Regelbare Kraftwerke, welche Strom je nach Bedarf liefern können, indem sie ihre Leistung anpassen und kurzfristig ein- und ausgeschaltet werden können, gewinnen im Kontext der Energiewende zunehmend an Bedeutung. Bei der direkten Stromgewinnung, z.B. mittels Photovoltaik oder Windkraft, muss die gewonnene elektrische Energie sofort in das Netz eingespeist werden, oder in großen Batteriespeichersystem gespeichert werden. Dafür benötigte Speichersysteme mit langfristiger Betriebszuverlässigkeit und wettbewerbsfähigen Kosten sind noch nicht kommerziell verfügbar. Wärme kann hingegen zu wesentlich geringeren Kosten als Strom gespeichert und bei Bedarf zur Stromerzeugung genutzt werden. So kann aus überschüssigem Strom erzeugte Wärme in großem Umfang und über lange Zeiträume gespeichert werden, aber auch einem CSP (Concentrated Solar Power)-Kraftwerk die notwendige Flexibilität verleihen, Wärme und Strom dann zu liefern, wenn eine große Nachfrage besteht. Dies ist eine unabdingbare Voraussetzung für die weitere kommerzielle Nutzung von CSP. Durch leistungsfähige Wärmespeicher kann der Stromgewinnungsprozess weitestgehend von der Wärmegewinnung entkoppelt werden und so das Potential der Regelbarkeit und Flexibilität optimal genutzt werden. Kommerziell verfügbar sind im Bereich von Temperaturen über 700°C aktuell lediglich Wärmespeichersysteme, welche auf dem Prinzip der sensiblen, also nicht reaktiven, Wärmespeicherung basieren. Ein Einsatz von redoxaktiven Materialien birgt das Potential, die Speicherkapazität und Effizienz von Wärmespeichersystem bedeutend zu steigern. Bei der zyklischen Reduktion und Oxidation solcher redoxaktiver Materialien kann zusätzliche Wärme gespeichert (Reduktion) und wieder entnommen werden (Oxidation). Im Projekt Porotherm-Solar werden Speichermodule aus redoxaktivem Perowskit entwickelt und unter Realbedingungen in einem Demonstrator erprobt.
: Bei Kauf und Nutzung auf Energieeffizienz achten Wie Sie am besten umweltschonend Ihre Wäsche trocknen Kaufen Sie einen Wäscheständer oder eine Wäscheleine: Das ist die energieeffizienteste Form der Wäschetrocknung. Bei einem elektrischen Wäschetrockner: Kaufen Sie ein Gerät mit niedrigem Stromverbrauch (A+++-Geräte). Schleudern Sie die Wäsche mit möglichst hoher Drehzahl. Entsorgen Sie Ihre Altgeräte sachgerecht bei der kommunalen Sammelstelle oder beim Neukauf über den Händler. Gewusst wie Sparsame Geräte: Bei Wäschetrocknern gibt es große Unterschiede im Energieverbrauch. Die Stromkosten summieren sich – je nach Modell und Nutzungshäufigkeit – auf über 1.000 Euro im Laufe von 15 Jahren. Die sparsamsten Geräte tragen aktuellhaben seit 2021 die Energieeffizienzklassen A++ oder A+++ ( EU-Label ). Es handelt sich dabei um elektrische Kondensationstrockner mit Wärmepumpentechnologie. Die sparsamen Geräte der besten Effizienzklasse sind in der Anschaffung zwar teurer, verbrauchen aber nur die Hälfte der Energie eines Geräts der Effizienzklasse B. Aber auch innerhalb der A-Kategorie gibt es noch große Unterschiede. Im günstigsten Fall spart das laut Stiftung Warentest nach zehn Betriebsjahren 570 Euro Stromkosten. Die richtigen Handgriffe: Wichtig ist, dass Sie die Wäsche möglichst trocken aus der Waschmaschine holen. Wählen Sie hierzu die höchstmögliche Schleuderdrehzahl Ihrer Waschmaschine (Richtwert: 1.400 Umdrehungen). Je höher die Schleuderdrehzahl, desto stärker wird die Wäsche entfeuchtet und desto weniger Energie benötigt der Trocknungsgang im Trockner. Der Energieverbrauch für die höhere Schleuderzahl ist dabei zu vernachlässigen. So lange wie möglich nutzen: Für Klima und Haushaltskasse lohnt es sich, Wäschetrockner so lange wie möglich zu nutzen und bei Bedarf zu reparieren. Ausnahmen gelten nur für sehr intensiv genutzte Bestandsgeräte, die sehr viel Strom verbrauchen: Nur bei intensiv genutzte Ablufttrocknern der Effizienzklasse D (alte Klassen bis 2021) oder schlechter und Kondensationstrocknern mit elektrischer Widerstandsheizung der Effizienzklasse C oder schlechter lohnt sich der Austausch eines funktionierenden Gerätes. Das gilt für das Klima ebenso wie für die Haushaltskasse. Auch die meisten Reparaturen lohnen sich finanziell und für das Klima. Bei einem defekten Wäschetrockner lohnt sich die Reparatur meist sowohl finanziell als auch ökologisch. Für das Klima lohnt der Austausch nur bei einem intensiv genutzten Gerät der Effizienzklasse C oder schlechter, und für die Haushaltskasse nur bei einem intensiv genutzten Gerät der Effizienzklasse B oder schlechter (alte Klassen vor 2021) und wenn zudem die Reparatur mindestens 320 Euro kostet. Weitere Informationen finden Sie in der Abbildung. Die Grafik zeigt, ob sich der Weiterbetrieb oder die Reparatur von Wäschetrocknern ökologisch und ökonomisch lohnt – betrachtet über 10 Jahre. Ein Austausch funktionierender Geräte lohnt meist nicht. Ausnahmen: intensiv genutzte Ablufttrockner (Effizienzklasse D oder schlechter) und Kondensationstrockner mit Widerstandsheizung (Klasse C oder schlechter; alte Klassen vor 2021) – hier lohnt der Austausch ökologisch und finanziell. Reparaturen lohnen meist. Ausnahmen: ökologisch bei intensiv genutzten Geräten ab Klasse C, ökonomisch ab Klasse B bei Reparaturkosten von mind. 320 €. Verglichen wird mit einem Gerät der Klasse A+++ (Preis: 1.033 €, Label bis Juli 2025). Intensive Nutzung = ab 705 kg/Jahr, normale = 407 kg/Jahr. Richtig entsorgen: Weitere Informationen zur richtigen Entsorgung Ihres Wäschetrockners und anderer Elektroaltgeräte finden Sie in unserem UBA-Umwelttipp "Alte Elektrogeräte richtig entsorgen" . Was Sie noch tun können: Trocknen Sie möglichst ihre Wäsche im Freien oder in unbeheizten und gut belüfteten Räumen. Wenn Sie die Wäsche in der Wohnung trocknen, lüften Sie vor allem im Winter ausreichend (kurzes Stoßlüften von jeweils 5-10 Min.). Damit verhindern Sie Schimmel. Reinigen Sie regelmäßig alle Siebe des Trockners gemäß Bedienungsanleitung, da sonst mit längerer Trocknungsdauer und höherem Energieverbrauch zu rechnen ist. Achten Sie beim Kauf eines neuen Gerätes darauf, dass es einen Feuchtigkeitsmesser hat. So schaltet sich der Wäschetrockner ab, wenn der gewünschte Trocknungsgrad erreicht ist. Kaufen Sie Geräte mit halogenfreien Kältemitteln (in der Regel Propan (R290)). Wie bei der Waschmaschine gilt auch beim Trockner: Gerät voll beladen. Das bringt bei höchster Effizienz den günstigsten Energieverbrauch. Beachten Sie auch unsere Tipps zu Wäsche waschen und Waschmittel . Hintergrund Neue, effiziente Wäschetrockner haben stets eine Wärmepumpe, die die Luft zum Trocknen aufheizt. Die feuchte Luft kondensiert an der kalten Seite der Wärmepumpe. Ältere Geräte sind oft noch Ablufttrockner oder widerstandsbeheizte Kondensationstrockner. Bei Ablufttrocknern wird wird die feuchte Abluft über einen Schlauch nach außen – meist durch ein offenes Keller- oder Badezimmerfenster – an die Umwelt abgegeben. Dadurch wird auch Luft aus dem Haus nach außen befördert, so dass der Raum im Winter mehr geheizt werden muss. Bei Kondensationstrocknern wird wie bei modernen Wärmepumpentrocknern die Feuchtigkeit im Gerät kondensiert und in einem Behälter aufgefangen. Die Luft wird jedoch nicht mit einer Wärmepumpe, sondern wie ein Föhn mit einer Widerstandsheizung erwärmt. Trockner mit Wärmepumpe verwenden als Kältemittel häufig teilfluorierte Kohlenwasserstoffe (HFKW) mit hohen Treibhauspotenzialen, z. B. R-134a oder R-407C. Durch illegal entsorgte Trockner können diese Stoffe unkontrolliert in die Atmosphäre entweichen und zur weiteren Erwärmung der Erdatmosphäre beitragen. Die meisten aktuellen Geräte haben inzwischen halogenfreie Kältemitteln. Meistens ist dies Propan (R-290). Dieser halogenfreie Kohlenwasserstoff hat nur ein sehr geringes Treibhauspotenzial. Vor einigen Jahren gab es noch gasbeheizte Ablufttrockner, die inzwischen jedoch für den privaten Gebrauch nicht mehr angeboten werden. Neben Wäschetrocknern gibt es noch Waschtrockner. Das ist eine Kombination aus Waschmaschine und Wäschetrockner in einem Gerät. Diese Kombinationsgeräte sind jedoch weniger effizient als die Waschmaschine und Wäschetrockner als Einzelgeräte.
Durch beständige Kostensenkungen bei den Komponenten ist die Photovoltaik (PV) laut Internationaler Energieagentur (IEA) inzwischen die Energiequelle mit den niedrigsten Elektrizitätskosten der Geschichte. Mit diesen Kostensenkungen und sinkenden Anfangsinvestitionen steigt der Anteil der laufenden Kosten an den Stromgestehungskosten kontinuierlich. Die (anfängliche) Performance der PV-Systeme im laufenden Betrieb sowie die Entwicklung dieser Performance im Laufe der Lebensdauer gewinnen aus diesem Grunde ständig an Bedeutung. Die Zuverlässigkeit von PV-Komponenten stellt wiederum einen wichtigen Baustein für die Performance im Zeitverlauf und für die Höhe von Ersatzinvestitionen dar und wirkt sich damit direkt auf die Stromgestehungskosten aus. Performance und Zuverlässigkeit von PV-Modulen und -Systemen spielen damit eine wichtige Rolle, um weitere Fortschritte bei der Verbreitung der PV als klimaschonende Form der Energiegewinnung erzielen zu können. Neben diesen beiden Eigenschaften stehen dabei neue Anwendungsfelder der PV, wie schwimmende PV oder Agri-Photovoltaik zur Erschließung weiterer Potenziale im Fokus.
Regelbare Kraftwerke, welche Strom je nach Bedarf liefern können, indem sie ihre Leistung anpassen und kurzfristig ein- und ausgeschaltet werden können, gewinnen im Kontext der Energiewende zunehmend an Bedeutung. Bei der direkten Stromgewinnung, z.B. mittels Photovoltaik oder Windkraft, muss die gewonnene elektrische Energie sofort in das Netz eingespeist werden, oder in großen Batteriespeichersystem gespeichert werden. Dafür benötigte Speichersysteme mit langfristiger Betriebszuverlässigkeit und wettbewerbsfähigen Kosten sind noch nicht kommerziell verfügbar. Wärme kann hingegen zu wesentlich geringeren Kosten als Strom gespeichert und bei Bedarf zur Stromerzeugung genutzt werden. So kann aus überschüssigem Strom erzeugte Wärme in großem Umfang und über lange Zeiträume gespeichert werden, aber auch einem CSP (Concentrated Solar Power)-Kraftwerk die notwendige Flexibilität verleihen, Wärme und Strom dann zu liefern, wenn eine große Nachfrage besteht. Dies ist eine unabdingbare Voraussetzung für die weitere kommerzielle Nutzung von CSP. Durch leistungsfähige Wärmespeicher kann der Stromgewinnungsprozess weitestgehend von der Wärmegewinnung entkoppelt werden und so das Potential der Regelbarkeit und Flexibilität optimal genutzt werden. Kommerziell verfügbar sind im Bereich von Temperaturen über 700°C aktuell lediglich Wärmespeichersysteme, welche auf dem Prinzip der sensiblen, also nicht reaktiven, Wärmespeicherung basieren. Ein Einsatz von redoxaktiven Materialien birgt das Potential, die Speicherkapazität und Effizienz von Wärmespeichersystem bedeutend zu steigern. Bei der zyklischen Reduktion und Oxidation solcher redoxaktiver Materialien kann zusätzliche Wärme gespeichert (Reduktion) und wieder entnommen werden (Oxidation). Im Projekt Porotherm-Solar werden Speichermodule aus redoxaktivem Perowskit entwickelt und unter Realbedingungen in einem Demonstrator erprobt.
Regelbare Kraftwerke, welche Strom je nach Bedarf liefern können, indem sie ihre Leistung anpassen und kurzfristig ein- und ausgeschaltet werden können, gewinnen im Kontext der Energiewende zunehmend an Bedeutung. Bei der direkten Stromgewinnung, z.B. mittels Photovoltaik oder Windkraft, muss die gewonnene elektrische Energie sofort in das Netz eingespeist werden, oder in großen Batteriespeichersystem gespeichert werden. Dafür benötigte Speichersysteme mit langfristiger Betriebszuverlässigkeit und wettbewerbsfähigen Kosten sind noch nicht kommerziell verfügbar. Wärme kann hingegen zu wesentlich geringeren Kosten als Strom gespeichert und bei Bedarf zur Stromerzeugung genutzt werden. So kann aus überschüssigem Strom erzeugte Wärme in großem Umfang und über lange Zeiträume gespeichert werden, aber auch einem CSP (Concentrated Solar Power)-Kraftwerk die notwendige Flexibilität verleihen, Wärme und Strom dann zu liefern, wenn eine große Nachfrage besteht. Dies ist eine unabdingbare Voraussetzung für die weitere kommerzielle Nutzung von CSP. Durch leistungsfähige Wärmespeicher kann der Stromgewinnungsprozess weitestgehend von der Wärmegewinnung entkoppelt werden und so das Potential der Regelbarkeit und Flexibilität optimal genutzt werden. Kommerziell verfügbar sind im Bereich von Temperaturen über 700°C aktuell lediglich Wärmespeichersysteme, welche auf dem Prinzip der sensiblen, also nicht reaktiven, Wärmespeicherung basieren. Ein Einsatz von redoxaktiven Materialien birgt das Potential, die Speicherkapazität und Effizienz von Wärmespeichersystem bedeutend zu steigern. Bei der zyklischen Reduktion und Oxidation solcher redoxaktiver Materialien kann zusätzliche Wärme gespeichert (Reduktion) und wieder entnommen werden (Oxidation). Im Projekt Porotherm-Solar werden Speichermodule aus redoxaktivem Perowskit entwickelt und unter Realbedingungen in einem Demonstrator erprobt.
Regelbare Kraftwerke, welche Strom je nach Bedarf liefern können, indem sie ihre Leistung anpassen und kurzfristig ein- und ausgeschaltet werden können, gewinnen im Kontext der Energiewende zunehmend an Bedeutung. Bei der direkten Stromgewinnung, z.B. mittels Photovoltaik oder Windkraft, muss die gewonnene elektrische Energie sofort in das Netz eingespeist werden, oder in großen Batteriespeichersystem gespeichert werden. Dafür benötigte Speichersysteme mit langfristiger Betriebszuverlässigkeit und wettbewerbsfähigen Kosten sind noch nicht kommerziell verfügbar. Wärme kann hingegen zu wesentlich geringeren Kosten als Strom gespeichert und bei Bedarf zur Stromerzeugung genutzt werden. So kann aus überschüssigem Strom erzeugte Wärme in großem Umfang und über lange Zeiträume gespeichert werden, aber auch einem CSP (Concentrated Solar Power)-Kraftwerk die notwendige Flexibilität verleihen, Wärme und Strom dann zu liefern, wenn eine große Nachfrage besteht. Dies ist eine unabdingbare Voraussetzung für die weitere kommerzielle Nutzung von CSP. Durch leistungsfähige Wärmespeicher kann der Stromgewinnungsprozess weitestgehend von der Wärmegewinnung entkoppelt werden und so das Potential der Regelbarkeit und Flexibilität optimal genutzt werden. Kommerziell verfügbar sind im Bereich von Temperaturen über 700°C aktuell lediglich Wärmespeichersysteme, welche auf dem Prinzip der sensiblen, also nicht reaktiven, Wärmespeicherung basieren. Ein Einsatz von redoxaktiven Materialien birgt das Potential, die Speicherkapazität und Effizienz von Wärmespeichersystem bedeutend zu steigern. Bei der zyklischen Reduktion und Oxidation solcher redoxaktiver Materialien kann zusätzliche Wärme gespeichert (Reduktion) und wieder entnommen werden (Oxidation). Im Projekt Porotherm-Solar werden Speichermodule aus redoxaktivem Perowskit entwickelt und unter Realbedingungen in einem Demonstrator erprobt.
Regelbare Kraftwerke, welche Strom je nach Bedarf liefern können, indem sie ihre Leistung anpassen und kurzfristig ein- und ausgeschaltet werden können, gewinnen im Kontext der Energiewende zunehmend an Bedeutung. Bei der direkten Stromgewinnung, z.B. mittels Photovoltaik oder Windkraft, muss die gewonnene elektrische Energie sofort in das Netz eingespeist werden, oder in großen Batteriespeichersystem gespeichert werden. Dafür benötigte Speichersysteme mit langfristiger Betriebszuverlässigkeit und wettbewerbsfähigen Kosten sind noch nicht kommerziell verfügbar. Wärme kann hingegen zu wesentlich geringeren Kosten als Strom gespeichert und bei Bedarf zur Stromerzeugung genutzt werden. So kann aus überschüssigem Strom erzeugte Wärme in großem Umfang und über lange Zeiträume gespeichert werden, aber auch einem CSP (Concentrated Solar Power)-Kraftwerk die notwendige Flexibilität verleihen, Wärme und Strom dann zu liefern, wenn eine große Nachfrage besteht. Dies ist eine unabdingbare Voraussetzung für die weitere kommerzielle Nutzung von CSP. Durch leistungsfähige Wärmespeicher kann der Stromgewinnungsprozess weitestgehend von der Wärmegewinnung entkoppelt werden und so das Potential der Regelbarkeit und Flexibilität optimal genutzt werden. Kommerziell verfügbar sind im Bereich von Temperaturen über 700°C aktuell lediglich Wärmespeichersysteme, welche auf dem Prinzip der sensiblen, also nicht reaktiven, Wärmespeicherung basieren. Ein Einsatz von redoxaktiven Materialien birgt das Potential, die Speicherkapazität und Effizienz von Wärmespeichersystem bedeutend zu steigern. Bei der zyklischen Reduktion und Oxidation solcher redoxaktiver Materialien kann zusätzliche Wärme gespeichert (Reduktion) und wieder entnommen werden (Oxidation). Im Projekt Porotherm-Solar werden Speichermodule aus redoxaktivem Perowskit entwickelt und unter Realbedingungen in einem Demonstrator erprobt.
Regelbare Kraftwerke, welche Strom je nach Bedarf liefern können, indem sie ihre Leistung anpassen und kurzfristig ein- und ausgeschaltet werden können, gewinnen im Kontext der Energiewende zunehmend an Bedeutung. Bei der direkten Stromgewinnung, z.B. mittels Photovoltaik oder Windkraft, muss die gewonnene elektrische Energie sofort in das Netz eingespeist werden, oder in großen Batteriespeichersystem gespeichert werden. Dafür benötigte Speichersysteme mit langfristiger Betriebszuverlässigkeit und wettbewerbsfähigen Kosten sind noch nicht kommerziell verfügbar. Wärme kann hingegen zu wesentlich geringeren Kosten als Strom gespeichert und bei Bedarf zur Stromerzeugung genutzt werden. So kann aus überschüssigem Strom erzeugte Wärme in großem Umfang und über lange Zeiträume gespeichert werden, aber auch einem CSP (Concentrated Solar Power)-Kraftwerk die notwendige Flexibilität verleihen, Wärme und Strom dann zu liefern, wenn eine große Nachfrage besteht. Dies ist eine unabdingbare Voraussetzung für die weitere kommerzielle Nutzung von CSP. Durch leistungsfähige Wärmespeicher kann der Stromgewinnungsprozess weitestgehend von der Wärmegewinnung entkoppelt werden und so das Potential der Regelbarkeit und Flexibilität optimal genutzt werden. Kommerziell verfügbar sind im Bereich von Temperaturen über 700°C aktuell lediglich Wärmespeichersysteme, welche auf dem Prinzip der sensiblen, also nicht reaktiven, Wärmespeicherung basieren. Ein Einsatz von redoxaktiven Materialien birgt das Potential, die Speicherkapazität und Effizienz von Wärmespeichersystem bedeutend zu steigern. Bei der zyklischen Reduktion und Oxidation solcher redoxaktiver Materialien kann zusätzliche Wärme gespeichert (Reduktion) und wieder entnommen werden (Oxidation). Im Projekt Porotherm-Solar werden Speichermodule aus redoxaktivem Perowskit entwickelt und unter Realbedingungen in einem Demonstrator erprobt.
Regelbare Kraftwerke, welche Strom je nach Bedarf liefern können, indem sie ihre Leistung anpassen und kurzfristig ein- und ausgeschaltet werden können, gewinnen im Kontext der Energiewende zunehmend an Bedeutung. Bei der direkten Stromgewinnung, z.B. mittels Photovoltaik oder Windkraft, muss die gewonnene elektrische Energie sofort in das Netz eingespeist werden, oder in großen Batteriespeichersystem gespeichert werden. Dafür benötigte Speichersysteme mit langfristiger Betriebszuverlässigkeit und wettbewerbsfähigen Kosten sind noch nicht kommerziell verfügbar. Wärme kann hingegen zu wesentlich geringeren Kosten als Strom gespeichert und bei Bedarf zur Stromerzeugung genutzt werden. So kann aus überschüssigem Strom erzeugte Wärme in großem Umfang und über lange Zeiträume gespeichert werden, aber auch einem CSP (Concentrated Solar Power)-Kraftwerk die notwendige Flexibilität verleihen, Wärme und Strom dann zu liefern, wenn eine große Nachfrage besteht. Dies ist eine unabdingbare Voraussetzung für die weitere kommerzielle Nutzung von CSP. Durch leistungsfähige Wärmespeicher kann der Stromgewinnungsprozess weitestgehend von der Wärmegewinnung entkoppelt werden und so das Potential der Regelbarkeit und Flexibilität optimal genutzt werden. Kommerziell verfügbar sind im Bereich von Temperaturen über 700°C aktuell lediglich Wärmespeichersysteme, welche auf dem Prinzip der sensiblen, also nicht reaktiven, Wärmespeicherung basieren. Ein Einsatz von redoxaktiven Materialien birgt das Potential, die Speicherkapazität und Effizienz von Wärmespeichersystem bedeutend zu steigern. Bei der zyklischen Reduktion und Oxidation solcher redoxaktiver Materialien kann zusätzliche Wärme gespeichert (Reduktion) und wieder entnommen werden (Oxidation). Im Projekt Porotherm-Solar werden Speichermodule aus redoxaktivem Perowskit entwickelt und unter Realbedingungen in einem Demonstrator erprobt.
Origin | Count |
---|---|
Bund | 231 |
Land | 20 |
Type | Count |
---|---|
Ereignis | 1 |
Förderprogramm | 157 |
Gesetzestext | 2 |
Text | 76 |
unbekannt | 15 |
License | Count |
---|---|
geschlossen | 78 |
offen | 158 |
unbekannt | 15 |
Language | Count |
---|---|
Deutsch | 233 |
Englisch | 43 |
Resource type | Count |
---|---|
Archiv | 15 |
Datei | 19 |
Dokument | 56 |
Keine | 127 |
Webseite | 91 |
Topic | Count |
---|---|
Boden | 147 |
Lebewesen & Lebensräume | 128 |
Luft | 120 |
Mensch & Umwelt | 251 |
Wasser | 98 |
Weitere | 235 |