API src

Found 260 results.

Related terms

ZUverlässigkeit und Performance von PV-Modulen, Systemen und Anwendungen

Durch beständige Kostensenkungen bei den Komponenten ist die Photovoltaik (PV) laut Internationaler Energieagentur (IEA) inzwischen die Energiequelle mit den niedrigsten Elektrizitätskosten der Geschichte. Mit diesen Kostensenkungen und sinkenden Anfangsinvestitionen steigt der Anteil der laufenden Kosten an den Stromgestehungskosten kontinuierlich. Die (anfängliche) Performance der PV-Systeme im laufenden Betrieb sowie die Entwicklung dieser Performance im Laufe der Lebensdauer gewinnen aus diesem Grunde ständig an Bedeutung. Die Zuverlässigkeit von PV-Komponenten stellt wiederum einen wichtigen Baustein für die Performance im Zeitverlauf und für die Höhe von Ersatzinvestitionen dar und wirkt sich damit direkt auf die Stromgestehungskosten aus. Performance und Zuverlässigkeit von PV-Modulen und -Systemen spielen damit eine wichtige Rolle, um weitere Fortschritte bei der Verbreitung der PV als klimaschonende Form der Energiegewinnung erzielen zu können. Neben diesen beiden Eigenschaften stehen dabei neue Anwendungsfelder der PV, wie schwimmende PV oder Agri-Photovoltaik zur Erschließung weiterer Potenziale im Fokus.

Entwicklung offenporiger monolithischer Perowskitstrukturen als hybride thermische Speicher, Teilvorhaben: Herstellung und Charakterisierung modularer Strukturen mittels Extrusion

Regelbare Kraftwerke, welche Strom je nach Bedarf liefern können, indem sie ihre Leistung anpassen und kurzfristig ein- und ausgeschaltet werden können, gewinnen im Kontext der Energiewende zunehmend an Bedeutung. Bei der direkten Stromgewinnung, z.B. mittels Photovoltaik oder Windkraft, muss die gewonnene elektrische Energie sofort in das Netz eingespeist werden, oder in großen Batteriespeichersystem gespeichert werden. Dafür benötigte Speichersysteme mit langfristiger Betriebszuverlässigkeit und wettbewerbsfähigen Kosten sind noch nicht kommerziell verfügbar. Wärme kann hingegen zu wesentlich geringeren Kosten als Strom gespeichert und bei Bedarf zur Stromerzeugung genutzt werden. So kann aus überschüssigem Strom erzeugte Wärme in großem Umfang und über lange Zeiträume gespeichert werden, aber auch einem CSP (Concentrated Solar Power)-Kraftwerk die notwendige Flexibilität verleihen, Wärme und Strom dann zu liefern, wenn eine große Nachfrage besteht. Dies ist eine unabdingbare Voraussetzung für die weitere kommerzielle Nutzung von CSP. Durch leistungsfähige Wärmespeicher kann der Stromgewinnungsprozess weitestgehend von der Wärmegewinnung entkoppelt werden und so das Potential der Regelbarkeit und Flexibilität optimal genutzt werden. Kommerziell verfügbar sind im Bereich von Temperaturen über 700°C aktuell lediglich Wärmespeichersysteme, welche auf dem Prinzip der sensiblen, also nicht reaktiven, Wärmespeicherung basieren. Ein Einsatz von redoxaktiven Materialien birgt das Potential, die Speicherkapazität und Effizienz von Wärmespeichersystem bedeutend zu steigern. Bei der zyklischen Reduktion und Oxidation solcher redoxaktiver Materialien kann zusätzliche Wärme gespeichert (Reduktion) und wieder entnommen werden (Oxidation). Im Projekt Porotherm-Solar werden Speichermodule aus redoxaktivem Perowskit entwickelt und unter Realbedingungen in einem Demonstrator erprobt.

Entwicklung offenporiger monolithischer Perowskitstrukturen als hybride thermische Speicher, Teilvorhaben: Synthese und Validierung leistungsfähiger Perowskitmaterialien und Erprobung von Test-strukturen im Demonstrator

Regelbare Kraftwerke, welche Strom je nach Bedarf liefern können, indem sie ihre Leistung anpassen und kurzfristig ein- und ausgeschaltet werden können, gewinnen im Kontext der Energiewende zunehmend an Bedeutung. Bei der direkten Stromgewinnung, z.B. mittels Photovoltaik oder Windkraft, muss die gewonnene elektrische Energie sofort in das Netz eingespeist werden, oder in großen Batteriespeichersystem gespeichert werden. Dafür benötigte Speichersysteme mit langfristiger Betriebszuverlässigkeit und wettbewerbsfähigen Kosten sind noch nicht kommerziell verfügbar. Wärme kann hingegen zu wesentlich geringeren Kosten als Strom gespeichert und bei Bedarf zur Stromerzeugung genutzt werden. So kann aus überschüssigem Strom erzeugte Wärme in großem Umfang und über lange Zeiträume gespeichert werden, aber auch einem CSP (Concentrated Solar Power)-Kraftwerk die notwendige Flexibilität verleihen, Wärme und Strom dann zu liefern, wenn eine große Nachfrage besteht. Dies ist eine unabdingbare Voraussetzung für die weitere kommerzielle Nutzung von CSP. Durch leistungsfähige Wärmespeicher kann der Stromgewinnungsprozess weitestgehend von der Wärmegewinnung entkoppelt werden und so das Potential der Regelbarkeit und Flexibilität optimal genutzt werden. Kommerziell verfügbar sind im Bereich von Temperaturen über 700°C aktuell lediglich Wärmespeichersysteme, welche auf dem Prinzip der sensiblen, also nicht reaktiven, Wärmespeicherung basieren. Ein Einsatz von redoxaktiven Materialien birgt das Potential, die Speicherkapazität und Effizienz von Wärmespeichersystem bedeutend zu steigern. Bei der zyklischen Reduktion und Oxidation solcher redoxaktiver Materialien kann zusätzliche Wärme gespeichert (Reduktion) und wieder entnommen werden (Oxidation). Im Projekt Porotherm-Solar werden Speichermodule aus redoxaktivem Perowskit entwickelt und unter Realbedingungen in einem Demonstrator erprobt.

Entwicklung offenporiger monolithischer Perowskitstrukturen als hybride thermische Speicher, Teilvorhaben: Keramikherstellung mittels 3D-Druck und Charakterisierung

Regelbare Kraftwerke, welche Strom je nach Bedarf liefern können, indem sie ihre Leistung anpassen und kurzfristig ein- und ausgeschaltet werden können, gewinnen im Kontext der Energiewende zunehmend an Bedeutung. Bei der direkten Stromgewinnung, z.B. mittels Photovoltaik oder Windkraft, muss die gewonnene elektrische Energie sofort in das Netz eingespeist werden, oder in großen Batteriespeichersystem gespeichert werden. Dafür benötigte Speichersysteme mit langfristiger Betriebszuverlässigkeit und wettbewerbsfähigen Kosten sind noch nicht kommerziell verfügbar. Wärme kann hingegen zu wesentlich geringeren Kosten als Strom gespeichert und bei Bedarf zur Stromerzeugung genutzt werden. So kann aus überschüssigem Strom erzeugte Wärme in großem Umfang und über lange Zeiträume gespeichert werden, aber auch einem CSP (Concentrated Solar Power)-Kraftwerk die notwendige Flexibilität verleihen, Wärme und Strom dann zu liefern, wenn eine große Nachfrage besteht. Dies ist eine unabdingbare Voraussetzung für die weitere kommerzielle Nutzung von CSP. Durch leistungsfähige Wärmespeicher kann der Stromgewinnungsprozess weitestgehend von der Wärmegewinnung entkoppelt werden und so das Potential der Regelbarkeit und Flexibilität optimal genutzt werden. Kommerziell verfügbar sind im Bereich von Temperaturen über 700°C aktuell lediglich Wärmespeichersysteme, welche auf dem Prinzip der sensiblen, also nicht reaktiven, Wärmespeicherung basieren. Ein Einsatz von redoxaktiven Materialien birgt das Potential, die Speicherkapazität und Effizienz von Wärmespeichersystem bedeutend zu steigern. Bei der zyklischen Reduktion und Oxidation solcher redoxaktiver Materialien kann zusätzliche Wärme gespeichert (Reduktion) und wieder entnommen werden (Oxidation). Im Projekt Porotherm-Solar werden Speichermodule aus redoxaktivem Perowskit entwickelt und unter Realbedingungen in einem Demonstrator erprobt.

Entwicklung offenporiger monolithischer Perowskitstrukturen als hybride thermische Speicher, Teilvorhaben: Entwicklung offenporiger monolithischer Perowskitstrukturen als hybride thermische Speicher- Herstellung modularer Strukturen mittels Extrusion

Regelbare Kraftwerke, welche Strom je nach Bedarf liefern können, indem sie ihre Leistung anpassen und kurzfristig ein- und ausgeschaltet werden können, gewinnen im Kontext der Energiewende zunehmend an Bedeutung. Bei der direkten Stromgewinnung, z.B. mittels Photovoltaik oder Windkraft, muss die gewonnene elektrische Energie sofort in das Netz eingespeist werden, oder in großen Batteriespeichersystem gespeichert werden. Dafür benötigte Speichersysteme mit langfristiger Betriebszuverlässigkeit und wettbewerbsfähigen Kosten sind noch nicht kommerziell verfügbar. Wärme kann hingegen zu wesentlich geringeren Kosten als Strom gespeichert und bei Bedarf zur Stromerzeugung genutzt werden. So kann aus überschüssigem Strom erzeugte Wärme in großem Umfang und über lange Zeiträume gespeichert werden, aber auch einem CSP (Concentrated Solar Power)-Kraftwerk die notwendige Flexibilität verleihen, Wärme und Strom dann zu liefern, wenn eine große Nachfrage besteht. Dies ist eine unabdingbare Voraussetzung für die weitere kommerzielle Nutzung von CSP. Durch leistungsfähige Wärmespeicher kann der Stromgewinnungsprozess weitestgehend von der Wärmegewinnung entkoppelt werden und so das Potential der Regelbarkeit und Flexibilität optimal genutzt werden. Kommerziell verfügbar sind im Bereich von Temperaturen über 700°C aktuell lediglich Wärmespeichersysteme, welche auf dem Prinzip der sensiblen, also nicht reaktiven, Wärmespeicherung basieren. Ein Einsatz von redoxaktiven Materialien birgt das Potential, die Speicherkapazität und Effizienz von Wärmespeichersystem bedeutend zu steigern. Bei der zyklischen Reduktion und Oxidation solcher redoxaktiver Materialien kann zusätzliche Wärme gespeichert (Reduktion) und wieder entnommen werden (Oxidation). Im Projekt Porotherm-Solar werden Speichermodule aus redoxaktivem Perowskit entwickelt und unter Realbedingungen in einem Demonstrator erprobt.

Entwicklung offenporiger monolithischer Perowskitstrukturen als hybride thermische Speicher, Teilvorhaben: Design, Entwicklung und Bau der Demonstrator Einheit

Regelbare Kraftwerke, welche Strom je nach Bedarf liefern können, indem sie ihre Leistung anpassen und kurzfristig ein- und ausgeschaltet werden können, gewinnen im Kontext der Energiewende zunehmend an Bedeutung. Bei der direkten Stromgewinnung, z.B. mittels Photovoltaik oder Windkraft, muss die gewonnene elektrische Energie sofort in das Netz eingespeist werden, oder in großen Batteriespeichersystem gespeichert werden. Dafür benötigte Speichersysteme mit langfristiger Betriebszuverlässigkeit und wettbewerbsfähigen Kosten sind noch nicht kommerziell verfügbar. Wärme kann hingegen zu wesentlich geringeren Kosten als Strom gespeichert und bei Bedarf zur Stromerzeugung genutzt werden. So kann aus überschüssigem Strom erzeugte Wärme in großem Umfang und über lange Zeiträume gespeichert werden, aber auch einem CSP (Concentrated Solar Power)-Kraftwerk die notwendige Flexibilität verleihen, Wärme und Strom dann zu liefern, wenn eine große Nachfrage besteht. Dies ist eine unabdingbare Voraussetzung für die weitere kommerzielle Nutzung von CSP. Durch leistungsfähige Wärmespeicher kann der Stromgewinnungsprozess weitestgehend von der Wärmegewinnung entkoppelt werden und so das Potential der Regelbarkeit und Flexibilität optimal genutzt werden. Kommerziell verfügbar sind im Bereich von Temperaturen über 700°C aktuell lediglich Wärmespeichersysteme, welche auf dem Prinzip der sensiblen, also nicht reaktiven, Wärmespeicherung basieren. Ein Einsatz von redoxaktiven Materialien birgt das Potential, die Speicherkapazität und Effizienz von Wärmespeichersystem bedeutend zu steigern. Bei der zyklischen Reduktion und Oxidation solcher redoxaktiver Materialien kann zusätzliche Wärme gespeichert (Reduktion) und wieder entnommen werden (Oxidation). Im Projekt Porotherm-Solar werden Speichermodule aus redoxaktivem Perowskit entwickelt und unter Realbedingungen in einem Demonstrator erprobt.

Entwicklung offenporiger monolithischer Perowskitstrukturen als hybride thermische Speicher

Regelbare Kraftwerke, welche Strom je nach Bedarf liefern können, indem sie ihre Leistung anpassen und kurzfristig ein- und ausgeschaltet werden können, gewinnen im Kontext der Energiewende zunehmend an Bedeutung. Bei der direkten Stromgewinnung, z.B. mittels Photovoltaik oder Windkraft, muss die gewonnene elektrische Energie sofort in das Netz eingespeist werden, oder in großen Batteriespeichersystem gespeichert werden. Dafür benötigte Speichersysteme mit langfristiger Betriebszuverlässigkeit und wettbewerbsfähigen Kosten sind noch nicht kommerziell verfügbar. Wärme kann hingegen zu wesentlich geringeren Kosten als Strom gespeichert und bei Bedarf zur Stromerzeugung genutzt werden. So kann aus überschüssigem Strom erzeugte Wärme in großem Umfang und über lange Zeiträume gespeichert werden, aber auch einem CSP (Concentrated Solar Power)-Kraftwerk die notwendige Flexibilität verleihen, Wärme und Strom dann zu liefern, wenn eine große Nachfrage besteht. Dies ist eine unabdingbare Voraussetzung für die weitere kommerzielle Nutzung von CSP. Durch leistungsfähige Wärmespeicher kann der Stromgewinnungsprozess weitestgehend von der Wärmegewinnung entkoppelt werden und so das Potential der Regelbarkeit und Flexibilität optimal genutzt werden. Kommerziell verfügbar sind im Bereich von Temperaturen über 700°C aktuell lediglich Wärmespeichersysteme, welche auf dem Prinzip der sensiblen, also nicht reaktiven, Wärmespeicherung basieren. Ein Einsatz von redoxaktiven Materialien birgt das Potential, die Speicherkapazität und Effizienz von Wärmespeichersystem bedeutend zu steigern. Bei der zyklischen Reduktion und Oxidation solcher redoxaktiver Materialien kann zusätzliche Wärme gespeichert (Reduktion) und wieder entnommen werden (Oxidation). Im Projekt Porotherm-Solar werden Speichermodule aus redoxaktivem Perowskit entwickelt und unter Realbedingungen in einem Demonstrator erprobt.

Entwicklung offenporiger monolithischer Perowskitstrukturen als hybride thermische Speicher, Teilvorhaben: Identifikation von Perowskitmaterialien für die Anwendung in thermischen Speichern durch Datenanalyse und Entwicklung geeigneter Algorithmen

Regelbare Kraftwerke, welche Strom je nach Bedarf liefern können, indem sie ihre Leistung anpassen und kurzfristig ein- und ausgeschaltet werden können, gewinnen im Kontext der Energiewende zunehmend an Bedeutung. Bei der direkten Stromgewinnung, z.B. mittels Photovoltaik oder Windkraft, muss die gewonnene elektrische Energie sofort in das Netz eingespeist werden, oder in großen Batteriespeichersystem gespeichert werden. Dafür benötigte Speichersysteme mit langfristiger Betriebszuverlässigkeit und wettbewerbsfähigen Kosten sind noch nicht kommerziell verfügbar. Wärme kann hingegen zu wesentlich geringeren Kosten als Strom gespeichert und bei Bedarf zur Stromerzeugung genutzt werden. So kann aus überschüssigem Strom erzeugte Wärme in großem Umfang und über lange Zeiträume gespeichert werden, aber auch einem CSP (Concentrated Solar Power)-Kraftwerk die notwendige Flexibilität verleihen, Wärme und Strom dann zu liefern, wenn eine große Nachfrage besteht. Dies ist eine unabdingbare Voraussetzung für die weitere kommerzielle Nutzung von CSP. Durch leistungsfähige Wärmespeicher kann der Stromgewinnungsprozess weitestgehend von der Wärmegewinnung entkoppelt werden und so das Potential der Regelbarkeit und Flexibilität optimal genutzt werden. Kommerziell verfügbar sind im Bereich von Temperaturen über 700°C aktuell lediglich Wärmespeichersysteme, welche auf dem Prinzip der sensiblen, also nicht reaktiven, Wärmespeicherung basieren. Ein Einsatz von redoxaktiven Materialien birgt das Potential, die Speicherkapazität und Effizienz von Wärmespeichersystem bedeutend zu steigern. Bei der zyklischen Reduktion und Oxidation solcher redoxaktiver Materialien kann zusätzliche Wärme gespeichert (Reduktion) und wieder entnommen werden (Oxidation). Im Projekt Porotherm-Solar werden Speichermodule aus redoxaktivem Perowskit entwickelt und unter Realbedingungen in einem Demonstrator erprobt.

ZUverlässigkeit und Performance von PV-Modulen, Systemen und Anwendungen, Teilvorhaben: Technisch-ökonomische Bewertungskriterien

Durch beständige Kostensenkungen bei den Komponenten ist die Photovoltaik (PV) laut Internationaler Energieagentur (IEA) inzwischen die Energiequelle mit den niedrigsten Elektrizitätskosten der Geschichte. Mit diesen Kostensenkungen und sinkenden Anfangsinvestitionen steigt der Anteil der laufenden Kosten an den Stromgestehungskosten kontinuierlich. Die (anfängliche) Performance der PV-Systeme im laufenden Betrieb sowie die Entwicklung dieser Performance im Laufe der Lebensdauer gewinnen aus diesem Grunde ständig an Bedeutung. Die Zuverlässigkeit von PV-Komponenten stellt wiederum einen wichtigen Baustein für die Performance im Zeitverlauf und für die Höhe von Ersatzinvestitionen dar und wirkt sich damit direkt auf die Stromgestehungskosten aus. Performance und Zuverlässigkeit von PV-Modulen und -Systemen spielen damit eine wichtige Rolle, um weitere Fortschritte bei der Verbreitung der PV als klimaschonende Form der Energiegewinnung erzielen zu können. Neben diesen beiden Eigenschaften stehen dabei neue Anwendungsfelder der PV, wie schwimmende PV oder Agri-Photovoltaik zur Erschließung weiterer Potenziale im Fokus.

ZUverlässigkeit und Performance von PV-Modulen, Systemen und Anwendungen, Teilvorhaben: Zuverlässigkeit von PV-Anwendungen

Durch beständige Kostensenkungen bei den Komponenten ist die Photovoltaik laut Internationaler Energieagentur inzwischen die Energiequelle mit den niedrigsten Elektrizitätskosten der Geschichte. Mit diesen Kostensenkungen und sinkenden Anfangsinvestitionen steigt der Anteil der laufenden Kosten an den Stromgestehungskosten kontinuierlich. Die Performance der PV-Systeme im laufenden Betrieb sowie die Entwicklung dieser Performance im Laufe der Lebensdauer gewinnen ständig an Bedeutung. Die Zuverlässigkeit von PV-Komponenten stellt wiederum einen wichtigen Baustein für die Performance im Zeitverlauf und für die Höhe von Ersatzinvestitionen dar und wirkt sich damit direkt auf die Stromgestehungskosten aus. Performance und Zuverlässigkeit von PV-Modulen und -Systemen spielen damit eine wichtige Rolle, um weitere Fortschritte bei der Verbreitung der PV als klimaschonende Form der Energiegewinnung erzielen zu können. Neben diesen beiden Eigenschaften stehen dabei neue Anwendungsfelder der PV, wie schwimmende PV oder Agri-Photovoltaik zur Erschließung weiterer Potenziale im Fokus.

1 2 3 4 524 25 26