API src

Found 115 results.

An empirical model of electron pitch angle distributions in the outer radiation belt based on Van Allen Probes data

Abstract

Environmental impacts on biogenic emissions of volatile organic compounds (VOCs)

Die vorliegende Literaturstudie fasst den Stand des Wissens über die Funktionen, Triebkräfte, und Auswirkungen von biogenen VOCs zusammen. Insbesondere wird untersucht, welche Einflüsse zusätzlich zu Temperatur und Strahlung - welche seit langem bekannt sind und in Modellen abgebildet werden können - als bedeutsam angesehen werden. Dies sind vor allem ein direktes Einwirken von Luftschadstoffen und Trockenheit, sowie indirekte Faktoren wie das Auftreten von Insekten. Von allen diesen Einflüssen wird erwartet, dass sie sich im Rahmen des Klimawandels und der Luftreinhaltepolitik ändern. Allerdings wird keine dieser Triebkräfte in regionalen Emissionsabschätzungen berücksichtigt. Existierende Ansätze, die Wirkung des Trockenstresses in Modellen abzubilden vernachlässigen artspezifische Unterschiede und Veränderungen in der Zusammensetzung der Emissionen. Zusätzlich wird untersucht, inwiefern sich die existierenden Unsicherheiten bei der Bestimmung biogener Emissionen auf die Abschätzung der Luftqualität und des regionalen Klimas auswirken. Entsprechende Informationen aus der Literatur sind jedoch kaum verfügbar. Quelle: Forschungsbericht

FIS "Waldökologie, Waldverjüngung, Waldpflege"

Im Fachinformationssystem Waldökologie, Waldverjüngung und Waldpflege werden alle am SBS erfassten Daten und Informationen aus waldbaulichen Versuchsflächensystemen zusammengefasst. Dies betrifft mehrere Teilbereiche des waldbaulichen Versuchswesens, hierfür wurden jeweils spezielle Teilprojekte eines komplexen Datenbanksystems [DATAPOOL] entwickelt. Folgende DATAPOOL - Projekte sind bisher spezifiziert und werden verwendet: - Mikroklima / Waldklima - Waldertrag und Bestandesstruktur - Ökophysiologie Darüber hinaus werden Vegetationsdaten in einem gesonderten Access Datenbankprojekt [VEGETATI] gehalten und bereitgestellt. Insbesondere das komplexe DATAPOOL Projekt ermöglicht die Bereitstellung umfassender Informationen für weitere erforderliche Auswertungsschritte: So sind beispielsweise umfangreiche ertrags- und waldwachstumskundliche Auswertungen der erfassten Versuchsflächen [spez. ertragskundliches Auswerteprogramm] in Abhängigkeit von waldbaulichen Behandlungsvarianten, standörtlichen Unterschieden oder anderen Einflussfaktoren möglich. Darüber hinaus können über die räumliche Darstellung und Auswertung der Bodenvegetations- und Bestandesstrukturen in 2d- und 3d Varianten auf Basis eines CAD-Systems und eines speziellen 'Waldbau-Visualisierungstools auch quantifizierte Strukturanalysen erstellt, Wachstums- bzw. Vitalitätsabhängigkeiten hinsichtlich der Bodenvegetation (Kleinstandort) oder der Bestandesstruktur (Konkurrenz) hergestellt werden. Mit der Verfügbarkeit der digitalen Standortsinformationen wird auch eine Verschneidung mit allen räumlichen/ flächenhaften FGIS - Informationen für spezielle Auswertungszwecke möglich (Schnittstelle zum FGIS). Kombinationen aus ökophysiologischen und mikroklimatischen Daten werden i.d.R. benötigt, um für typische Standortsbedingungen artspezifische/ herkunftsspezifische Umweltabhängigkeiten der Assimilation und Transpiration zu ermitteln - gefundene funktionale Abhängigkeiten gehen in Simulationsmodelle zur umweltabhängigen Berechnung der ökophysiologischen Aktivität der relevanten Arten der Bodenvegetation sowie der Baumarten des Waldumbaus ein. Über die mikroklimatischen Daten der Waldklimastationen stehen i.d.R. auch standortsrepräsentative hochauflösende Jahresdynamiken der Umweltbedingungen (Meteorologie, Bodenfeuchte, Strahlung) aus differenzierten Varianten waldbaulicher Versuche und aus Freiflächenmessungen zur Verfügung. Diese werden eingesetzt, um abgelaufene Umweltbedingungen hinsichtlich relevanter Prozesse im Wald (Wachstum, Vitalität, Schaderreger, Vegetationsentwicklung etc.) beurteilen zu können. Sie sind essentielle Voraussetzung zum 'treiben' von Modellen der Waldentwicklung bzw. des Waldwachstums, des Wasserhaushaltes im Wald oder auch für Modelle hinsichtlich der Schaderregerentwicklung etc.

Thoughtful and low-

Thoughtful and low- radiation gifts The BfS advises to pay attention to SAR values when buying mobile phones Year of issue 2021 Date 2021.12.10 Popular gifts Source: Anna/Stock.adobe.com A new smart phone is at the top of many Christmas wish lists. The Federal Office for Radiation Protection ( BfS ) advises people to pay attention not only to the technical performance but also to information on the radiation protection when considering a new smart phone. A low SAR value provides some guidance here. The BfS regularly updates its online overview of SAR values of common smart phone models. The BfS has maintained this SAR value list since 2002. It currently contains around 3,800 entries. "Especially parents who want to buy a suitable device for their children can find out in advance whether manufacturers also consider aspects of radiation protection in their products", says Inge Paulini, President of the Federal Office for Radiation Protection ( BfS ). Inge Paulini, President of the BfS According to the current state of scientific knowledge, the established limit values protect against negative health effects. This also applies to children and adolescents. With simple measures, which the BfS describes on its website, personal radiation exposure from mobile phone use can be further minimised. This is also where the SAR value list comes in. "A query via the search function lets you know quickly whether a model is low- radiation ", says Paulini. Green symbols as a decision-making aid Mobile end devices use high- frequency electromagnetic fields to transmit information. When using the smart phone, part of the energy of these fields is absorbed by the body tissue and thereby locally converted into heat. For example, in the head when a mobile phone is held to the ear to make a call. In order to minimise the negative health-relevant effects of the electromagnetic fields, the energy absorption in the body should not exceed defined maximum values when the phone is being used. This absorption is measured in form of the specific absorption rate ( SAR ). It is expressed in watts per kilogram ( W/kg ). According to international guidelines, the specific absorption rate should be limited to 2 W/kg . All models currently on the market fall below this SAR value. Strict requirements for the "Blue Angel" eco-label A smart phone must comply with even stricter requirements if it bears the "Blue Angel" eco-label. The specific absorption rate of the device must not be greater than 0.5 W/kg when the phone is used near the head. In the SAR value list of the BfS , such mobile phones are marked with a green symbol. State of 2021.12.10

DISCOVER: Projekt untersucht Einfluss von Strahlung auf die Bildung von Hirntumoren

DISCOVER: Projekt untersucht Einfluss von Strahlung auf die Bildung von Hirntumoren D issecting rad I ation effect S into the C erebellum micr O en V ironm E nt driving tumour p R omotion ( DISCOVER ) DISCOVER ist ein multidisziplinäres Forschungsprojekt zur Untersuchung des Einflusses von ionisierender, also energiereicher Strahlung auf die Entstehung von Hirntumoren nach Niedrigdosisstrahlung. Die Integration hochinnovativer Ansätze soll besonders das Verständnis des Zusammenspiels von Tumorzellen und Zellen der Mikroumgebung bei der Entwicklung von Krebs, der durch Strahlung hervorgerufen wird, verbessern. Mit dem Wissen sollen Modelle zur Risikoabschätzung verbessert werden, die insbesondere im beruflichen und medizinischen Strahlenschutz angewandt werden können. Hintergrund DISCOVER ist ein multidisziplinäres Forschungsprojekt zur Untersuchung des Einflusses von ionisierender – also sehr energiereicher - Strahlung auf die Entstehung von Hirntumoren nach Niedrigdosisstrahlung. Traditionell wird die durch Strahlung hervorgerufene Karzinogenese durch nicht- oder falsch reparierte DNS-Schäden erklärt. Mittlerweile gibt es jedoch Hinweise auf eine essenzielle Beteiligung der Mikroumgebung im Hirn und epigenetischer Änderungen an der Tumorentstehung. Um wirksamere Strahlenschutzstrategien zu entwickeln, besteht ein dringender Bedarf, diese Prozesse und das Zusammenspiel der Mechanismen strahlungsinduzierter Krebserkrankungen besser zu verstehen. Die neuen Erkenntnisse sind für den Strahlenschutz in beruflichen und medizinischen Situationen, in denen Menschen Strahlung ausgesetzt sind, von besonderem Wert. Zielsetzung DISCOVER soll umfassende Einsichten zum Einfluss von Strahlung auf die Bildung von Hirntumoren am Beispiel des Medulloblastoms liefern, indem sowohl die direkten Effekte auf Zielzellen als auch der Einfluss der Mikroumgebung betrachtet werden. Dazu werden folgende Teilziele angestrebt: Identifizierung von molekularen Veränderungen auf DNA , RNA und Proteinebene in Hirngewebe nach In-vivo-Bestrahlung im Mausmodell Aufklärung von Zellkommunikationsprozessen zwischen Tumorinitiationszellen und Mikroumgebung durch Untersuchungen in Ex-vivo-Gewebeschnitten und anderen In-vitro-Modellen Identifizierung von strahlungsinduzierten Signalwegen durch integrative bioinformatische Analysen in exponierten Geweben Mit diesem Wissen sollen Modelle zur Risikoabschätzung verbessert werden, welche insbesondere im beruflichen und medizinischen Strahlenschutz angewandt werden können. Durchführung Das Projekt untersucht von Strahlung hervorgerufene Effekte in Zielzellen und Zellen der Mikroumgebung. Als Beispiel dient die Entstehung von Medulloblastomen in einem Ptch+/- Modellsystem. Dieses System stellt ein etabliertes Modell dar, welches nach Strahlung eine erhöhte Anzahl von Medulloblastomen zeigt. Zudem tritt die Erkrankung nach kürzerer Latenzzeit auf. Untersucht werden direkte Strahleneffekte in Zielzellen, wie z.B. epigenetische und Proteomveränderungen. Ebenso werden systemische Effekte betrachtet. Dazu gehören Zytokinfreisetzung, Änderung in der extrazellulären Matrix und lokale Immuneffekte. Das etablierte Modellsystem wird mit modernsten Multi-Omics-Analysemethoden und daran gekoppelten Bioinformatik-Pipelines untersucht. Ziel ist es, Veränderungen in der Mikroumgebung des Gehirns und die Rolle extrazellulärer Vesikel bei der Entwicklung strahlungsinduzierter Karzinogenese systemisch zu untersuchen – auch unter dem Aspekt der Dosisabhängigkeit. Die Integration hochinnovativer Ansätze und Vergleiche mit klinischen Daten zielen darauf ab, unser Verständnis von strahlungsinduziertem Krebs und seiner potenziellen Auswirkungen erheblich zu verbessern und dieses für die Risikobewertung und die personalisierte Medizin einzusetzen. Die sieben Arbeitspakete Das DISCOVER Projekt setzt sich aus sieben Arbeitspaketen (work packages, WPs) zusammen: WP1: Untersuchung von Veränderungen in der Mikroumgebung des Kleinhirns nach Strahlenexposition WP2: Untersuchung der Strahlungseffekte in Zielzellen und der Mikroumgebung im Kleinhirn WP3: Untersuchung der Auswirkungen von ionisierender Strahlung auf Vorläuferzellen der Granula und deren Mikroumgebung WP4: Identifizierung von bestimmenden Faktoren in strahleninduzierten Signalwegen WP5: Wirkungsweise von extrazellulären Vesikeln und anderen Einflussfaktoren WP6: Koordination und wissenschaftliches Projektmanagement WP7: Ergebnisverbreitung und -verwertung Projektdaten Koordination: Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) Rolle des BfS : PD Dr. Simone Moertl, WR1, Projekt Partner und Leitung eines Arbeitspakets Projektbeginn: 1.3.2024 Projektende: 29.2.2027 Beteiligung: ENEA, National Public Health Center (Hungary), Brookes University Oxford ( UK ), BfS Finanzierung: 1,3 Mio. Euro (davon 63 % aus dem EU Euratom-Programm/PIANOFORTE) Stand: 29.01.2025

Biophysicical models for the effectiveness of different radiations

Das Projekt "Biophysicical models for the effectiveness of different radiations" wird vom Umweltbundesamt gefördert und von GSF-Forschungszentrum für Umwelt und Gesundheit, GmbH durchgeführt. Objective: This project involves experimental and theoretical research towards a better understanding of the biological radiation actions of different radiation fields, with particular emphasis on low doses and low dose rates. It aims at an improvement of our present knowledge on somatic and genetic radiation risks of man and to help develop radiation protection instrumentation to measure the characteristic properties with regard to these endpoints in mixed radiation fields. In addition, the combined action of radiation and chemicals (also of those prevalent in the environment) will be investigated on a mechanistic level. General Information: This goal shall be reached by the development of new models based on: the improvement of biophysical track structure calculations for relevant radiation fields (photons, neutrons, electrons, ions) in particular by introducing structured cell geometry, condensed state cross sections, time dependency, and chemical and biological reactions; various codes of other authors will be compared in critical bench mark calculations; the analysis of such physical to chemical to biological track structures will be improved using new cluster algorithms and by testing biophysical models which will be developed; selective radiation biological experiments with soft X-rays and UV-photons will be performed, as well as with alpha-particles and gamma-rays; the biological systems will include appropriate transformational and inactivation assays, etc. The usefulness of a better understanding of radiation effects on members of the public has often been described in the radiation protection literature. This understanding is necessary also to improve the protection of workers and the public in the ALARA-sense of the IRCP, where overestimations of radiation risks might lead, for example, to a not optimum allocation of large resources. Collaboration is foreseen with other projects working on the improvements of dosimeters and on biological radiation effects. Achievements: Objectives of the project include calculation of secondary electrons produced in a water molecule and in a water cluster by proton and electron impact to investigate the influence of physical state on double differential ionization cross sections, testing of the geometry routines simulating a lymphocyte and calculation of single strand breaks (SSB), double strand breaks (DSB) and fields of dicentric chromosomes using simple models of deoxyribonucleic acid (DNA) interaction. A set of calculations of the double and single differential cross sections for secondary electron emission as a function of angle and secondary electron energy have been completed for the case of proton impact on a water molecule and a cluster of water molecules using methods developed for electron impact. ... Prime Contractor: GSF-Forschungszentrum für Umwelt und Gesundheit GmbH; Oberschleissheim; Germany.

CLEAR - Climate and Environment in Alpine Regions

Das Projekt "CLEAR - Climate and Environment in Alpine Regions" wird vom Umweltbundesamt gefördert und von Eawag - Das Wasserforschungsinstitut des ETH-Bereichs durchgeführt. Das Projekt ist eine transdisziplinäre Untersuchung über die Konsequenzen der mit dem Klimawandel verbundenen Änderungen in der Alpenregion. Das Projekt verbindet Forschungsgebiete aus den technischen, ökologischen und sozialen Wissenschaften. Dazu ist es in folgende fünf Projektgruppen unterteilt, wobei die ersten vier disziplinär arbeiten, während die fünfte mit der integrierten Bewertung befasst ist: 1. Schnittstelle zwischen Atmosphäre und Hydrosphäre; 2. Schnittstelle zwischen Klima der Vergangenheit und der Gegenwart; 3. Schnittstelle zwischen Klima und Ökologie; 4. Schnittstelle zwischen Klima und Ökonomie; 5. integrierte Bewertung mit Modellwerkzeugen, Fokusgruppen und Politikoptionen. Ziele: Ziele des Projekts sind 1. die Schaffung eines besseren Verständnis der mit dem Klimawandel verbundenen Aspekte, insbesondere im Hinblick auf ihre Komplexität und Unsicherheit, 2. die Bereitstellung einer Vielzahl von neuesten Modellwerkzeugen, 3. die Entwicklung einer umfassenden Methodik für eine integrierte Klimarisikobewertung durch die Nutzung von Fokusgruppen und Computermodellen und 4. die Bereitstellung politikrelevanter Informationen über Strategien und Mechanismen, um Maßnahmen für die Implementation in die Politiken zu testen. KLIMASZENARIO Es werden regionale Klimamodelle zur Untersuchung regionaler Klimavorhersagbarkeit und zur Sensitivität hinsichtlich der globalen Erwärmungsprozesse benutzt, die als ein dynamisches Werkzeug zur Evaluation möglicher 2xCO2-Szenarien für die Alpenregion dienen. Bioklimatische Szenarien werden für die Analyse der Waldökosysteme erstellt. Parameter: physikalische Aspekte des Klimasystems inklusive atmosphärischer, hydrologischer und ozeanographischer Aspekte räumlicher Bezug: Alpenregion (Schweiz) Zeithorizont: 2100 KLIMAFOLGEN Es werden die Folgen für Waldökosysteme, für Pflanzenarten und für den Boden in der sub-alpinen Region betrachtet. Dazu werden die Sensitivitäten der Ökosysteme und ihre Reaktionen auf den Klimawandel untersucht. Ökonomische Folgen für Landwirtschaft und Tourismus und ökonomische Chancen für die Industrie durch Technologiewandel, die aus steigende Energiekosten oder Änderungen im Verbraucherverhalten resultieren, werden ebenfalls analysiert. Sektoren und Handlungsfelder: Biodiversität und Naturschutz, Politik, Kommunikation, Wissenschaft, Umweltschutz, Landwirtschaft, Tourismus, Energiewirtschaft, Bodenschutz ANPASSUNGSMASSNAHMEN Hintergrund und Ziele: Es sollen relevante Informationen über Anpassungsmaßnahmen für die Politik bereitgestellt werden. Dieses soll durch geeignete Modelle, die auch von Nichtwissenschaftlern nutzbar sind, eine verbesserte Risikokommunikation, die Erhöhung der Akzeptanz von Maßnahmen, die Entwicklung neuer Politikwerkzeuge zur Partizipation der Öffentlichkeit und einen effektiven Mitteleinsatz in der Forschungspolitik erreicht werden. Weiterhin soll die Öffentlichkeit über Klimawandel und -folgen besser informiert werden. usw.

Remote performance check for grid connected PV systems using satellite data

Das Projekt "Remote performance check for grid connected PV systems using satellite data" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Solare Energiesysteme durchgeführt. General Information/Objectives of the project: Small photovoltaic (PV) systems (i.e. in the power range of 1 to 10 kWp) regularly do not include any long term surveillance mechanism. As most system operators are not PV specialists, partial system faults or decreasing performance may not be recognized. The project will set up a remote performance check for small grid connected PV systems. No additional hardware installation will be necessary on site. Technical approach The site specific solar irradiation data will be derived from satellite images rather than from ground based measurements. On the basis of monthly irradiation time series, monthly values of PV system yield will be calculated and distributed automatically via postcard, fax or e-mail (whatever is most suitable) towards the system operators. The work necessary for the establishment of the PVSAT procedure is divided in five work packages: (1) Set up of a calculation procedure from satellite image data to site and system specific solar radiation at ground level. (2) Comparison of satellite derived radiation data with data from interpolation between ground stations, as quality check for the results of WP 1. (3) Definition of a generalized plant description, applicable to (residential) grid connected PV systems, and a corresponding numerical plant performance model for use with sparse input data. (4) Integration of the results of WPs 1 to 3 into the operational PVSAT performance check system. (5) Test and evaluation of the PVSAT procedure in the field, aided by solar energy users associations. Expected achievements The procedure will provide an operational, very low cost, long term surveillance for small PV systems, applicable to nearly any site within Europe. The mailings generated by PVSAT will remind the system operator periodically to check the performance of his installation, by comparing the meter reading at his site to the predicted value. In this way, a high system performance will be ensured over the whole lifetime of a PV system. Concerning the operating costs, the PVSAT procedure bears the potential of being the most cost effective way to check the performance of a large number of systems. This will enable a broad application of the procedure. Prime Contractor: Fraunhofer Gesellschaft zur Förderung der Angewandten Forschung e.V., Institut für Solare Energiesysteme; Freiburg im Breisgau; Germany.

B1: The biology of southern bracken in the anthropogenic ecosystem in the San Francisco valley of South Ecuador

Das Projekt "B1: The biology of southern bracken in the anthropogenic ecosystem in the San Francisco valley of South Ecuador" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Fachgruppe Biologie, Bayreuther Zentrum für Ökologie und Umweltforschung (BayCEER), Lehrstuhl für Pflanzenphysiologie durchgeführt. Bracken covers about 40% of the pastures in the San Francisco valley and it is still spreading. Preliminary results suggest that bracken is composed of 2 species Pteridium arachnoideum and caudatum and several genetically differing lines. The taxonomic composition of bracken in the research area will be analysed using morphological characters, allozyme analysis and DNA-microsatellites. In a firetriggered succession, bracken outcompetes the pasture grass Setaria. This process is simulated by a model which is based on field measurements (ecological, ecophysiological, radiation data) assuming competition for light as the decisive factor. An extra module simulates the effect of burning on the competition. The model shall be extended to a third plant life form, the bush Baccharis latifolia, which is very common in the bracken-infested pastures. It shall also be applied to the effects of grazing and of bracken control measures which have been running for 2.5 years. The bracken control experiment has meanwhile merged in a repastorization experiment which shall be continued. Invasion and spreading of bracken since 1975 will be traced from Landsat scenes and the current appearance and further spreading of a bracken blight disease, a potential means of biocontrol shall be followed with QuickBird scenes.

Cloud-scale Uncertainties - B4: Radiative heating and cooling at cloud scale and its impact on dynamics

Das Projekt "Cloud-scale Uncertainties - B4: Radiative heating and cooling at cloud scale and its impact on dynamics" wird vom Umweltbundesamt gefördert und von Ludwig-Maxililians-Universität München, Meteorologisches Institut, Lehrstuhl für Experimentelle Meteorologie durchgeführt. Clouds are important sources and sinks of diabatic heat, not only in terms of latent heat release but also with respect to absorption of solar radiation as well as absorption and emission of thermal radiation. Additionally, cloud shadows on the ground modify surface heating and thus sensible and latent heat fluxes. Although it has been demonstrated that cloud top cooling may reach values of several 100 K/day and that this may have a strong impact on cloud microphysics and local cloud evolution, it has not been demonstrated that there is actually an effect on weather, larger scale dynamics, and on atmospheric flow. This is even more true for radiative cooling from cloud sides which has been shown to reach values comparable to cloud top cooling but is completely neglected by any (one-dimensional) radiation scheme in current NWP or climate models. Radiation firstly affects the growth of cloud droplets, increasing (in case of thermal cooling) or decreasing (in case of solar heating) the rate by which they dissipate the energy released by latent heat. Secondly, the surrounding air is cooled or heated which directly feeds back on dynamics. The aim of the project is to study the question if realistic, three-dimensional radiative heating rates have an impact on cloud formation, and if there is an impact on atmospheric flow beyond cloud scale. To answer these questions, a reasonably fast but accurate representation of radiative heating rates in clouds will be developed for a cloud scale (EULAG) and an NWP model (COSMO). The project builds upon our previous work on three-dimensional heating and cooling rates and on development of reasonably fast approximations. A parameterization of heating rates depends strongly on the scale. For a cloud-resolving model like EULAG with a 100 m grid size and smaller, different approaches are needed compared to a numerical weather forecast model like COSMO: A cloud-resolving model allows properly resolving the radiation processes, but three-dimensional radiation transport requires interaction between many grid columns in the calculation which is a challenge for parallelization. The resolution of COSMO, on the other hand, requires parameterization of un-resolved cloud edge effects and sub-pixel cloudiness, but would need less interaction between individual grid columns. As a first step, we will study the impact of radiative heating and cooling in clouds on local circulation at cloud scale. For that purpose, an accurate yet fast approximation for 3D solar and thermal heating and cooling rates will be developed for the EULAG model in order to systematically study effects for a set of cloud-resolving simulations. (abridged text)

1 2 3 4 510 11 12