API src

Found 275 results.

Related terms

Felder um Hochspannungsleitungen: Freileitungen und Erdkabel

Felder um Hochspannungsleitungen: Freileitungen und Erdkabel Ob im Haushalt, bei der Arbeit oder unterwegs – überall wo Elektrizität erzeugt, übertragen oder genutzt wird, können wir elektrischen und magnetischen Feldern ausgesetzt sein. Hoch- und Höchstspannungsleitungen , die zum Transport und zur Verteilung von Elektrizität dienen, tragen ihren Teil zur Exposition ( d.h. Ausgesetztsein gegenüber elektromagnetischen Feldern) bei. Das BfS hat 2009 in einer Studie untersucht, wie stark die Felder um Hochspannungs-Freileitungen und -Erdkabel sind. Die höchsten Magnetfeldstärken befanden sich direkt unter 380 kV -Freileitungen und über 380 kV -Erdkabeln. Lange Hochspannungs-Gleichstromleitungen sind in Deutschland noch nicht gebaut. Deshalb gibt es noch keine Messergebnisse. In der Umgebung von Gleich- und Wechselstromleitungen treten elektrische und magnetische Felder auf. In der Regel machen aber elektrische Hausinstallationen und elektrische Geräte, die mit niedriger Spannung betrieben werden, den Hauptanteil der Feldbelastung aus. Wichtig ist: je weiter Hoch- oder Höchstspannungsleitungen, elektrische Geräte und Leitungen der Hausinstallation entfernt sind, desto geringer ist ihr Beitrag zur Gesamtexposition ( d.h. Ausgesetztsein gegenüber elektromagnetischen Feldern). Elektrische Felder Elektrische Felder werden vom Erdreich und von gewöhnlichen Baumaterialien gut abgeschirmt. Deshalb spielen sie bei Erdkabeln keine Rolle, treten aber im Freien in der Umgebung von Freileitungen auf. Die elektrische Feldstärke hängt vor allem von der Betriebsspannung einer Leitung ab. Unter 380 kV -Wechselstrom-Freileitungen (Höchstspannungsleitungen) können Feldstärken auftreten, die über dem Grenzwert für niederfrequente elektrische Felder liegen. Dieser gilt verbindlich nur für Orte, an denen sich Menschen längere Zeit aufhalten, wie zum Beispiel Wohngrundstücke oder Schulhöfe. Maßgeblich ist, wie der Ort üblicherweise genutzt wird. Bei Hoch- und Mittelspannungsleitungen wird der Grenzwert in der Regel auch direkt unterhalb der Leitungen eingehalten. Für Niederspannungsleitungen gilt der Grenzwert nicht, die elektrischen Feldstärken sind wegen der niedrigen Spannung aber klein. Von Gleichstromleitungen gehen statische elektrische Felder aus. Anders als die von Wechselstrom erzeugten niederfrequenten Felder wechseln sie nicht fortlaufend ihre Richtung. Längere Hochspannungs-Gleichstromleitungen sind in Deutschland erst in der Planung. Messwerte aus der Umgebung der Leitungen liegen noch nicht vor. Magnetische Felder Magnetische Felder treten bei Freileitungen und Erdkabeln auf. Sie werden durch das Erdreich oder durch Baumaterialien nicht abgeschirmt und dringen daher in Gebäude und auch in den menschlichen Körper ein. Magnetfelder entstehen, wenn Strom fließt. Weil die Magnetfeldstärke von der Stromstärke abhängt, schwanken die Feldstärken mit den Stromstärken in den Leitungen. Zu Tageszeiten, zu denen viel Strom genutzt oder weitergeleitet wird, ist deshalb auch das Magnetfeld um eine Leitung herum stärker. Die höchsten Feldstärken sind direkt unter Freileitungen und über Erdkabeln zu finden. Mit seitlichem Abstand zu einer Trasse nehmen sie deutlich ab. Bei Freileitungen hängt die Feldverteilung vor allem von der Masthöhe sowie vom Durchhang und der Anordnung der Leiterseile ab. Der Durchhang der Leiterseile wird unter anderem vom Abstand benachbarter Masten entlang der Trasse (Spannfeldlänge) und von der transportierten Strommenge bestimmt: Je mehr Strom fließt, desto wärmer werden die Seile. Dabei dehnen sie sich aus und hängen stärker durch. Der gleiche Effekt tritt im Sommer bei hohen Temperaturen auf. Im Winter kann Eis auf den Leitungen dazu führen, dass sie stärker durchhängen. Der geringere Abstand zum Boden kann dann einen Anstieg der Feldstärkewerte zur Folge haben. Bei Erdkabeln sind die Verlegetiefe, die Kabelanordnung und natürlich die Stromstärke entscheidend für die Magnetfeldstärken und deren Verteilung. Von Gleichstromleitungen gehen statische Magnetfelder aus. Anders als die von Wechselstrom erzeugten niederfrequenten Felder wechseln sie nicht fortlaufend ihre Richtung. Studie: Exposition durch magnetische Felder Das Bundesamt für Strahlenschutz ( BfS ) hat in einer Studie zur Erfassung der niederfrequenten magnetischen Exposition der Bürger in Bayern festgestellt, dass Personen, die nach eigener Auskunft im Umkreis von 100 Metern um eine Hochspannungsleitung wohnten, nur geringfügig (etwa 10 Prozent) höheren Feldern ausgesetzt waren als die anderen Studienteilnehmer. Die Expositionen wurden dabei über 24 Stunden erfasst und gemittelt. Elektrische und magnetische Felder von Freileitungen und Erdkabeln im Vergleich In einer 2009 abgeschlossenen Studie hat das BfS die Feldstärken in der Umgebung von Wechselstrom-Freileitungen und -Erdkabeln der Hoch- und Höchstspannungsebene messen lassen. Die höchsten Magnetfeldstärken wurden unter 380 kV -Freileitungen und über 380 kV -Erdkabeln gemessen. Sie betrugen 1 Meter über dem Erdboden 4,8 (Freileitung) beziehungsweise 3,5 (Erdkabel) Mikrotesla ( µT ). Magnetfelder an 380 kV Hochspannungs-Freileitungen und Erdkabeln: Die Abbildung zeigt die höchsten Werte, die nur bei maximaler Auslastung erreicht werden können. Der zum Zeitpunkt der Messung fließende Strom wurde bei den Betreibern der Leitungen abgefragt und die gemessenen Feldstärken wurden zusätzlich auf den Zustand hochgerechnet, der bei maximaler Stromübertragungsmenge auftreten kann (siehe Grafik). Bei den untersuchten Anlagen wurde auch unter dieser Bedingung der Grenzwert von 100 Mikrotesla in einer Messhöhe von 1 Meter über dem Erdboden eingehalten. Im Vergleich zu Freileitungstrassen nehmen die Magnetfelder bei Erdkabeln mit zunehmendem Abstand von der Trassenmitte deutlich früher und schneller ab, wie die nebenstehende Abbildung zeigt. Längere Hochspannungs-Gleichstromleitungen sind in Deutschland erst in der Planung. Messwerte aus der Umgebung der Leitungen liegen noch nicht vor. Mit baulichen und technischen Maßnahmen kann der Höchstwert von 40 Millitesla, den der Rat der Europäischen Union zum Schutz der Gesundheit empfiehlt, bei der geplanten Stromstärke deutlich unterschritten werden. Dies gilt für alle Bereiche, die für die Allgemeinbevölkerung zugänglich sind. Auch der Grenzwert von 500 Mikrotesla, der in Deutschland seit 2013 für Gleichstromanlagen gilt, wird voraussichtlich deutlich unterschritten. Die Grenzwerte für Gleichstromleitungen und Wechselstromleitungen weichen voneinander ab, weil die Wirkungen von statischen und niederfrequenten Feldern unterschiedlich sind. Stand: 28.02.2025

Hochleistungs-Halbleiter für eine energieeffiziente Hoch-spannungs-Gleichstrom-Übertragung, Teilvorhaben: Leistungsdichteanhebung des HGÜ-Konverters

Das Projekt "Hochleistungs-Halbleiter für eine energieeffiziente Hoch-spannungs-Gleichstrom-Übertragung, Teilvorhaben: Leistungsdichteanhebung des HGÜ-Konverters" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Siemens Energy Global GmbH & Co. KG.Die neue Bundesregierung hat im Koalitionsvertrag festgelegt, dass im Jahr 2030 80% des Strombedarfs aus erneuerbaren Energien stammen sollen. Offshore Windenergie ist ein wesentlicher Bestandteil dieser ehrgeizigen Ziele. Die Kapazitäten sollen auf mindestens 30 GW in 2030, 40 GW in 2035 und 70 GW in 2045 ausgebaut werden. Die Anbindung der Windparks an das Verbundnetz erfolgt dann über Hochspannungs-Gleichstrom-Übertragung, genauso wie der Transport der elektrischen Energie in die Verbrauchszentren West- und Süddeutschlands. Damit wird auch der Wirkungsgrad der Hochspannungs-Gleichstrom-Übertragung noch wichtiger. Größter Hebel - sowohl für die Wirkungsgradverbesserung als auch für die Reduktion der Investitionskosten der HGÜ Konverter - ist dabei die Reduktion der Anzahl der in Reihe geschalteten Submodule. Die Reihenschaltzahl ist durch die Sperrspannung der verwendeten Leistungshalbleiter bestimmt. Um die genannte Einsparziele zu erreichen, muss eine ganze Reihe innovativer Lösungen erforscht werden. Der Konverter muss für eine höhere Spannung pro Submodul geeignet sein, die Submodule müssen für die höhere Betriebsspannung ertüchtigt werden, vor allem aber - und dies ist die zentrale Innovation - muss die Sperrspannung der IGBT Module von 4500 V auf 6500 V angehoben werden, ohne dass die Verluste dabei signifikant steigen. Um dieses Ziel erreichen zu können, sind daher grundlegende Forschungsarbeiten an verschiedenen Stellen erforderlich. Es müssen sowohl die Chiptechnologie von IGBT und Diode, die Aufbau- und Verbindungstechnik im Modul als auch die Ansteuertechnik substantiell verbessert werden und kontinuierlich im Wechselspiel auf ihren Nutzen und ihre Umsetzbarkeit für zukünftige HGÜ Anlagen geprüft und co-optimiert werden.

Hochleistungs-Halbleiter für eine energieeffiziente Hoch-spannungs-Gleichstrom-Übertragung

Das Projekt "Hochleistungs-Halbleiter für eine energieeffiziente Hoch-spannungs-Gleichstrom-Übertragung" wird/wurde ausgeführt durch: Infineon Technologies AG.Die neue Bundesregierung hat im Koalitionsvertrag festgelegt, dass im Jahr 2030 80% des Strombedarfs aus erneuerbaren Energien stammen sollen. Offshore Windenergie ist ein wesentlicher Bestandteil dieser ehrgeizigen Ziele. Die Kapazitäten sollen auf mindestens 30 GW in 2030, 40 GW in 2035 und 70 GW in 2045 ausgebaut werden. Die Anbindung der Windparks an das Verbundnetz erfolgt dann über Hochspannungs-Gleichstrom-Übertragung, genauso wie der Transport der elektrischen Energie in die Verbrauchszentren West- und Süddeutschlands. Damit wird auch der Wirkungsgrad der Hochspannungs-Gleichstrom-Übertragung noch wichtiger. Größter Hebel - sowohl für die Wirkungsgradverbesserung als auch für die Reduktion der Investitionskosten der HGÜ Konverter - ist dabei die Reduktion der Anzahl der in Reihe geschalteten Submodule. Die Reihenschaltzahl ist durch die Sperrspannung der verwendeten Leistungshalbleiter bestimmt. Um die genannte Einsparziele zu erreichen, muss eine ganze Reihe innovativer Lösungen erforscht werden. Der Konverter muss für eine höhere Spannung pro Submodul geeignet sein, die Submodule müssen für die höhere Betriebsspannung ertüchtigt werden, vor allem aber - und dies ist die zentrale Innovation - muss die Sperrspannung der IGBT Module von 4500 V auf 6500 V angehoben werden, ohne dass die Verluste dabei signifikant steigen. Um dieses Ziel erreichen zu können, sind daher grundlegende Forschungsarbeiten an verschiedenen Stellen erforderlich. Es müssen sowohl die Chiptechnologie von IGBT und Diode, die Aufbau- und Verbindungstechnik im Modul als auch die Ansteuertechnik substantiell verbessert werden und kontinuierlich im Wechselspiel auf ihren Nutzen und ihre Umsetzbarkeit für zukünftige HGÜ Anlagen geprüft und co-optimiert werden.

Hochleistungs-Halbleiter für eine energieeffiziente Hoch-spannungs-Gleichstrom-Übertragung, Teilvorhaben: Hochleistungshalbleiter

Das Projekt "Hochleistungs-Halbleiter für eine energieeffiziente Hoch-spannungs-Gleichstrom-Übertragung, Teilvorhaben: Hochleistungshalbleiter" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Infineon Technologies AG.Die neue Bundesregierung hat im Koalitionsvertrag festgelegt, dass im Jahr 2030 80% des Strombedarfs aus erneuerbaren Energien stammen sollen. Offshore Windenergie ist ein wesentlicher Bestandteil dieser ehrgeizigen Ziele. Die Kapazitäten sollen auf mindestens 30 GW in 2030, 40 GW in 2035 und 70 GW in 2045 ausgebaut werden. Die Anbindung der Windparks an das Verbundnetz erfolgt dann über Hochspannungs-Gleichstrom-Übertragung, genauso wie der Transport der elektrischen Energie in die Verbrauchszentren West- und Süddeutschlands. Damit wird auch der Wirkungsgrad der Hochspannungs-Gleichstrom-Übertragung noch wichtiger. Größter Hebel - sowohl für die Wirkungsgradverbesserung als auch für die Reduktion der Investitionskosten der HGÜ Konverter - ist dabei die Reduktion der Anzahl der in Reihe geschalteten Submodule. Die Reihenschaltzahl ist durch die Sperrspannung der verwendeten Leistungshalbleiter bestimmt. Um die genannte Einsparziele zu erreichen, muss eine ganze Reihe innovativer Lösungen erforscht werden. Der Konverter muss für eine höhere Spannung pro Submodul geeignet sein, die Submodule müssen für die höhere Betriebsspannung ertüchtigt werden, vor allem aber - und dies ist die zentrale Innovation - muss die Sperrspannung der IGBT Module von 4500 V auf 6500 V angehoben werden, ohne dass die Verluste dabei signifikant steigen. Um dieses Ziel erreichen zu können, sind daher grundlegende Forschungsarbeiten an verschiedenen Stellen erforderlich. Es müssen sowohl die Chiptechnologie von IGBT und Diode, die Aufbau- und Verbindungstechnik im Modul als auch die Ansteuertechnik substantiell verbessert werden und kontinuierlich im Wechselspiel auf ihren Nutzen und ihre Umsetzbarkeit für zukünftige HGÜ Anlagen geprüft und co-optimiert werden.

Weiterentwicklung und Test von Wellenkraftwerksmodulen auf einer schwimmenden Plattform zur Stromerzeugung inklusive Entwicklung modularer Energiewandler für maritime Anwendungen, Teilvorhaben: Weiterentwicklung und Test von Wellenkraftwerksmodulen auf einer schwimmenden Plattform

Das Projekt "Weiterentwicklung und Test von Wellenkraftwerksmodulen auf einer schwimmenden Plattform zur Stromerzeugung inklusive Entwicklung modularer Energiewandler für maritime Anwendungen, Teilvorhaben: Weiterentwicklung und Test von Wellenkraftwerksmodulen auf einer schwimmenden Plattform" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: SINN Power GmbH.Der Antragsteller SINN Power GmbH wurde im Rahmen des 6. Energieforschungsprogramms (EFP) des Bundesministeriums für Wirtschaft und Energie (BMWi) unter dem Kennzeichen 0324190 gefördert, um die 'Erprobung eines modularen Konzepts zur Erzeugung von netzkonformem Strom aus unregelmäßigen Meereswellen in einem Generatoren-Verbund' voranzutreiben. Das Projekt SINN-Wave 2.0 knüpft an die Ergebnisse des erfolgreich abgeschlossenen Projekts an und hat folgende Arbeitsziele: - Optimierung der mechanischen Komponenten der eigenentwickelten Wellenkraftwerksmodule und deren Integration in den Prototypen der Ocean Hybrid Platform - SOcean. - Zertifizierung der Ocean Hybrid Platform - SOcean. - Optimierung der eigenentwickelten Leistungselektronik, deren Zertifizierung sowie die Inbetriebnahme des Smart-Grids auf dem schwimmenden Kraftwerk. - Dauertest des schwimmenden Kraftwerks mit Durchführung von mechanischen und elektrischen Tests. Das Ziel ist der Nachweis der Langlebigkeit, Widerstandfähigkeit und dauerhaften Betriebssicherheit der Wellenkraftwerksmodule und der schwimmenden Plattform. - In Kooperation mit der Hochschule München wird ein kompakter, modularer Energiewandlers für verlustarme Stromübertragung auf Mittelstrecken für maritime Anwendungen konzipiert, entwickelt und auf dem schwimmenden Kraftwerk getestet.

Weiterentwicklung und Test von Wellenkraftwerksmodulen auf einer schwimmenden Plattform zur Stromerzeugung inklusive Entwicklung modularer Energiewandler für maritime Anwendungen

Das Projekt "Weiterentwicklung und Test von Wellenkraftwerksmodulen auf einer schwimmenden Plattform zur Stromerzeugung inklusive Entwicklung modularer Energiewandler für maritime Anwendungen" wird/wurde ausgeführt durch: SINN Power GmbH.Der Antragsteller SINN Power GmbH wurde im Rahmen des 6. Energieforschungsprogramms (EFP) des Bundesministeriums für Wirtschaft und Energie (BMWi) unter dem Kennzeichen 0324190 gefördert, um die 'Erprobung eines modularen Konzepts zur Erzeugung von netzkonformem Strom aus unregelmäßigen Meereswellen in einem Generatoren-Verbund' voranzutreiben. Das Projekt SINN-Wave 2.0 knüpft an die Ergebnisse des erfolgreich abgeschlossenen Projekts an und hat folgende Arbeitsziele: - Optimierung der mechanischen Komponenten der eigenentwickelten Wellenkraftwerksmodule und deren Integration in den Prototypen der Ocean Hybrid Platform - SOcean. - Zertifizierung der Ocean Hybrid Platform - SOcean. - Optimierung der eigenentwickelten Leistungselektronik, deren Zertifizierung sowie die Inbetriebnahme des Smart-Grids auf dem schwimmenden Kraftwerk. - Dauertest des schwimmenden Kraftwerks mit Durchführung von mechanischen und elektrischen Tests. Das Ziel ist der Nachweis der Langlebigkeit, Widerstandfähigkeit und dauerhaften Betriebssicherheit der Wellenkraftwerksmodule und der schwimmenden Plattform. - In Kooperation mit der Hochschule München wird ein kompakter, modularer Energiewandlers für verlustarme Stromübertragung auf Mittelstrecken für maritime Anwendungen konzipiert, entwickelt und auf dem schwimmenden Kraftwerk getestet.

Warmwassersphaere des Nordatlantiks

Das Projekt "Warmwassersphaere des Nordatlantiks" wird/wurde gefördert durch: Bundesministerium für Ernährung, Landwirtschaft und Forsten / Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Kiel, Institut für Meereskunde, Abteilung Regionale Ozeanographie.Die Forschungsarbeiten der Abteilung Regionale Ozeanographie werden sich weiterhin auf die physikalischen Prozesse in den oberen Schichten des offenen Ozeans, der Warmwassersphaere, konzentrieren. Dahinter steht die Notwendigkeit, die Transportprozesse zu verstehen, die den Einfluss des Ozeans auf die atmosphaerischen Klimaaenderungen fuer die Zeitskala des World Climate Research Programme bestimmen. Da diese Zeitskala den Bereich Wochen bis Monate umfasst, ist eine umfangreiche Expeditionstaetigkeit noetig. Neuentwickelte Messmethoden sollen dabei zum Einsatz kommen, so u.a. ein geschlepptes, vertikal undulierendes Geraet zur Erfassung der Dichteschichtung, ein akustisch arbeitendes Geraet zur Bestimmung der vertikalen Geschwindigkeitsverteilung in der ozeanischen Deckschicht sowie satelliten- bzw. funkgeortete Driftbojen. Begleitet wird die Messtaetigkeit durch die Entwicklung von Modellen (empirisch, diagnostisch, prognostisch). Schwerpunkte der Untersuchungen werden sein: - theoretische Untersuchungen zur geophysikalischen Turbulenz und ihre Anwendung auf Transportprozesse in der ozeanischen Warmwassersphaere, - Ursachen und Auswirkungen der Jahresschwankungen von Baroklinitaet und Haloklinitaet, - Entstehung ozeanischer Fronten und ihre Bedeutung fuer turbulente Transportprozesse, - Modellierung der Konvektion in der Deckschicht unter besonderer Beruecksichtigung des Tagesganges, - Struktur und Transporte des Nordatlantischen Stromes, - wissenschaftliche Analyse von Datensaetzen des Welt-Datenzentrums sowie von Expeditionen, insbesondere GATE 1974, JASIN 1978, FGGE 1979. Das Forschungsprogramm ist integraler Bestandteil des SFB 133.

Monomaterial-Barrierefolien mit herausragenden Recycling-Eigenschaften für Lebensmittel

Das Projekt "Monomaterial-Barrierefolien mit herausragenden Recycling-Eigenschaften für Lebensmittel" wird/wurde ausgeführt durch: Brandenburgische Technische Universität Cottbus-Senftenberg, Institut für Energietechnik, Lehrstuhl Regelungssysteme und Leittechnik.

Monomaterial-Barrierefolien mit herausragenden Recycling-Eigenschaften für Lebensmittel, EIZ: Energie-Innovationszentrum der Brandenburgischen Technischen Universität Cottbus-Senftenberg

Das Projekt "Monomaterial-Barrierefolien mit herausragenden Recycling-Eigenschaften für Lebensmittel, EIZ: Energie-Innovationszentrum der Brandenburgischen Technischen Universität Cottbus-Senftenberg" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Brandenburgische Technische Universität Cottbus-Senftenberg, Institut für Energietechnik, Lehrstuhl Regelungssysteme und Leittechnik.

Hochleistungs-Halbleiter für eine energieeffiziente Hoch-spannungs-Gleichstrom-Übertragung, Teilvorhaben: Ansteuerungsinnovationen und Potentiale zukünftiger Halbleiter

Das Projekt "Hochleistungs-Halbleiter für eine energieeffiziente Hoch-spannungs-Gleichstrom-Übertragung, Teilvorhaben: Ansteuerungsinnovationen und Potentiale zukünftiger Halbleiter" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Universität Rostock, Institut für Elektrische Energietechnik, Lehrstuhl Leistungselektronik und Elektrische Antriebe.Die neue Bundesregierung hat im Koalitionsvertrag festgelegt, dass im Jahr 2030 80% des Strombedarfs aus erneuerbaren Energien stammen sollen. Offshore Windenergie ist ein wesentlicher Bestandteil dieser ehrgeizigen Ziele. Die Kapazitäten sollen auf mindestens 30 GW in 2030, 40 GW in 2035 und 70 GW in 2045 ausgebaut werden. Die Anbindung der Windparks an das Verbundnetz erfolgt dann über Hochspannungs-Gleichstrom-Übertragung, genauso wie der Transport der elektrischen Energie in die Verbrauchszentren West- und Süddeutschlands. Damit wird auch der Wirkungsgrad der Hochspannungs-Gleichstrom-Übertragung noch wichtiger. Größter Hebel - sowohl für die Wirkungsgradverbesserung als auch für die Reduktion der Investitionskosten der HGÜ Konverter - ist dabei die Reduktion der Anzahl der in Reihe geschalteten Submodule. Die Reihenschaltzahl ist durch die Sperrspannung der verwendeten Leistungshalbleiter bestimmt. Um die genannte Einsparziele zu erreichen, muss eine ganze Reihe innovativer Lösungen erforscht werden. Der Konverter muss für eine höhere Spannung pro Submodul geeignet sein, die Submodule müssen für die höhere Betriebsspannung ertüchtigt werden, vor allem aber - und dies ist die zentrale Innovation - muss die Sperrspannung der IGBT Module von 4500 V auf 6500 V angehoben werden, ohne dass die Verluste dabei signifikant steigen. Um dieses Ziel erreichen zu können, sind daher grundlegende Forschungsarbeiten an verschiedenen Stellen erforderlich. Es müssen sowohl die Chiptechnologie von IGBT und Diode, die Aufbau- und Verbindungstechnik im Modul als auch die Ansteuertechnik substantiell verbessert werden und kontinuierlich im Wechselspiel auf ihren Nutzen und ihre Umsetzbarkeit für zukünftige HGÜ Anlagen geprüft und co-optimiert werden.

1 2 3 4 526 27 28