Das Projekt "Energy Savings 2020: How to triple the impact of energy saving policies in Europe?" wird/wurde gefördert durch: European Climate Foundation / Regulatory Assistance Project (RAP). Es wird/wurde ausgeführt durch: Ecofys Germany GmbH.Europe needs to triple the impact of its energy efficiency policies to achieve its 2020 targets set last year, according to a new study written by Ecofys and the Fraunhofer ISI. The study reveals that the potential exists to reach the 20 percent energy saving by 2020 goal cost-efficiently, cutting energy bills by € 78 billion for European consumers and businesses annually by 2020. However, current EU policy is delivering only one-third of the potential cost-effective savings measures. Increased energy savings will also warrant easier and less expensive achievement of a 20 percent share of renewables in the EU energy mix in 2020. The study was commissioned jointly by the European Climate Foundation (ECF) and the Regulatory Assistance Project (RAP).
Das Projekt "ETOS: Modulare und skalierbare Anschwemmzellen für die Elektrokonversion von wenig löslichem L-Cystin" wird/wurde ausgeführt durch: Johannes Gutenberg-Universität Mainz, Department Chemie.
Das Projekt "ETOS: Modulare und skalierbare Anschwemmzellen für die Elektrokonversion von wenig löslichem L-Cystin, Modulare und skalierbare Anschwemmzellen für die Elektrokonversion von wenig löslichem L-Cystin - Teilprojekt A" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Johannes Gutenberg-Universität Mainz, Department Chemie.
Das Projekt "Wissenschaftliche Unterstützung der Energieberatung" wird/wurde gefördert durch: Institut Wohnen und Umwelt GmbH. Es wird/wurde ausgeführt durch: Institut Wohnen und Umwelt GmbH.Ausgangslage: Die Erhöhung der Energieeffizienz und eine sparsame umweltfreundliche Energieverwendung sind von zentraler Bedeutung für eine nachhaltige zukunftsfähige Entwicklung. Ein wichtiges Instrument für die Umsetzung energiepolitischer Zielsetzungen ist die Energieberatung. Ziele: Die Energieberatung in Hessen soll in ihrem weiteren Aufbau und ihrer fortlaufenden Arbeit unterstützt werden. Energieberater, Architekten, Ingenieure, Wissenschaftler und Beratungseinrichtungen sollen zum Informationsaustausch angeregt und mit Informationen sowie Beratungsinstrumenten versorgt werden. Vorgehen: Das IWU leistet Unterstützung in folgenden Bereichen: - Wissenschaftliche Betreuung der Energiespar-Informationen : Das IWU betreut die Broschürenserie Energiespar-Informationen des Landes Hessen, die im Internet und als kostenlose Information angeboten werden. Die Broschüren werden inhaltlich aktuellen Entwicklungen angepasst und grafisch anschaulicher gestaltet. Zu den 13 Themenschwerpunkten gehören u. a. der bauliche Wärmeschutz, die Herstellung einer luftdichten Gebäudehülle und die Haustechnik. - Beratung zu Fragen der effizienten Energienutzung: Im Rahmen von Vorträgen, Veröffentlichungen und allgemeinen Anfragen beantwortet das IWU spezielle Fragen aus dem Bereich der effizienten Energienutzung und der praktischen Umsetzung. Die wichtigsten Themen sind Niedrigenergie- und Passivhäuser, Energieeinsparung im Gebäudebestand sowie die effiziente Stromnutzung. - Arbeitskreis Energieberatung: Dieser Arbeitskreis des IWU behandelt aktuelle Themen aus dem Bereich der rationellen Energieverwendung in Gebäuden. Zum Adressatenkreis gehören Architekten, Ingenieure und Berater aus der Energie- und Wohnungswirtschaft im privaten wie öffentlichen Bereich.
Das Projekt "Stromeffizienzklassen für Haushalte. Förderung von Stromsparinnovationen in Haushalt, Markt und Gerätetechnik - Teilvorhaben 2: Optimierungspotentiale, Geschäftsmodelle und Stromsparpotentiale" wird/wurde ausgeführt durch: Öko-Institut. Institut für angewandte Ökologie e.V..
Das Projekt "Intelligente ökonomische & ökologische Ressourceneffizienzsteuerung mittels Digitalem Prozesspass im Kontext sektorübergreifender Anforderungen am Beispiel der abwärmeintensiven Oberflächentechnik, TV: Aufbau, Pilotierung und Anwendung eines Systems zur Erstellung eines digitalen Prozesspasses" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Wegener Härtetechnik GmbH.
Das Projekt "Intelligente ökonomische & ökologische Ressourceneffizienzsteuerung mittels Digitalem Prozesspass im Kontext sektorübergreifender Anforderungen am Beispiel der abwärmeintensiven Oberflächentechnik, TV: Entwicklung und Umsetzung Digitaler Prozesspass" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: August-Wilhelm Scheer Institut für digitale Produkte und Prozesse gGmbH.
Das Projekt "Intelligente ökonomische & ökologische Ressourceneffizienzsteuerung mittels Digitalem Prozesspass im Kontext sektorübergreifender Anforderungen am Beispiel der abwärmeintensiven Oberflächentechnik" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Wegener Härtetechnik GmbH.
Das Projekt "Intelligente ökonomische & ökologische Ressourceneffizienzsteuerung mittels Digitalem Prozesspass im Kontext sektorübergreifender Anforderungen am Beispiel der abwärmeintensiven Oberflächentechnik, TV: Analysierung und Modellierung von Energieströmen zur Steigerung der Ressourceneffizienz" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Hochschule Trier - Trier University of Applied Sciences - Umwelt-Campus Birkenfeld, Fachrichtung Maschinenbau, Institut für Betriebs- und Technologiemanagment (IBT), Labor für Erneuerbare Energien.
Im Straßen-, Schiffs- und Flugverkehr dominieren immer noch klimaschädliche fossile Kraftstoffe. Zunehmend kommen jedoch auch klimafreundlichere alternative Kraftstoffe und Antriebe zum Einsatz. Im Bereich der Treibhausgasminderung bei Kraftstoffen ist das UBA im Rahmen der 37. und 38. Bundes-Immissionsschutzverordnung (BImSchV) auch für den Vollzug zuständig. Unsere Mobilität basiert zurzeit zu großen Teilen auf der Verbrennung flüssiger Kraftstoffe in Verbrennungskraftmaschinen. Da das Verkehrsaufkommen in Deutschland stetig wächst, stagnieren trotz vorhandener Effizienzgewinne durch den Einsatz von moderneren Motoren und Flugzeugturbinen die absoluten Treibhausgasemissionen des Verkehrs auf einem hohen Niveau. Für die notwendige deutliche Reduktion der Treibhausgasemissionen des Verkehrs für einen ausreichenden Klimaschutzbeitrag des Verkehrs sind neben weiteren Effizienzverbesserungen bei Motoren und einer weitreichenden Elektrifizierung des Straßenverkehrs auch ein Umstieg auf nachhaltige alternative Kraftstoffe in der Schifffahrt und der Luftfahrt notwendig. Konventionelle Kraftstoffe Bei konventionellen Kraftstoffen handelt es sich um Mineralölprodukte. Im Jahr 2019 entfielen ca. 94 Prozent des Endenergieverbrauchs im Verkehrssektor auf diese Kraftstoffe. Die dominierenden Kraftstoffe im deutschen Verkehrssektor sind die im Straßenverkehr eingesetzten Diesel- und Ottokraftstoffe. Ottokraftstoff wird unter dem Namen E5 oder E10 vermarktet und bezeichnet Benzin, das einen bestimmten Anteil an Ethanol enthalten darf. Während "E" für Ethanol steht, gibt die Zahl "5", beziehungsweise "10" an, wieviel Prozent Ethanol das Benzin maximal enthalten kann. Bei dem im Benzin typischerweise enthaltenen Ethanol handelt es sich um biogen bereitgestelltes Ethanol – kurz Bioethanol – das hauptsächlich aus zucker- und stärkehaltigen Pflanzen wie Zuckerrohr, Zuckerrübe, Getreide und Mais Pflanzen gewonnen wird. Die Mindestanforderungen für Ottokraftstoffe sind in der Norm DIN EN 228 festgeschrieben. Im weiteren Sinne sind alle Kraftstoffe, die in Ottomotoren genutzt werden können, Ottokraftstoffe, also unter anderem auch Flüssiggas (LPG) bzw. Erdgas (CNG). Bei diesen handelt es sich zwar nicht um Mineralölprodukte, jedoch werden sie hauptsächlich fossil hergestellt. Da beide keine typischen Kraftstoffe sind, werden diese oft den „alternativen Kraftstoffen“ zugeordnet. Dieselkraftstoff – auch vereinfacht Diesel genannt – wird nach den in der Norm DIN EN 590 definierten Mindestanforderungen an Tankstellen unter dem Namen B7 geführt und bezeichnet Diesel aus Mineralöl mit einer Beimischung von maximal sieben Prozent Biodiesel. In Deutschland wird Biodiesel vorwiegend aus Rapsöl hergestellt. Der Großteil des Biodiesels wird jedoch importiert und aus Abfall- und Reststoffen sowie aus Palmöl sowie Rapsöl hergestellt. Palmöl als Ausgangstoff für hydrierte Pflanzenöle (HVO - Hydrogenated Vegetable Oils) spielt im Bereich des Dieselkraftstoffes zumindest für das Jahr 2020 auch eine entscheidende Rolle. Durch die Überarbeitung der Treibhausgasminderungsquote (THG-Quote) ist die Verwendung von Palmöl seit dem 1. Januar Jahr 2022 deutlich beschränkt und ab 2023 beendet, da der Anbau von Ölpalmen einer der Haupttreiber für die Rodung von Regenwald ist. Im Flugverkehr wird größtenteils aus Erdöl hergestelltes Kerosin getankt. Kerosin bezeichnet Kraftstoffe, die sich für den Einsatz in Flugturbinen eignen. In der Binnenschifffahrt wird schwefelreduzierter Binnenschiffsdiesel verwendet. In der Seeschifffahrt kommen Marinediesel- und Marinegasöle sowie Schweröle mit unterschiedlichem Schwefelgehalt und ggf. notwendigen Abgasnachbehandlungssystemen (Kraftstoffnorm: ISO 8217) zum Einsatz. Sowohl im Binnen- als auch im Seeverkehr werden mehr und mehr Schiffe mit Flüssigerdgas ( LNG – Liquified Natural Gas) oder – in ersten Modellanwendungen – mit LPG (Liquified Petroleum Gas), auch Autogas genannt, Methanol oder Biodiesel betrieben. Mehr Informationen hierzu finden Sie auf unserer Themenseite zur Seeschifffahrt. Nur durch den Ersatz von mineralölbasierten Kraftstoffen durch klimafreundliche Alternativen kann der Verkehrssektor den notwendigen Beitrag zur Senkung seiner Treibhausgasemissionen leisten. Um diese Energiewende im Verkehr zu erreichen, ist die Entwicklung und Innovation bei alternativen Antriebstechnologien von zentraler Bedeutung. Perspektivisch sollte Strom aus erneuerbaren Energiequellen zur Energieversorgung im Verkehr direkt genutzt werden, d. h. ohne weitere Umwandlungsschritte zu strombasierten Kraftstoffen, sofern dies, wie etwa im Pkw-Verkehr, technisch möglich ist. Alternative Kraftstoffe Alternative Kraftstoffe sind entweder bezüglich der Bereitstellung alternativ, also "biogen" oder "synthetisch", oder es handelt sich um andere Kraftstoffe als Alternative zu Benzin oder Diesel. Biogene Kraftstoffe, oder auch Biokraftstoffe, werden vor allem aus Pflanzen, Pflanzenresten und ‑abfällen oder Gülle gewonnen. Synthetische Kraftstoffe unterscheiden sich von konventionellen Kraftstoffen durch ein geändertes Herstellungsverfahren und oft auch durch andere Ausgangsstoffe als Mineralöl. Biokraftstoffe wie Bioethanol oder Biodiesel leisten bereits seit vielen Jahren einen Beitrag zur Minderung der Treibhausgasemissionen des Verkehrssektors. Biokraftstoffe sind entweder flüssige (zum Beispiel Ethanol und Biodiesel) oder gasförmige (Biomethan) Kraftstoffe, die aus Biomasse hergestellt werden und für den Betrieb von Verbrennungsmotoren in Fahrzeugen bestimmt sind. Man unterscheidet Biokraftstoffe der ersten und zweiten Generation, wobei eine klare Abgrenzung der Kraftstoffe beider Generationen schwierig ist. Bei der Erzeugung von Biokraftstoffen der ersten Generation wird nur die Frucht (Öl, Zucker, Stärke) genutzt, während ein Großteil der Pflanze als Futtermittel Verwendung finden kann. Biokraftstoffe der zweiten Generation sind noch in der Entwicklung und werden aus Pflanzenmaterial hergestellt, das nicht als Nahrung verwendet werden kann, zum Beispiel aus Ernteabfällen, Abfällen aus der Landwirtschaft oder Siedlungsmüll. Zu dieser Generation, dessen Vertreter auch „fortgeschrittene Biokraftstoffe“ genannt werden, gehört auch solches Bioethanol, das aus zellulosehaltigen Materialien wie Stroh oder Holz gewonnen wird. Generelle Informationen zur energetischen Nutzung von Biomasse und zu den Nachhaltigkeitsanforderungen sind auf unserer UBA-Themenseite zur Bioenergie zusammengestellt. Synthetische Kraftstoffe sind Kraftstoffe, die durch chemische Verfahren hergestellt werden und bei denen, im Vergleich zu konventionellen Kraftstoffen, die Rohstoffquelle Mineralöl durch andere Energieträger ersetzt wird. XtL-Kraftstoffe sind synthetische Kraftstoffe, die ähnliche Eigenschaften und chemische Zusammensetzungen wie konventionelle Kraftstoffe aufweisen. Sie entstehen durch die Umwandlung eines Energieträgers zu einem kohlenstoffhaltigen Kraftstoff, der unter Normalbedingungen flüssig ist. Das "X" wird in dieser Schreibweise durch eine Abkürzung des ursprünglichen Energieträgers ausgetauscht. "tL" steht für "to Liquid". Aktuell sind in dieser Schreibweise die Abkürzungen GtL (Gas-to-Liquid) bei der Verwendung von Erdgas beziehungsweise Biogas, BtL (Biomass-to-Liquid) bei der Verwendung von Biomasse und CtL (Coal-to-Liquid) bei der Verwendung von Kohle als Ausgangsenergieträger gebräuchlich. Zur Herstellung von Power-to-X (Power-to-Gas/ PtG oder PtL )-Kraftstoffen wird Wasser unter Einsatz von Strom in Wasserstoff und Sauerstoff aufgespalten. In einem Folgeschritt kann der gewonnene Wasserstoff in Verbindung mit anderen Komponenten – hier vor allem Kohlenstoffdioxid – zu Methan (PtG-Methan) oder flüssigem Kraftstoff (PtL) verarbeitet werden. Der gewonnene Wasserstoff (PtG-Wasserstoff) kann jedoch auch direkt als Energieträger im Verkehr, zum Beispiel in Brennstoffzellen-Fahrzeugen genutzt werden. Mehr Informationen hierzu finden Sie in den vom UBA beantworteten „Häufig gestellten Fragen zu Wasserstoff im Verkehr“ . Elektrischer Antrieb: Strom als Energieversorgungsoption Energetisch betrachtet, ist der Einsatz von PtG -Wasserstoff in Brennstoffzellen-Pkw bzw. von PtG-Methan und PtL in Verbrennungsmotoren von Pkw hochgradig ineffizient. Für dieselbe Fahrleistung muss etwa die drei- beziehungsweise sechsfache Menge an Strom im Vergleich zu einem Elektro-Pkw eingesetzt werden, wie die folgende Abbildung veranschaulicht. Da erneuerbarer Strom, beispielsweise aus Wind und Photovoltaik, und die notwendigen Ressourcenbedarfe für die Energieanlagen nicht unbegrenzt zur Verfügung stehen, muss auch mit erneuerbaren Energien sparsam umgegangen werden. Am effizientesten ist die direkte Stromnutzung im Verkehr, beispielsweise über Oberleitungen für Bahnen. Ähnlich effizient ist die Stromnutzung über batterieelektrisch betriebene Fahrzeuge. Deswegen sollte zur möglichst effizienten Defossilisierung des Straßenverkehrs ein weitgehender Umstieg auf batterieelektrisch betriebene Fahrzeuge angestrebt werden, wo immer dies technisch möglich ist. Vollzugsaufgaben des UBA zur 38. BImSchV In Deutschland sind Inverkehrbringer von Kraftstoffen gesetzlich verpflichtet, den Ausstoß von Treibhausgasen (THG) durch die von ihnen in Verkehr gebrachten Kraftstoffe um einen bestimmten Prozentsatz zu mindern. Dies regelt die im seit 1. Januar 2022 gültigen Gesetz zur Weiterentwicklung der Treibhausgasminderungsquote festgeschriebene THG‑Quote. Im Rahmen der THG-Quote hat das Umweltbundesamt ( UBA ) verschiedene Vollzugsaufgaben. Eine Aufgabe regelt die Verordnung zur Festlegung weiterer Bestimmungen zur Treibhausgasminderung bei Kraftstoffen (38. BImSchV ): Das UBA bescheinigt auf Antrag Strommengen, die im Straßenverkehr genutzt wurden. Weitere Informationen finden Sie auf der entsprechenden Themenseite zur 38. BImSchV .
Origin | Count |
---|---|
Bund | 66 |
Type | Count |
---|---|
Förderprogramm | 60 |
Text | 6 |
License | Count |
---|---|
geschlossen | 5 |
offen | 60 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 45 |
Englisch | 27 |
Resource type | Count |
---|---|
Archiv | 1 |
Datei | 1 |
Dokument | 6 |
Keine | 44 |
Webseite | 17 |
Topic | Count |
---|---|
Boden | 66 |
Lebewesen & Lebensräume | 38 |
Luft | 29 |
Mensch & Umwelt | 66 |
Wasser | 16 |
Weitere | 66 |