungsdichte) und Mischnutzung, Kerngebietsnutzungen, Gewerbe- und Industrienutzung (Stadtzentren mit hoher Siedlungsdichte). Bei der Betrachtung der lokalklimatischen Verhältnisse in Berlin zeigt vor allem die baulich hochverdichtete Innenstadt tief greifende Temperaturveränderungen gegenüber dem Umland. So beträgt das langjährige Mittel der Lufttemperatur zwischen 1961 und 1990 nach der Karte Langjähriges Mittel der Lufttemperatur 1961 – 1990 ( Karte 04.02 ) am nordöstlichen Stadtrand in Buch zwischen 7,0 und 7,5 °C, im Innenstadtbereich sind dagegen ist das langjährige Mittel bis auf über 10,5 °C angestiegen.

Grundwassertemperatur 2015

Die Grundwassertemperatur im Ballungsraum von Berlin ist bzw. wird durch den Menschen nachhaltig verändert. Die seit den 1980er Jahren im oberflächennahen Grundwasser des Landes Berlin durchgeführten Temperaturmessungen zeigen, dass im zentralen Innenstadtbereich die Durchschnittstemperatur z. T. um mehr als 4 °C gegenüber dem dünner besiedelten Umland erhöht ist. Die Temperaturmessungen belegen, dass sich dieser Temperaturanstieg zunehmend auch in größeren Tiefen mit mehr als 20 m bemerkbar macht. Die Ursachen für die Temperaturerhöhung sind vielfältig und stehen im direkten Zusammenhang mit der fortschreitenden baulichen Entwicklung und den vorhandenen Nutzungen an der Erdoberfläche. Es lassen sich dabei direkte von indirekten Beeinflussungen der Grundwassertemperatur unterscheiden (s. a. Abbildung 1): Unter einer direkten Beeinflussung der Grundwassertemperatur werden alle Wärmeeinträge in das Grundwasser durch das Abwasserkanalnetz, Fernwärmeleitungen, Stromtrassen und unterirdische Bauwerke wie Tunnel, U-Bahnschächte, Tiefgaragen etc. verstanden. Sie umfassen auch Wärmeeinträge, die mit der Grundwasserwärmenutzung und -speicherung in Verbindung stehen. Unter einer indirekten Beeinflussung der Grundwassertemperatur werden Prozesse im Zuge der Urbanisierung verstanden, die mit der Veränderung des Wärmehaushalts der bodennahen Atmosphäre entstehen. Nach Gross (1991) sind als wichtige Größen zu nennen: Die Störung des Wasserhaushalts durch einen hohen Versiegelungsgrad. Die Veränderung der thermischen Oberflächeneigenschaften wie Oberflächenwärmeleitung und -wärmekapazität durch Versiegelung und Anhäufung von Baukörpern. Die Änderung des Strahlungshaushalts durch Veränderungen in der Luftzusammensetzung. Die anthropogene Wärmeerzeugung (Hausbrand, Industrie, Verkehr). Im Vergleich zum Umland wird durch diese Unterschiede eine Veränderung im Wärmehaushalt hervorgerufen. Die Stadt heizt sich langsam auf, speichert insgesamt mehr Wärme und gibt diese wieder langsam an die Umgebung ab, d. h., sie kann allgemein als ein riesiger Wärmespeicher betrachtet werden. Langfristig führt dieser Prozess zu einer Erhöhung des langjährigen Mittels der Lufttemperatur (vgl. Karte Langjähriges Mittel der Lufttemperatur 1961-1990, Karte 04.02 ). Von der langfristigen Erwärmung ist auch das oberflächennahe Grundwasser betroffen. Die physikalischen Eigenschaften, die chemische und biologische Beschaffenheit des Grundwassers ist temperaturabhängig. Die Folge einer Erwärmung können eine Qualitätsverschlechterung des Grundwassers und eine Beeinträchtigung der Grundwasserfauna zur Folge haben. Berlin bezieht sein Trinkwasser zu 100 % aus dem Grundwasser, welches fast ausschließlich im Land Berlin gewonnen wird. Auch einen Großteil des Brauchwassers für industrielle Zwecke wird dem Grundwasser entnommen. Daher ist dem Schutz des Grundwassers vor tiefgreifenden Veränderungen wie z. B. einer deutlichen Grundwassertemperaturerhöhung oder -erniedrigung eine große Bedeutung beizumessen – insbesondere vor dem Hintergrund einer nachhaltigen Wasserwirtschaft. Seit 1978 werden zur Bestandsaufnahme und Beobachtung der Veränderungen in tiefen Grundwassermessstellen, die über das ganze Stadtgebiet des Landes Berlin verteilt sind, verstärkt Temperaturprofile aufgenommen. Das vorliegende Kartenwerk soll die Fortschreibung der vorliegenden Dokumentation zur zeitlichen Veränderung der Grundwassertemperatur unter dem Stadtgebiet sein, als Genehmigungsgrundlage für Grundwassertemperatur verändernde Maßnahmen dienen und Eingangsdaten für die Planung und Auslegung von Anlagen zur Erdwärmenutzung zur Verfügung stellen. Zusätzlich kann es in Kombination mit anderen thematischen Karten wie z. B. der Geologischen Skizze ( Karte 01.17 ), der Grundwassergleichenkarte (Karte 02.12) oder der Potenzialkarten ( Karte 02.18 ) zur Entscheidungsfindung und Vorplanung einer energetischen Bewirtschaftung des Grundwassers herangezogen werden. Die Untergrundtemperatur ist z. B. eine wichtige Größe für die Auslegung von Erdwärmesondenanlagen. Grundwassertemperatur und Temperaturjahresgang Die wesentliche Wärmequelle für den oberflächennahen Untergrund bis in ca. 20 m Tiefe ist die Sonneneinstrahlung, die auf die Erdoberfläche trifft. Diese ist maßgeblich für die Oberflächentemperatur verantwortlich. Der oberflächennahe Boden wird durch die eingestrahlte Sonnenenergie erwärmt und dieser gibt die Wärme an die Atmosphäre und den Untergrund ab. Die Jahressumme des Strahlungsanteils der auf eine horizontale Oberfläche auftrifft (die sog. Globalstrahlung) beträgt im Land Berlin im Mittel rd. 1.000 kWh pro m² und Jahr. Sehr viele Einzelparameter an der Grenzfläche Luft/Erde beeinflussen das thermische Lokalklima. Die Farbe, Zusammensetzung, Oberflächenrauigkeit, Bedeckung, der Versiegelungsgrad, der Wasserhaushalt sowie die Ausrichtung zum solaren Strahlungseinfall urbaner Oberflächen entscheiden darüber, wie viel Energie aufgenommen und in der Bausubstanz „gespeichert“ bzw. von dieser an die Atmosphäre bzw. den Untergrund abgegeben wird. Grundsätzlich unterliegen die Temperaturen an der Erdoberfläche und somit auch der Wärmeeintrag bzw. -austrag periodischen Schwankungen mit einem Zyklus von einem Jahr, entsprechend dem Verlauf der Jahreszeiten. Die Oberflächentemperatur dringt mit abnehmender Intensität in den Untergrund ein. Die Eindringtiefe und die Geschwindigkeit, mit der die Wärme transportiert wird, ist abhängig von der Wärmeleitfähigkeit des Untergrundes. Beim Wärmetransport im Untergrund kann zwischen einem konduktiven und konvektiven Wärmetransport unterschieden werden. Während beim konvektiven Wärmetransport die Wärmebewegung durch Materie wie z. B. Grund- und Sickerwasser erfolgt, wird beim konduktiven Transport Energie durch Stoßfortpflanzung zwischen den Molekülen transportiert. Im Gegensatz zur Sonneneinstrahlung als Hauptwärmequelle des oberflächennahen Bereichs besitzt der aus dem Erdinnern zur Oberfläche gerichtete Erdwärmestrom , der seinen Ursprung in der Wärmeentwicklung beim Zerfall radioaktiver Isotope hat, nur eine untergeordnete Bedeutung. In der kontinentalen Erdkruste ist die Wärmestromdichte – definiert als Wärmestrom pro Flächeneinheit senkrecht zur Einheitsfläche – regional verschieden. Nach Hurtig & Oelsner (1979) und Honarmand & Völker (1999) beträgt die mittlere Wärmestromdichte im Land Berlin zwischen ca. 80 und 90 mW/m². Daraus berechnet sich als Jahressumme eine Energiemenge zwischen rd. 0,7 und 0,8 kWh pro m² und Jahr und ist somit also rd. 1/1.000 geringer als die Globalstrahlung. Die Temperatur oberflächennaher Grundwässer wird im Wesentlichen durch den Energieaustausch zwischen Sonne, Erdoberfläche und Atmosphäre, untergeordnet durch den aus dem Erdinneren zur Oberfläche gerichteten Wärmestrom bestimmt. Die regionale Jahresdurchschnittstemperatur an der Oberfläche in Berlin beträgt unter anthropogen unbeeinflussten Verhältnissen ca. 8,0 bis 8,5 °C. Während die täglichen Schwankungen nur eine Tiefe von max. 1 m erfassen, reichen die jahreszeitlichen Schwankungen bis in eine Tiefe zwischen 15 und max. 25 m. Ab dieser Tiefe, in der jahreszeitliche Einflüsse nicht mehr zu registrieren sind, – der sog. neutralen Zone -, steigt die Temperatur in Abhängigkeit von der Wärmeleitfähigkeit der Gesteine und der regionalen Wärmestromdichte an (Abb. 2). Im Berliner Raum beträgt der durchschnittliche Temperaturanstieg im Bereich bis ca. 300 m Tiefe 2,5 bis 3 °C / 100 m. Oberflächengestalt und Grundwassersituation Das in nahezu ostwestlicher Richtung verlaufende Warschau-Berliner Urstromtal trennt die Barnim-Hochfläche im Norden von der Teltow-Hochfläche und der Nauener Platte im Süden der Stadt (Abb. 3). Die Geländehöhen des Urstromtales betragen 30 bis 40 m über NHN, während die Hochflächen durchschnittlich 40 bis 60 m über NHN liegen. Einzelne Höhen erheben sich bis über 100 m über das Meeresniveau (vgl. Karte der Geländehöhen, Karte 01.08). In Berlin ist der Porenraum der überwiegend sandig und kiesigen Sedimente der oberen 150 bis 200 m vollständig bis nahe an die Oberfläche mit Grundwasser erfüllt, das zur Trinkwasserversorgung der Stadt genutzt wird. Der Abstand vom Grundwasser bis zur Geländeoberkante (Grundwasserflurabstand) schwankt je nach Morphologie und Geologie zwischen 0 m und wenigen Metern im Urstromtal sowie fünf bis über 30 m auf den Hochflächen (vgl. Karte Flurabstand des Grundwassers, Karte 02.07 ). Die Grundwasserentnahmen zur Trink- und Brauchwassergewinnung haben zur Ausbildung von weit gespannten Senktrichtern der Grundwasseroberfläche geführt, die die natürlichen Grundwasserflurabstände und -fließgeschwindigkeiten erhöhen sowie die natürlichen Grundwasserfließrichtungen verändern. Dadurch sind in den Bereichen, in denen Brunnengalerien in der Nähe von Flüssen und Seen Grundwasser fördern, influente Verhältnisse entstanden, d. h. das Oberflächenwasser infiltriert als Uferfiltrat in das Grundwasser. Da das Oberflächenwasser aber durch vielfache Kühlwassereinleitungen von Heizkraftwerken ganzjährig erwärmt ist (wie z. B. im Bereich der Spree), führt diese Infiltration im Einzugsbereich des Oberflächengewässers zwangsläufig zu einer Erwärmung des Grundwassers. Besiedlungsstruktur und klimatische Verhältnisse Das Land Berlin besitzt eine polyzentrale Besiedlungsstruktur, die durch das Vorhandensein zweier Hauptzentren, mehrerer kleinerer Stadtzentren sowie einem dichten Nebeneinander von Wohnen, Grünflächen, Gewerbe und Industrie charakterisiert ist. Größere Gewerbegebiete und Industrieansiedlungen liegen bevorzugt an den vom Stadtkern radial zum Stadtrand gerichteten Siedlungs- und Entwicklungsachsen sowie an kanalisierten Oberflächengewässern. Vereinfacht lassen sich folgende Unterscheidungen treffen (Abb. 4): Grün- und Freiflächen Wohnnutzung (geringe bis mittlere Siedlungsdichte) und Mischnutzung, Kerngebietsnutzungen, Gewerbe- und Industrienutzung (Stadtzentren mit hoher Siedlungsdichte). Bei der Betrachtung der lokalklimatischen Verhältnisse in Berlin zeigt vor allem die baulich hochverdichtete Innenstadt tief greifende Temperaturveränderungen gegenüber dem Umland. So beträgt das langjährige Mittel der Lufttemperatur zwischen 1961 und 1990 nach der Karte Langjähriges Mittel der Lufttemperatur 1961 – 1990 ( Karte 04.02 ) am nordöstlichen Stadtrand in Buch zwischen 7,0 und 7,5 °C, im Innenstadtbereich sind dagegen ist das langjährige Mittel bis auf über 10,5 °C angestiegen.

Grundwassertemperatur 2020

Die Grundwassertemperatur im Ballungsraum von Berlin ist bzw. wird durch den Menschen nachhaltig verändert. Die Temperaturmessungen im oberflächennahen Grundwasser des Landes Berlin zeigen, dass im zentralen Innenstadtbereich die Durchschnittstemperatur z. T. um mehr als 5° C gegenüber dem dünner besiedelten Umland erhöht ist. Des Weiteren zeigen die Messung, dass sich dieser Temperaturanstieg zunehmend auch in größeren Tiefen mit mehr als 20 m bemerkbar macht. Die Ursachen für die Temperaturerhöhung sind vielfältig und stehen im direkten Zusammenhang mit der fortschreitenden baulichen Entwicklung, den vorhandenen Nutzungen an der Erdoberfläche und den Auswirkungen des Klimawandels. Es lassen sich direkte und indirekte Beeinflussungen der Grundwassertemperatur unterscheiden (s. Abbildung 1): Unter einer direkten Beeinflussung der Grundwassertemperatur werden alle Wärmeeinträge in das Grundwasser durch das Abwasserkanalnetz, Fernwärmeleitungen, Stromtrassen und unterirdische Bauwerke wie Tunnel, U-Bahnschächte, Tiefgaragen etc. verstanden. Sie umfassen auch Wärmeeinträge, die mit der Grundwasserwärmenutzung und -speicherung in Verbindung stehen. Unter einer indirekten Beeinflussung der Grundwassertemperatur werden Prozesse im Zuge der Urbanisierung verstanden, die mit der Veränderung des Wärmehaushalts der bodennahen Atmosphäre entstehen. Nach Gross (1991) sind als wichtige Größen zu nennen: Die Störung des Wasserhaushalts durch einen hohen Versiegelungsgrad. Die Veränderung der thermischen Oberflächeneigenschaften wie Oberflächenwärmeleitung und -wärmekapazität durch Versiegelung und Anhäufung von Baukörpern. Die Änderung des Strahlungshaushalts durch Veränderungen in der Luftzusammensetzung. Die anthropogene Wärmeerzeugung (Hausbrand, Industrie, Verkehr). Im Vergleich zum Umland wird durch diese Einflussgrößen eine Veränderung im Wärmehaushalt hervorgerufen. Die Stadt heizt sich langsam auf, speichert insgesamt mehr Wärme und gibt diese wieder langsam an die Umgebung ab, d. h., sie kann allgemein als ein riesiger Wärmespeicher betrachtet werden. Langfristig führt dieser Prozess zu einer Erhöhung des langjährigen Mittels der Lufttemperatur (vgl. Karte Langjähriges Mittel der Lufttemperatur 1981-2010, (vgl. Karte Langjähriges Mittel der Lufttemperatur 1981-2010, Karte 04.02 ). Von der langfristigen Erwärmung ist auch das oberflächennahe Grundwasser betroffen. Die physikalischen Eigenschaften, die chemische und biologische Beschaffenheit des Grundwassers ist temperaturabhängig. Die Folge einer Erwärmung können eine Qualitätsverschlechterung des Grundwassers und eine Beeinträchtigung der Grundwasserfauna zur Folge haben. Berlin bezieht sein Trinkwasser aus dem Grundwasser, welches fast ausschließlich im Land Berlin gewonnen wird. Auch ein Großteil des Brauchwassers für industrielle Zwecke wird dem Grundwasser entnommen. Daher ist dem Schutz des Grundwassers vor tiefgreifenden Veränderungen wie z. B. einer deutlichen Grundwassertemperaturerhöhung oder -erniedrigung eine große Bedeutung beizumessen – insbesondere vor dem Hintergrund einer nachhaltigen Wasserwirtschaft. Seit 1978 werden zur Bestandsaufnahme und Beobachtung der Veränderungen in tiefen Grundwassermessstellen und Temperaturmessstellen, die über das ganze Stadtgebiet des Landes Berlin verteilt sind, verstärkt Temperaturtiefenprofile aufgezeichnet. Das vorliegende Kartenwerk soll die Fortschreibung der vorliegenden Dokumentation zur zeitlichen Veränderung der Grundwassertemperatur unter dem Stadtgebiet sein, als Genehmigungsgrundlage für Grundwassertemperatur verändernde Maßnahmen dienen und Eingangsdaten für die Planung und Auslegung von Anlagen zur Erdwärmenutzung zur Verfügung stellen. Zusätzlich kann es in Kombination mit anderen thematischen Karten wie z. B. der Geologischen Skizze ( Karte 01.17 ), der Grundwassergleichenkarte ( Karte 02.12 ) oder den geothermischen Potenzialkarten ( Karte 02.18 ) zur Entscheidungsfindung und Vorplanung einer energetischen Bewirtschaftung des Grundwassers herangezogen werden. Die Untergrundtemperatur ist eine wichtige Größe für die Auslegung von Erdwärmesondenanlagen. Grundwassertemperatur und Temperaturjahresgang Die wesentliche Wärmequelle für den oberflächennahen Untergrund bis in ca. 20 m Tiefe ist die Sonneneinstrahlung, die auf die Erdoberfläche trifft. Diese ist maßgeblich für die Oberflächentemperatur verantwortlich. Der oberflächennahe Boden wird durch die eingestrahlte Sonnenenergie erwärmt und dieser gibt die Wärme an die Atmosphäre und den Untergrund ab. Die Jahressumme des Strahlungsanteils der auf eine horizontale Oberfläche auftrifft (die sog. Globalstrahlung) beträgt im Land Berlin im Mittel ca. 1.000 kWh pro m² und Jahr. Sehr viele Einzelparameter an der Grenzfläche Luft/Erde beeinflussen das thermische Lokalklima. Die Farbe, Zusammensetzung, Oberflächenrauigkeit, Bedeckung, der Versiegelungsgrad, der Wasserhaushalt sowie die Ausrichtung zum solaren Strahlungseinfall urbaner Oberflächen entscheiden darüber, wie viel Energie aufgenommen und in der Bausubstanz „gespeichert“ bzw. von dieser an die Atmosphäre bzw. den Untergrund abgegeben wird. Grundsätzlich unterliegen die Temperaturen an der Erdoberfläche und somit auch der Wärmeeintrag bzw. -austrag periodischen Schwankungen mit einem Zyklus von einem Jahr, entsprechend dem Verlauf der Jahreszeiten. Die Oberflächentemperatur dringt mit abnehmender Intensität in den Untergrund ein. Die Eindringtiefe und die Geschwindigkeit, mit der die Wärme transportiert wird, ist unter anderem abhängig von der Wärmeleitfähigkeit des Untergrundes. Beim Wärmetransport im Untergrund kann zwischen einem konduktiven und konvektiven Wärmetransport unterschieden werden. Während beim konvektiven Wärmetransport die Wärme durch Materie wie z. B. Grund- und Sickerwasser erfolgt, wird beim konduktiven Wärmetransport Energie ohne Materialbewegung im Gestein weitergeleitet. Im Gegensatz zur Sonneneinstrahlung als Hauptwärmequelle des oberflächennahen Bereichs besitzt der aus dem Erdinnern zur Oberfläche gerichtete Erdwärmestrom , der seinen Ursprung in der Wärmeentwicklung beim Zerfall radioaktiver Isotope hat, nur eine untergeordnete Bedeutung. In der kontinentalen Erdkruste ist die Wärmestromdichte – definiert als Wärmestrom pro Flächeneinheit senkrecht zur Einheitsfläche – regional verschieden. Nach Hurtig & Oelsner (1979) und Honarmand & Völker (1999) beträgt die mittlere Wärmestromdichte im Land Berlin zwischen ca. 80 und 90 mW/m². Daraus berechnet sich als Jahressumme eine Energiemenge zwischen ca. 0,7 und 0,8 kWh pro m² und Jahr und ist somit also ca. 1/1.000 geringer als die Globalstrahlung. Die Temperatur des oberflächennahen Grundwassers wird im Wesentlichen durch den Energieaustausch zwischen Sonne, Erdoberfläche und Atmosphäre, untergeordnet durch den aus dem Erdinneren zur Oberfläche gerichteten Wärmestrom bestimmt. Das langjährige Mittel der Lufttemperaturen 1981-2010 liegt in Berlin im Jahresmittel je nach Ort zwischen 9,3 °C und 10,4 °C (SenStadtWohn (2021)). Während die täglichen Schwankungen nur eine Tiefe von max. 1 m erfassen, reichen die jahreszeitlichen Schwankungen bis in eine Tiefe zwischen ca. 15 und 20 m. Ab dieser Tiefe, in der jahreszeitliche Einflüsse nicht mehr zu registrieren sind, – der sog. neutralen Zone -, steigt die Temperatur in Abhängigkeit von der Wärmeleitfähigkeit der Gesteine und der regionalen Wärmestromdichte an (Abb. 2). Im Berliner Raum beträgt der durchschnittliche Temperaturanstieg im Bereich bis ca. 300 m Tiefe 2,5 bis 3 °C / 100 m. Oberflächengestalt und Grundwassersituation Das in nahezu ostwestlicher Richtung verlaufende Warschau-Berliner Urstromtal trennt die Barnim-Hochfläche im Norden von der Teltow-Hochfläche und der Nauener Platte im Süden der Stadt (Abb. 3). Die Geländehöhen des Urstromtales betragen 30 bis 40 m über NHN, während die Hochflächen durchschnittlich 40 bis 60 m über NHN liegen. Einzelne Höhen erheben sich bis über 100 m über das Meeresniveau. In Berlin ist der Porenraum der überwiegend sandig und kiesigen Sedimente der oberen 150 bis 200 m vollständig bis nahe an die Oberfläche mit Grundwasser erfüllt, das zur Trinkwasserversorgung der Stadt genutzt wird. Der Abstand vom Grundwasser bis zur Geländeoberkante (Grundwasserflurabstand) schwankt je nach Morphologie und Geologie zwischen 0 m und wenigen Metern im Urstromtal sowie 5 bis über 30 m auf den Hochflächen (vgl. Karte Flurabstand des Grundwassers, Karte 02.07 ). Die Grundwasserentnahmen zur Trink- und Brauchwassergewinnung haben zur Ausbildung von weit gespannten Absenktrichtern der Grundwasseroberfläche geführt, die die natürlichen Grundwasserflurabstände und -fließgeschwindigkeiten erhöhen sowie die natürlichen Grundwasserfließrichtungen verändern. Dadurch sind in den Bereichen, in denen Brunnengalerien in der Nähe von Flüssen und Seen Grundwasser fördern, influente Verhältnisse entstanden, d. h. das Oberflächenwasser infiltriert als Uferfiltrat in das Grundwasser. Da das Oberflächenwasser aber durch vielfache Kühlwassereinleitungen von Heizkraftwerken ganzjährig erwärmt ist (wie z. B. im Bereich der Spree), führt diese Infiltration im Einzugsbereich des Oberflächengewässers zwangsläufig zu einer Erwärmung des Grundwassers. Besiedlungsstruktur und klimatische Verhältnisse Das Land Berlin besitzt eine polyzentrale Besiedlungsstruktur, die durch das Vorhandensein zweier Hauptzentren, mehrerer kleinerer Stadtzentren sowie einem dichten Nebeneinander von Wohnen, Grünflächen, Gewerbe und Industrie charakterisiert ist. Größere Gewerbegebiete und Industrieansiedlungen liegen bevorzugt an den vom Stadtkern radial zum Stadtrand gerichteten Siedlungs- und Entwicklungsachsen sowie an kanalisierten Oberflächengewässern. Vereinfacht lassen sich folgende Unterscheidungen treffen (vgl. Abb. 4): Grün- und Freiflächen Bebaute Flächen Bei der Betrachtung der lokalklimatischen Verhältnisse in Berlin zeigt vor allem die baulich hochverdichtete Innenstadt tiefgreifende Temperaturveränderungen gegenüber dem Umland. So beträgt das langjährige Mittel der Lufttemperatur zwischen 1981 und 2010 (vgl. Karte Langjähriges Mittel der Lufttemperatur 1981-2010 ( Karte 04.02 ) beispielsweise am nordöstlichen Stadtrand in Buch 9,5 °C, im Innenstadtbereich wird dagegen ein langjähriges Mittel von bis zu 10,4 °C gemessen.

1 2 3 4 525 26 27