API src

Found 100 results.

Aerosole aus dem asiatischen Monsun in der oberen Troposphäre: Quellen, Alterung, Auswirkungen

Die Asian Tropopause Aerosol Layer (ATAL), eine Schicht mit erhöhtem Aerosolgehalt, tritt jedes Jahr von Juni bis September in 14-18 km Höhe in einem Gebiet auf, das sich vom Mittelmeer bis zum westlichen Pazifik erstreckt. Hinsichtlich der Zusammensetzung der Partikel, sowie ihrer Bedeutung für die Strahlungsbilanz in dieser klimasensitiven Höhenregion bestehen große Unsicherheiten. Die bisher einzigen Flugzeugmessungen aus dem Zentrum der ATAL wurden 2017 im Rahmen der StratoClim Kampagne von Kathmandu aus gewonnen. Dabei entdeckten wir mit Hilfe des Infrarotspektrometers GLORIA auf dem Forschungsflugzeug Geophysica, dass feste Ammoniumnitrat (AN) â€Ì Partikel einen beträchtlichen Teil der Aerosolmasse ausmachen. Diese zählen zu den effizientesten Eiskeimen in der Atmosphäre. Zudem zeigte die gleichzeitige Messung von Ammoniakgas (NH3) durch GLORIA, dass dieses Vorläufergas durch starke Konvektion in die obere Troposphäre verfrachtet wird. Im Rahmen der PHILEAS-Kampagne schlagen wir eine gemeinsamen Betrachtung von atmosphärischen Modellsimulationen und Messungen vor, um die Zusammensetzung, Ursprung, Auswirkungen und Verbleib der ATAL-Partikel zu untersuchen â€Ì insbesondere im Hinblick auf ihre Prozessierung sowie ihren Einfluss auf die obere Troposphäre und die untere Stratosphäre der nördlichen Hemisphäre. Messungen von monsunbeeinflussten Luftmassen über dem östlichen Mittelmeer sowie über dem nördlichen Pazifik werden es uns erlauben, Luft mit gealtertem Aerosol- und Spurengasgehalt zu analysieren und damit die StratoClim-Beobachtungen aus dem Inneren des Monsuns zu komplementieren. Um dabei die wahrscheinlich geringeren Konzentrationen an Aerosol und Spurengasen zu quantifizieren, schlagen wir vor, die GLORIA-Datenerfassung von NH3 und AN u.a. durch die Verwendung neuartiger spektroskopischer Daten zu verbessern. Ferner werden wir die Analyse der GLORIA-Spektren auf Sulfataerosole sowie deren Vorläufergas SO2 auszudehnen. Auf der Modellseite werden wir das globale Wetter- und Klimamodellsystem ICON-ART weiterentwickeln, um die ATAL unter Einbeziehung verschiedener Aerosoltypen (Nitrat, Ammonium, Sulfat, organische Partikel, Staub) zu simulieren â€Ì unter Berücksichtigung der hohen Eiskeimfähigkeit von festem AN. Modellläufe werden durchgeführt, um einerseits einen globalen Überblick über die Entwicklung der ATAL 2023 zu gewinnen und zudem detaillierte, auf die relevanten Kampagnenperioden zugeschnittene, wolkenauflösende Informationen über die Aerosol-Wolken-Strahlungs-Wechselwirkungen zu erhalten. Über die direkte Analyse der PHILEAS-Kampagne hinausgehend wird diese Arbeit die Grundlage für eine verbesserte Analyse von Aerosolparametern aus GLORIA-Beobachtungen früherer und zukünftiger HALO-Kampagnen sowie aus Satellitenbeobachtungen legen. Darüber hinaus wird sie ICON-ART, einem der zentralen Klimamodellsysteme in Deutschland die Simulation von Aerosolprozessen sowie Aerosol/Wolken-Wechselwirkungen im Zusammenhang mit der ATAL ermöglichen.

Analyse des Stör- und Unfallverhaltens von SMR mit dem Systemcode AC², Teilprojekt der GRS (VP-ASUS-GRS)

Auswirkungen von variabler solarer Aktivität auf die neutrale exosphärische Wasserstoffdichte der Erde auf Zeitskalen von halben Stunden bis zum solaren Zyklus

Basierend auf 10 Jahren globaler Lyman-a Beobachtungen von TWINS wird vorgeschlagen, in 3D die Variation der neutralen Exosphäre der Erde verursacht von Variabilität der solaren Aktivität (nur Sonnenwind oder UV und beide gemeinsam) auf Zeitskalen von Jahren (solarer Zyklus) über Tage (27 Tage solare Rotation) bis zu Stunden (geomagnetische Stürme) zu untersuchen.Die Exosphäre ist die äußerste Region der Atmosphäre und besteht vor allem aus neutralem Wasserstoff (H). Als Übergang in den interplanetaren Raum spielt sie eine wichtige Rolle für die gesamte Entwicklung der Erdatmosphäre von der urzeitlichen Vergangenheit bis in die Zukunft, z.B. durch Verlust von H aus Oberflächenwasser in den Weltraum. Da unmittelbar der UV-Strahlung und solaren Aktivität ausgesetzt können Space Weather-Ereignisse (wie geomagnetische Stürme) signifikante Effekte auf die neutrale Exosphäre haben. Über die quantitativen Einflüsse und die relevanten physikalischen Prozesse ist bislang nur wenig bekannt.Exosphärische H-Atome streuen resonant solare Lyman-a Strahlung zurück. Die gestreute Intensität ist proportional zur lokalen H-Dichte im optisch dünnen Bereich oberhalb von 3 Re (Erdradien). Die TWINS Daten enthalten einzigartige kontinuierliche exosphärische Lyman-a Messungen in 3D aus 10 Jahren und sind erst teilweise analysiert.Es wird vorgeschlagen, mittels tomographischer und kinetischer Modelle in 3D die dynamische H-Dichtevariationen verursacht durch variierendes Space Weather auf verschiedenen Zeitskalen bei 3-8 Re zu untersuchen.Erstens soll die Entwicklung der H-Dichteverteilung über den solaren Zyklus 2008-2018 in 3D charakterisiert werden, insbesondere wie totale H-Dichte, radiale Profile und regionale Asymmetrien rund um die Erde (polar/äquatorial, Tag/Nacht usw.) an den solaren Zyklus gekoppelt sind.Zweitens soll die hoch dynamische Reaktion auf geomagnetische Stürme erstmals in 3D mit Zeitauflösung von Stunden bis ~30 min auf Basis der einzigartig großen Menge an Stürmen in den TWINS-Daten analysiert werden. Durch Monte Carlo Simulationen sollen beitragende physikalische Mechanismen bestimmt und quantifiziert werden.Drittens wird vorgeschlagen, den alleinigen Einfluss von solaren UV-Variationen bei relativ konstantem Sonnenwind zu untersuchen anhand der solaren 27 Tage UV-Variation sowie eruptiver solare UV-Ausbrüche. Im Fokus stehen hier die Effekte durch periodische und eruptive Variationen des Strahlungsdrucks bzw. der Photoionisation, insbesondere auf orbitierende H-Atome in größeren Distanzen.Die Verfügbarkeit eines 3D H-Dichtemodells mit Berücksichtigung dynamischer Variationen durch veränderliches Space Weather wäre ein großer Fortschritt im Verständnis der neutralen Exosphäre. Es besitzt auch eine große Bedeutung für kommende Missionen zur Erforschung der Magnetosphäre (wie SMILE, LEXI oder STORM) auf Basis von ENA- bzw. Soft Röntgen-Messungen, die zur Invertierung korrekte lokale exosphärische H-Dichten zu einer beliebigen Zeit benötigen.

Forschergruppe (FOR) 2131: Datenassimilation in terrestrischen Systemen; Data Assimilation for Improved Characterisation of Fluxes across Compartmental Interfaces, Teilprojekt: Skalenproblematik bei der Assimilation von passiven L-Band Mikrowellenbeobachtungen von Satelliten in hochaufgelöste gekoppelte Modelle

Dieses Projekt analysiert den Nutzen und Wert von passiven L-Band Satellitenbeobachtungen für die Ensemble-basierte Datenassimilation mit vollgekoppelten Erdsystemmodellen für mesoskalige Einzugsgebiete. Modellauflösungen sind dabei typischerweise in der Größenordnung von 100 m für die Landkomponenten und 1 km für die Atmosphärenkomponente des gekoppelten Modells; diese ist viel höher als die der Satellitenbeobachtungen, die typischerweise mehrere 10 Kilometer beträgt. Ensemble-basierte Datenassimilation erfordert die Erzeugung von synthetischen Beobachtungen aus dem Erdsystemmodell heraus mit Hilfe eines Beobachtungsoperators, der dann mit Beobachtungen verglichen wird um das Analyseensemble zu generieren. Da der Modellzustand nicht notwendigerweise alle Informationen enthält, die der Beobachtungsoperator benötigt (dieser ist im Wesentlichen ein Strahlungstransportmodell) muss die fehlende Information aus externen Datenquellen extrahiert werden. Die zentralen Projektziele sind die Weiterentwicklung einen geeigneten Beobachtungsoperators, der es erlaubt Satellitenbeobachtungen im L-Band zu erzeugen, sowie dessen Nutzung für die Datenassimilation mit Hilfe der Terrestrial Systems Modeling Platform (TerrSysMP, Shrestha et al. 2014) gekoppelt mit dem Parallelized Data Assimilation Framework (PDAF, Nerger et al. 2013). Während wir in Phase I hauptsächlich einen flexiblen Beobachtungsoperator erstellt und validiert haben, konzentrieren wir uns in Phase II, neben weiteren Verbesserungen des Operators bezüglich Vegetation und seiner Operationalisierung, auf die eigentliche Datenassimilation. Diese umfasst (a) die Bestimmung des Biases zwischen virtuellen Beobachtungen des Datenassimilationsmodells und solchen des virtuellen wie des realen Einzugsgebietes, (b) Datenassimilationsexperimente zur Quantifizierung des Wertes solcher Beobachtungen auch im Vergleich zu anderen Beobachtungen, sowie (c) Vorverarbeitungs- und Filterungsmethoden um die niedrig aufgelösten Messungen optimal für die Systemzustandsschätzung auszunutzen.

FIS "Waldökologie, Waldverjüngung, Waldpflege"

Im Fachinformationssystem Waldökologie, Waldverjüngung und Waldpflege werden alle am SBS erfassten Daten und Informationen aus waldbaulichen Versuchsflächensystemen zusammengefasst. Dies betrifft mehrere Teilbereiche des waldbaulichen Versuchswesens, hierfür wurden jeweils spezielle Teilprojekte eines komplexen Datenbanksystems [DATAPOOL] entwickelt. Folgende DATAPOOL - Projekte sind bisher spezifiziert und werden verwendet: - Mikroklima / Waldklima - Waldertrag und Bestandesstruktur - Ökophysiologie Darüber hinaus werden Vegetationsdaten in einem gesonderten Access Datenbankprojekt [VEGETATI] gehalten und bereitgestellt. Insbesondere das komplexe DATAPOOL Projekt ermöglicht die Bereitstellung umfassender Informationen für weitere erforderliche Auswertungsschritte: So sind beispielsweise umfangreiche ertrags- und waldwachstumskundliche Auswertungen der erfassten Versuchsflächen [spez. ertragskundliches Auswerteprogramm] in Abhängigkeit von waldbaulichen Behandlungsvarianten, standörtlichen Unterschieden oder anderen Einflussfaktoren möglich. Darüber hinaus können über die räumliche Darstellung und Auswertung der Bodenvegetations- und Bestandesstrukturen in 2d- und 3d Varianten auf Basis eines CAD-Systems und eines speziellen 'Waldbau-Visualisierungstools auch quantifizierte Strukturanalysen erstellt, Wachstums- bzw. Vitalitätsabhängigkeiten hinsichtlich der Bodenvegetation (Kleinstandort) oder der Bestandesstruktur (Konkurrenz) hergestellt werden. Mit der Verfügbarkeit der digitalen Standortsinformationen wird auch eine Verschneidung mit allen räumlichen/ flächenhaften FGIS - Informationen für spezielle Auswertungszwecke möglich (Schnittstelle zum FGIS). Kombinationen aus ökophysiologischen und mikroklimatischen Daten werden i.d.R. benötigt, um für typische Standortsbedingungen artspezifische/ herkunftsspezifische Umweltabhängigkeiten der Assimilation und Transpiration zu ermitteln - gefundene funktionale Abhängigkeiten gehen in Simulationsmodelle zur umweltabhängigen Berechnung der ökophysiologischen Aktivität der relevanten Arten der Bodenvegetation sowie der Baumarten des Waldumbaus ein. Über die mikroklimatischen Daten der Waldklimastationen stehen i.d.R. auch standortsrepräsentative hochauflösende Jahresdynamiken der Umweltbedingungen (Meteorologie, Bodenfeuchte, Strahlung) aus differenzierten Varianten waldbaulicher Versuche und aus Freiflächenmessungen zur Verfügung. Diese werden eingesetzt, um abgelaufene Umweltbedingungen hinsichtlich relevanter Prozesse im Wald (Wachstum, Vitalität, Schaderreger, Vegetationsentwicklung etc.) beurteilen zu können. Sie sind essentielle Voraussetzung zum 'treiben' von Modellen der Waldentwicklung bzw. des Waldwachstums, des Wasserhaushaltes im Wald oder auch für Modelle hinsichtlich der Schaderregerentwicklung etc.

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten

Ziel des Vorhabens ist es, die solaren Einstrahlungsbedingungen in der Antarktis in Abhängigkeit der Wellenlänge zu untersuchen. Das Projekt soll ein verbessertes Verständnis der besonderen Strahlungsverhältnisse in polaren Regionen der Erde ermöglichen, um die Auswirkungen des zunehmenden Treibhauseffekts und des weiter voranschreitenden Ozonabbaus in Zukunft besser abschätzen zu können. Zur Charakterisierung der Einstrahlung soll ein Messsystem zur Erfassung der spektralen Strahlstärke wie auch der spektralen Bestrahlungsstärke zwischen 290-2500 nm bei verschiedenen Atmosphärenbedingungen konfiguriert werden. Ferner werden Strahldichten in Abhängigkeit des Einfallswinkels modelliert, wobei die bidirektionale Reflektionsfunktion des Untergrunds berücksichtigt werden soll. Die Modellrechnungen dienen der Vorbereitung weiterer Messkampagnen. Aufgrund der Vorerfahrungen in anderen Gebieten der Erde (u.a. in den Hochlagen der Alpen) ist damit zu rechnen, dass insbesondere Wolken und die hohe Schneealbedo in der Antarktis das Strahlungsfeld wesentlich modifizieren.

Fernerkundung der bodennahen Atmosphaere und der Erdoberflaeche

Mit Methoden der Fernerkundung sollen physikalische Parameter erfasst werden, die in umweltrelevante Untersuchungen der bodennahen Atmosphaere und der Erdoberflaeche Eingang finden. Fuer flaechendeckende Untersuchungen sind Analysen von Satellitenszenen (z.B. von METEOSAT und NOAA) vorgesehen, wobei die Bestimmung von Oberflaechentemperaturen im Vordergrund steht. Mit Hilfe der dazu notwendigen Strahlungstransportmodelle soll ebenfalls versucht werden, Stoffkonzentrationen in der Atmosphaere zu erfassen. Bei den erdgebundenen Methoden liefert das DOAS (Differential Optical Absorption Spectroscopy) Stoffkonzentrationen in der Atmosphaere, die ueber eine Weglaenge von einigen Kilometern integriert sind. Fuer die Bestimmung der fuer den Schadstofftransport wichtigen Windgeschwindigkeiten werden sowohl akustische (Sound Detection and Ranging, SODAR) als auch optische Methoden (Szintillationsanemometrie) eingesetzt.

Verlässliche Prognose von anthropogenem, impulsartigem Unterwasserschall über weite Entfernungen

Aufbauend auf Vorarbeiten des Autors und der Gastinstitution sollen Modelle zur Vorhersage von Offshore Rammschall beim Bau von Offshore-Windenergieanlagen und anderen impulshaltigen Unterwasserschallsignalen in beliebigen Umgebungen ermöglicht werden. Im Mittelpunkt steht die Entwicklung eines Ausbreitungsmodells für komplexe Umgebungen, welches die gleichzeitige Berücksichtigung von starken Bathymetrieänderungen (sowohl in zwei wie auch in drei Dimensionen) und Böden mit hohen Scheer Geschwindigkeiten ermöglicht. Hauptanwendungsgebiet soll zunächst die Akustik von Offshore Pfahlrammungen sein, bei der vor allem die Entwicklung von geeigneten Modellen zur Verwendung von Schallschutzsystemen im Vordergrund steht. Aufgrund der in weiten Teilen nur sehr ungefähr bekannten Eingangsparameter für die entsprechenden Modelle, vor allem in Bezug auf die Bodenparameter, soll außerdem die Abschätzung der Vorhersagegenauigkeit unter Berücksichtigung weiterer Parameter vertieft werden. Für alle Teilpakete existieren bereits Messdaten, die für eine entsprechende Validierung genutzt werden sollen.

Krebs durch CT-Untersuchungen? - Bewertung einer US-amerikanischen Studie zum Krebsrisiko durch CT-Untersuchungen

Krebs durch CT-Untersuchungen? - Bewertung einer US-amerikanischen Studie zum Krebsrisiko durch CT-Untersuchungen " Projected Lifetime Cancer Risks From Current Computed Tomography Imaging " von Smith-Bindman et al. in JAMA International Medicine, 2025 Forschende aus den USA haben in einer im April 2025 veröffentlichten Studie versucht, über Modellierungen vorherzusagen, wie viele Krebserkrankungen als Folge der im Jahr 2023 in den USA durchgeführten CT -Untersuchungen zu erwarten sind. 2023 wurden in den USA bei geschätzt 61,5 Millionen Personen 93 Millionen CT -Untersuchungen durchgeführt. Die Modellierungen in der Studie ergaben, dass als Folge dieser CT -Untersuchungen 103.000 der untersuchten Personen im Laufe ihres Lebens an Krebs erkranken werden. Die Berücksichtigung verschiedener Unsicherheiten ergab einen Bereich von 96.400 bis 109.500 Krebsfällen (90%-Unsicherheitsintervall). Die Autor*innen der Studie folgern daraus, dass bei Fortführung dieser Praxis der Anteil der durch CT -Untersuchungen verursachten Krebsfälle an der Gesamtzahl der jährlich in den USA neu diagnostizierten Krebsfälle 5 % betragen könnte. Modellierungen wie in der vorliegenden Studie beinhalten zahlreiche Einflussgrößen, deren Werte nicht bekannt sind und für die lediglich möglichst plausible Annahmen getroffen werden können. Ihre Ergebnisse sind daher sehr unsicher. Computertomographien ( CT ) spielen eine wichtige Rolle in der medizinischen Diagnostik. Sie können für die untersuchten Personen einen großen Nutzen haben, da sie die Diagnose von Krankheiten erleichtern und die Behandlungsmöglichkeiten verbessern können. Die Häufigkeit von CT -Untersuchungen hat in den letzten zehn Jahren in Deutschland um ca. 20 % zugenommen. Im Jahr 2023 wurden in Deutschland etwa 15 Millionen CT -Untersuchungen durchgeführt. Bei CT -Untersuchungen wird Röntgen-Strahlung, also ionisierende und damit besonders energiereiche Strahlung, eingesetzt. Die Strahlendosis, die auf die Untersuchten einwirkt, ist bei CT -Untersuchungen deutlich höher als bei konventionellen Röntgenaufnahmen. Da ionisierende Strahlung grundsätzlich das Risiko für Krebserkrankungen erhöhen kann, stellt sich die Frage, welche Gefahr mit CT -Untersuchungen verbunden ist. Was weiß man zum Krebsrisiko durch CT -Untersuchungen? Die Strahlendosis durch eine oder auch mehrere CT -Untersuchungen fällt im Allgemeinen in den Niedrigdosisbereich. Aussagen zum Krebsrisiko durch solche sehr niedrigen und niedrigen Strahlendosen sind generell schwierig zu treffen. Beobachtungsstudien, in denen der Zusammenhang zwischen im Erwachsenenalter durchgeführten CT -Untersuchungen und bei diesen Personen aufgetretenen Krebserkrankungen direkt untersucht wird, sind selten und liefern keine eindeutigen Ergebnisse. Ergebnisse aus Studien zu CT -Untersuchungen, die bei Kindern oder Jugendlichen durchgeführt worden sind, deuten auf einen leichten Anstieg des Risikos für bestimmte Krebserkrankungen und mit steigender Strahlendosis durch CT -Untersuchungen hin. Was hat die amerikanische Studie untersucht? Forschende aus den USA haben in einer im April 2025 veröffentlichten Studie versucht, über Modellierungen vorherzusagen, wie viele Krebserkrankungen als Folge der im Jahr 2023 in den USA durchgeführten CT -Untersuchungen zu erwarten sind. Die Gesamtzahl der im Jahr 2023 in den USA durchgeführten CT -Untersuchungen in der Studie stammt aus einer Marktanalyse zur Verbreitung von Bildgebungstechniken in den USA . Da sich das strahlenbedingte Krebsrisiko für verschiedene Altersgruppen, Geschlechter und betroffene Körperregionen unterscheidet, wurden diese CT -Untersuchungen in entsprechende Kategorien eingeteilt. Basis für diese Einteilung waren ein nationales Register zu Radiologie-Daten und ein Dosisregister der University of California San Francisco , das detaillierte Daten zu 120.000 Untersuchungen aus den Jahren 2018 bis 2020 enthält. Letzteres wurde auch dazu genutzt, um typische Organdosen für die verschiedenen Altersgruppen, Geschlechter und Körperregionen abzuschätzen, die dann auf die Untersuchungen aus dem Jahr 2023 übertragen wurden. Über verfügbare Modelle zum Krebsrisiko durch Strahlung haben die Forschenden anhand dieser Datenbasis berechnet, wie viele durch die Strahlung bedingte Krebsfälle zu erwarten sind. Diese Modelle beruhen weitgehend auf Daten von Personen, die relativ hohen Dosen ausgesetzt waren, insbesondere den japanischen Atombomben-Überlebenden sowie Personen, die aus medizinischen Gründen strahlenexponiert wurden. In den Modellen werden die Erkenntnisse zum Krebsrisiko bei höheren Strahlendosen auf den Niedrigdosisbereich übertragen. Damit wird bis hin zu sehr niedrigen Dosiswerten von einem proportionalen Zusammenhang zwischen Dosis und Strahlenrisiko ausgegangen ( Linear-No-Threshold (LNT) Hypothese ). Was hat die Studie ergeben? 2023 wurden in den USA bei geschätzt 61,5 Millionen Personen 93 Millionen CT -Untersuchungen durchgeführt. Die Modellierungen in der Studie ergaben, dass als Folge dieser CT -Untersuchungen 103.000 der untersuchten Personen im Laufe ihres Lebens an Krebs erkranken werden. Die Berücksichtigung verschiedener Unsicherheiten ergab einen Bereich von 96.400 bis 109.500 Krebsfällen (90%-Unsicherheitsintervall). Die Autor*innen der Studie folgern daraus, dass bei Fortführung dieser Praxis der Anteil der durch CT -Untersuchungen verursachten Krebsfälle an der Gesamtzahl der jährlich in den USA neu diagnostizierten Krebsfälle 5 % betragen könnte. Bewertung der Studie Modellierungen wie in der vorliegenden Studie beinhalten zahlreiche Einflussgrößen, deren Werte nicht bekannt sind und für die lediglich möglichst plausible Annahmen getroffen werden können. Ihre Ergebnisse sind daher sehr unsicher. Eine Stärke der Studie ist, dass bei den Modellierungen Unterschiede im strahlenbedingten Krebsrisiko zwischen verschiedenen Altersgruppen, Geschlechtern und Organen berücksichtigt wurden. Zudem wurden die relevanten Organdosen und ihre Unsicherheiten aufwendig geschätzt. Jedoch wurden diese Unsicherheiten der Organdosiswerte nicht bei der Gesamtschätzung der Unsicherheit der Risikoabschätzung berücksichtigt. Zusätzlich zu diesen Unsicherheiten könnte die in der Studie vorhergesagte Anzahl an Krebsfällen überschätzt sein, da CT -Untersuchungen häufig bei älteren Personen und Personen mit schweren Grunderkrankungen durchgeführt werden. Bei diesen ist die Wahrscheinlichkeit, dass sie im Laufe ihres verbleibenden Lebens eine durch die CT bedingte Krebserkrankung entwickeln, deutlich geringer als beim Bevölkerungsdurchschnitt. Denn die Latenzzeit – also der Zeitraum zwischen der Einwirkung von Strahlung und dem möglichen Auftreten einer dadurch verursachten Krebserkrankung – kann viele Jahre oder sogar Jahrzehnte betragen. Zwar wurde in der Studie rechnerisch versucht, CT -Untersuchungen, die im letzten Lebensjahr durchgeführt wurden, aus der Analyse auszuschließen. Doch dieser Zeitraum von nur einem Jahr ist in Anbetracht der langsamen Entwicklung von Krebserkrankungen deutlich zu kurz. Es ist zudem fraglich, wie gut die in der Studie verwendeten Risikomodelle aus RadRAT für die Abschätzung des strahlenbedingten Krebsrisikos nach Röntgen-Strahlung geeignet sind. Dies gilt insbesondere für Personen, bei denen die CT -Untersuchung in der Kindheit stattfand. Von den in der Studie berücksichtigten CT -Untersuchungen entfallen zwar nur 4,2 % auf Kinder, bei der Interpretation der damit verbundenen Studienergebnisse ist jedoch besondere Vorsicht angebracht. Sind die Ergebnisse auf Deutschland übertragbar? Die CT -Praxis in Deutschland unterscheidet sich deutlich von der in den USA . Während in Deutschland im Jahr 2023 nur 175 Untersuchungen pro 1000 Einwohner durchgeführt wurden, lag dieser Wert mit 270 Untersuchungen pro 1000 Einwohner in den USA um fast 50 % höher. Insbesondere ist der Anteil der CT -Untersuchungen, die bei Kindern durchgeführt wurden, in den USA mit 4,2 % wesentlich höher als in Deutschland, wo er unter 1 % liegt. In Deutschland gelten im Vergleich zu den USA besonders hohe Anforderungen an den Strahlenschutz und die Qualitätssicherung. Laut Strahlenschutzrecht darf eine Röntgenuntersuchung – einschließlich CT – nur durchgeführt werden, wenn eine Ärztin oder ein Arzt mit der erforderlichen Fachkunde zuvor festgestellt hat, dass der diagnostische Nutzen das Strahlenrisiko deutlich überwiegt (rechtfertigende Indikation). Darüber hinaus gibt es sogenannte diagnostische Referenzwerte für die Strahlendosis, die möglichst eingehalten oder unterschritten werden soll. Die Strahlendosis ist grundsätzlich so niedrig zu wählen, wie es unter Wahrung einer ausreichenden Bildqualität möglich ist (Prinzip der Dosisoptimierung). Die Einhaltung dieser zentralen Strahlenschutzprinzipien wird regelmäßig durch die sogenannten Ärztlichen Stellen überprüft, die in der Regel bei den Landesoberbehörden angesiedelt sind. Die Berechnungen der amerikanischen Studie – insbesondere der Anteil von 5 % an den Krebsneuerkrankungen – lassen sich daher nicht auf Deutschland übertragen. Bedeutung für den Strahlenschutz Trotz der bestehenden Unsicherheiten verdeutlichen Abschätzungen wie in der vorliegenden Studie von Smith-Bindman et al., wie wichtig es ist, dass die geltenden strahlenschutzrechtlichen Vorgaben für die Durchführung von CT -Untersuchungen sorgfältig eingehalten werden. Bei der Kommunikation solcher projizierten Zahlen ist jedoch darauf zu achten, die Bevölkerung nicht zu verunsichern – insbesondere, um zu verhindern, dass medizinisch sinnvolle CT -Untersuchungen unbegründet abgelehnt werden. Besonders bei Kindern und Jugendlichen sollten, wann immer möglich, bildgebende Verfahren ohne ionisierende Strahlung erwogen werden. Ist die Durchführung einer CT -Untersuchung jedoch medizinisch indiziert und steht keine gleichwertige Alternative zur Verfügung, so sollte sie auch konsequent durchgeführt werden. Weitere Informationen zum Thema und Tipps, wie man als Patient seine Strahlenbelastung niedrig halten kann finden Sie in der Broschüre Röngen Nutzen und Risiken . Stand: 24.06.2025

DISCOVER: Projekt untersucht Einfluss von Strahlung auf die Bildung von Hirntumoren

DISCOVER: Projekt untersucht Einfluss von Strahlung auf die Bildung von Hirntumoren D issecting rad I ation effect S into the C erebellum micr O en V ironm E nt driving tumour p R omotion ( DISCOVER ) DISCOVER ist ein multidisziplinäres Forschungsprojekt zur Untersuchung des Einflusses von ionisierender, also energiereicher Strahlung auf die Entstehung von Hirntumoren nach Niedrigdosisstrahlung. Die Integration hochinnovativer Ansätze soll besonders das Verständnis des Zusammenspiels von Tumorzellen und Zellen der Mikroumgebung bei der Entwicklung von Krebs, der durch Strahlung hervorgerufen wird, verbessern. Mit dem Wissen sollen Modelle zur Risikoabschätzung verbessert werden, die insbesondere im beruflichen und medizinischen Strahlenschutz angewandt werden können. Hintergrund DISCOVER ist ein multidisziplinäres Forschungsprojekt zur Untersuchung des Einflusses von ionisierender – also sehr energiereicher - Strahlung auf die Entstehung von Hirntumoren nach Niedrigdosisstrahlung. Traditionell wird die durch Strahlung hervorgerufene Karzinogenese durch nicht- oder falsch reparierte DNS-Schäden erklärt. Mittlerweile gibt es jedoch Hinweise auf eine essenzielle Beteiligung der Mikroumgebung im Hirn und epigenetischer Änderungen an der Tumorentstehung. Um wirksamere Strahlenschutzstrategien zu entwickeln, besteht ein dringender Bedarf, diese Prozesse und das Zusammenspiel der Mechanismen strahlungsinduzierter Krebserkrankungen besser zu verstehen. Die neuen Erkenntnisse sind für den Strahlenschutz in beruflichen und medizinischen Situationen, in denen Menschen Strahlung ausgesetzt sind, von besonderem Wert. Zielsetzung DISCOVER soll umfassende Einsichten zum Einfluss von Strahlung auf die Bildung von Hirntumoren am Beispiel des Medulloblastoms liefern, indem sowohl die direkten Effekte auf Zielzellen als auch der Einfluss der Mikroumgebung betrachtet werden. Dazu werden folgende Teilziele angestrebt: Identifizierung von molekularen Veränderungen auf DNA , RNA und Proteinebene in Hirngewebe nach In-vivo-Bestrahlung im Mausmodell Aufklärung von Zellkommunikationsprozessen zwischen Tumorinitiationszellen und Mikroumgebung durch Untersuchungen in Ex-vivo-Gewebeschnitten und anderen In-vitro-Modellen Identifizierung von strahlungsinduzierten Signalwegen durch integrative bioinformatische Analysen in exponierten Geweben Mit diesem Wissen sollen Modelle zur Risikoabschätzung verbessert werden, welche insbesondere im beruflichen und medizinischen Strahlenschutz angewandt werden können. Durchführung Das Projekt untersucht von Strahlung hervorgerufene Effekte in Zielzellen und Zellen der Mikroumgebung. Als Beispiel dient die Entstehung von Medulloblastomen in einem Ptch+/- Modellsystem. Dieses System stellt ein etabliertes Modell dar, welches nach Strahlung eine erhöhte Anzahl von Medulloblastomen zeigt. Zudem tritt die Erkrankung nach kürzerer Latenzzeit auf. Untersucht werden direkte Strahleneffekte in Zielzellen, wie z.B. epigenetische und Proteomveränderungen. Ebenso werden systemische Effekte betrachtet. Dazu gehören Zytokinfreisetzung, Änderung in der extrazellulären Matrix und lokale Immuneffekte. Das etablierte Modellsystem wird mit modernsten Multi-Omics-Analysemethoden und daran gekoppelten Bioinformatik-Pipelines untersucht. Ziel ist es, Veränderungen in der Mikroumgebung des Gehirns und die Rolle extrazellulärer Vesikel bei der Entwicklung strahlungsinduzierter Karzinogenese systemisch zu untersuchen – auch unter dem Aspekt der Dosisabhängigkeit. Die Integration hochinnovativer Ansätze und Vergleiche mit klinischen Daten zielen darauf ab, unser Verständnis von strahlungsinduziertem Krebs und seiner potenziellen Auswirkungen erheblich zu verbessern und dieses für die Risikobewertung und die personalisierte Medizin einzusetzen. Die sieben Arbeitspakete Das DISCOVER Projekt setzt sich aus sieben Arbeitspaketen (work packages, WPs) zusammen: WP1: Untersuchung von Veränderungen in der Mikroumgebung des Kleinhirns nach Strahlenexposition WP2: Untersuchung der Strahlungseffekte in Zielzellen und der Mikroumgebung im Kleinhirn WP3: Untersuchung der Auswirkungen von ionisierender Strahlung auf Vorläuferzellen der Granula und deren Mikroumgebung WP4: Identifizierung von bestimmenden Faktoren in strahleninduzierten Signalwegen WP5: Wirkungsweise von extrazellulären Vesikeln und anderen Einflussfaktoren WP6: Koordination und wissenschaftliches Projektmanagement WP7: Ergebnisverbreitung und -verwertung Projektdaten Koordination: Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) Rolle des BfS : PD Dr. Simone Moertl, WR1, Projekt Partner und Leitung eines Arbeitspakets Projektbeginn: 1.3.2024 Projektende: 29.2.2027 Beteiligung: ENEA, National Public Health Center (Hungary), Brookes University Oxford ( UK ), BfS Finanzierung: 1,3 Mio. Euro (davon 63 % aus dem EU Euratom-Programm/PIANOFORTE) Stand: 29.01.2025

1 2 3 4 58 9 10