API src

Found 35 results.

Strahlenschutzvorsorge [StrVG] - Landesweite Überwachung

Nach § 3 StrVG werden im Rahmen des Integrierten Mess- und Informationssystems (IMIS) durch die einzelnen Bundesländer Radioaktivitätsuntersuchungen in Böden, Pflanzen, Gras, Lebens- und Futtermitteln, Grund-, Trink- und Oberflächenwasser, in Abwässern, Klärschlamm, Reststoffen und Abfällen durchgeführt. Für die im einzelnen im Normalbetrieb durchzuführenden Probenmessungen wurde vom Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU) allen Bundesländern ein Mengengerüst für die entsprechenden Umwelt- bereiche vorgegeben. Die Festlegung der Probeentnahmepunkte erfolgte auf der Grundlage dieses Mengenschlüssels sowie des am jeweiligen Ort vorhandenen Spektrum an o.a. Umweltmedien. Die Beprobungen werden nach einem festgelegten Probenentnahmeplan [PEP] -medienspezifisch- durchgeführt. Die Probeentnahmepläne sind so konzipiert, daß sie möglichst flächendeckend und gleichmäßig über das Jahr verteilt, die Entnahme repräsentativer Proben aller Umweltbereiche ermöglicht.

Immissions- und Strahlenschutz (GB 2)

• Überwachung der Radioaktivität in der Umwelt nach dem Strahlenschutzvorsorgegesetz für den Freistaat Sachsen • Überwachung der anlagenbezogenen Radioaktivität nach dem Atomgesetz am Forschungsstandort Rossendorf • Überwachung von Lebensmitteln (u. a. Amtshilfe für die Landesuntersuchungsanstalt für das Gesundheits- und Veterinärwesen Sachsen) • Betrieb der Radonberatungsstelle • Überwachung der anlagenbezogenen Radioaktivität nach der Verordnung zur Gewährleistung von Atomsicherheit und Strahlenschutz an den Standorten der Wismut GmbH • Überwachung der anlagenbezogenen Radioaktivität an den Altstandorten des Uranerzbergbaus • Aufsichtliche Messungen nach der Strahlenschutzverordnung inkl. Sicherheitstechnisch bedeutsame Ereignisse und Nukleare Nachsorge • Der Geschäftsbereich ist akkreditiert nach ISO 17025 für alle relevanten Prüfverfahren im Bereich Immission und Emission. Fachbereich 20 - Zentrale Aufgaben • Probenentnahmen und Feldmessungen (ohne Messungen und Probenentnahmen im Rahmen der Radonberatung) u. a. Probenentnahmen aus Fließgewässern, Messung der nuklidspezifischen Gammaortsdosisleistung • Organisation und Logistik für die von externen Probenehmern gewonnenen und dem Geschäftsbereich 2 zu übergebenden Proben. Betrieb der Landesdatenzentrale und der Datenbank zur Umweltradioaktivität im Freistaat Sachsen • Unterstützung der beiden Landesmessstellen bei der Einführung und Pflege radiochemischer Verfahren Fachbereiche 21, 22 - Erste und Zweite Landesmessstelle für Umweltradioaktivität Laboranalysen • nach dem Strahlenschutzvorsorgegesetz • zur Überwachung der Wismut-Standorte • zur Überwachung des Forschungsstandort Rossendorf • zur Überwachung der Altstandorte des Uranbergbaus • zur Lebensmittelüberwachung • zu den aufsichtlichen Kontrolltätigkeiten des Sächsischen Landesamtes für Umwelt, Landwirtschaft und Geologie und des Sächsischen Staatsministeriums für Umwelt und Landwirtschaft u. a. in den Medien Wasser, Boden, Luft, Nahrungs- und Futtermittel. Analysierte Parameter: u. a. gamma- und alphastrahlende Radionuklide (z. B. Cäsium-137, Cobalt-60, Kalium-40, Uran-238); Strontium-90; Radium-226 und Radium-228). Fachbereich 23 - Immissionsmessungen Kontinuierliche Überwachung der Luftqualität durch Betrieb des stationären Luftmessnetzes des Freistaates (Online-Betrieb von 30 stationären Messstationen mit Übergabe der Messdaten ins Internet): • Laufende Messung der Luftgüteparameter SO2, NOx, Ozon, Benzol, Toluol, Xylole, Schwebstaub, Ruß • Gewinnung meteorologischer Daten zur Einschätzung der Luftgüteparameter • Sammlung von Schwebstaub (PM 10- und PM 2,5-Fraktionen) und Sedimentationsstaub zur analytischen Bestimmung von Schwermetallen, polyzyklischen Kohlenwasserstoffen (PAK) und Ruß • Absicherung der Messdatenverarbeitung und Kommunikation • Betreiben einer Messnetzzentrale, Plausibilitätskontrolle der Daten und deren Übergabe an das Landesamt für Umwelt, Landwirtschaft und Geologie und an die Öffentlichkeit • Absicherung und Überwachung der vorgegebenen Qualitätsstandards bei den Messungen durch den Betrieb eines Referenz- und Kalibrierlabors • Sicherung der Verfügbarkeit aller Messdaten zu > 95% • Weiterentwicklung des Luftmessnetzes entsprechend den gesetzlichen Anforderungen • Betreuung eines Depositionsmessnetzes (Niederschlag) mit zehn Messstellen • Betrieb von drei verkehrsnahen Sondermessstellen an hoch belasteten Straßen • Durchführung von Sondermessungen mit Immissionsmesswagen und mobilen Containern • Betrieb von Partikelmesssystemen im Submikronbereich (Zählung ultrafeiner Partikel) in Dresden • Betrieb von Verkehrszähleinrichtungen und Übernahmen dieser Verkehrszähldaten sowie von Pegelmessstellen der Städte in den Datenbestand des Luftmessnetzes Fachbereich 24 - Emissionsmessungen, Referenz- und Kalibrierlabor Der Fachbereich befasst sich mit der Durchführung von Emissionsmessungen an ausgewählten Anlagen aus besonderem Anlass im Auftrag des LfULG. Beispiele: • Emissionsmessungen an Blockheizkraftwerken in der Landwirtschaft (Geruch, Stickoxide, Gesamtkohlenstoff und Formaldehyd). • Ermittlung der Stickstoff-Deposition aus Tierhaltungsanlagen für Geflügel und Rinder (Emissionsmessungen von Ammoniak, Lachgas, Methan, Wasser, Kohlendioxid, Feuchte, Temperatur und Luftströmung , Ammoniak-Immissionsmessung mit DOAS-Trassenmesssystem). • Untersuchung von Emissionen aus holzgefeuerten Kleinfeuerungsanlagen zur Abschätzung von Auswirkungen der novellierten 1. BImSchV. • Unterstützung des LfULG bei der Überwachung bekannt gegebener Messstellen nach § 26 BImSchG.

Dekontamination von Strontium-90 und Jod-131 enthaltenden Lösungen

Ziel: Abreicherung geloester radioaktiver Ionen; Verfahren selektiv und als Durchlaufprozess technologisch problemlos; Prinzip des rapiden heterogenen Isotopenaustausches an mikrokristallinen Systemen, in einer Matrix fixiert erweiterbar; Produkt fest; komprimierbar und lagerfaehig; Anwendung in kleinen bis mittleren Massstaeben; Patente in England, Frankreich, USA.

Vergleich des Fallouts durch oberirdische Kernwaffentests, den Reaktorunfall in Tschornobyl und den Reaktorunfall in Fukushima

Vergleich des Fallouts durch oberirdische Kernwaffentests, den Reaktorunfall in Tschornobyl und den Reaktorunfall in Fukushima Bei oberirdischen Kernwaffentests und Reaktorunfällen gelangen radioaktive Stoffe in die Atmosphäre. Dieses radioaktive Material kann sich z.B. durch Niederschlag auf der Erde ablagern (sogenannter Fallout ). In Europa führten nur die oberirdischen Kernwaffentests in den 1950er und 1960er Jahren und der Reaktorunfall von Tschornobyl ( russ. : Tschernobyl) zu nennenswerten Strahlenbelastungen. Der Reaktorunfall von Fukushima (Japan) hingegen bedeutete für Europa keine nennenswerte Strahlenbelastung. Bei oberirdischen Kernwaffentests und Reaktorunfällen gelangen radioaktive Stoffe in die Atmosphäre. Dieses radioaktive Material kann sich z.B. durch Niederschlag auf der Erde ablagern (sogenannter Fallout ). Oberirdische Kernwaffentests Aufgrund oberirdischer Kernwaffentests gelangten vor allem die radioaktiven Stoffe Cäsium-137 und Strontium-90 in die Atmosphäre, aber auch Plutonium -239. Sie wurden weltweit verbreitet, gelangten damit auch nach Deutschland und führten zu einer erhöhten Strahlenbelastung der Bevölkerung. Durch Niederschläge wurden die radioaktiven Spaltprodukte aus der Atmosphäre ausgewaschen (" Fallout ") und auf dem Boden abgelagert. Von hier aus gelangten sie über die Nahrung in den menschlichen Körper. Im Jahr 1963 schlossen die Sowjetunion, die USA und das Vereinigte Königreich ein Abkommen zum Stopp der Atombombentests in der Atmosphäre, im Weltraum und im Wasser und führten keine weiteren Tests in der Atmosphäre mehr durch. Zahlreiche Staaten unterzeichneten ebenfalls diesen Vertrag (Frankreich und China unterzeichneten den Vertrag nicht und führten bis 1974 bzw. 1980 weiterhin atmosphärische Atombombentests durch). Das Abkommen führte in den Folgejahren zu einer deutlichen Abnahme der Strahlenbelastung. Zusätzliche Strahlenbelastung durch die Kernwaffentests Die gesamte zusätzliche Strahlenbelastung (Lebenszeitdosis) durch atmosphärische Kernwaffentests für eine Person auf der Nordhalbkugel der Erde wird mit durchschnittlich etwa 4,4 Millisievert abgeschätzt. Die höchste zusätzliche Strahlenbelastung aufgrund des Fallouts der oberirdischen Kernwaffentests trat in den Jahren 1963 bis etwa 1967 auf. Die wenigen Studien zu den gesundheitlichen Auswirkungen der Kernwaffentests zeigen keine negativen Folgen Zu den möglichen Auswirkungen der oberirdischen Kernwaffentests gibt es kaum epidemiologische Untersuchungen. In einer Studie  aus dem Jahr 2010 wurde untersucht, ob sich bei der Leukämie im Kindesalter ein signifikanter Effekt der erhöhten Strahlenbelastung aufgrund der Kernwaffentests feststellen lässt. Dies war nicht der Fall. Da der sich in der Entwicklung befindliche kindliche Organismus besonders empfindlich gegenüber einer Strahlenbelastung ist, ist dieses Ergebnis ein Hinweis darauf, dass auch bei Erwachsenen, die sich nicht in unmittelbarer Nähe der Testgelände aufhielten, keine gesundheitlichen Folgen der Kernwaffentests nachweisbar sein werden. Insbesondere zeigten sich auch keine Unterschiede zwischen der südlichen und der nördlichen Erdhalbkugel. Auf der nördlichen Erdhalbkugel war die zusätzliche Strahlenbelastung durch die oberirdischen Kernwaffentests höher als auf der südlichen Erdhalbkugel, demnach hätte am ehesten auf der nördlichen Erdhalbkugel ein erhöhtes Erkrankungsrisiko zu beobachten sein müssen. Reaktorunfall von Tschornobyl ( russ. : Tschernobyl) Nach dem Reaktorunfall in Tschornobyl wurden radioaktive Spaltprodukte über die Luft in weite Teile Europas und damit auch nach Deutschland verfrachtet. Dies waren vor allem die radioaktiven Stoffe Jod-131, Cäsium-134 und Cäsium-137 . Strontium-90 wurde in Deutschland praktisch nicht festgestellt. Zusätzliche Strahlenbelastung durch den Unfall von Tschornobyl Die höchste zusätzliche Strahlenbelastung durch den Reaktorunfall von Tschornobyl betrug im ersten Jahr nach der Katastrophe in Deutschland nördlich der Donau etwa 0,1 Millisievert pro Jahr, südlich der Donau 0,3 Millisievert pro Jahr. Epidemiologische Studien zum Krankheitsrisiko durch den Unfall von Tschornobyl Nach dem Reaktorunfall in Tschornobyl ( russ. : Tschernobyl) wurden viele epidemiologische Studien durchgeführt mit dem Ziel, ein möglicherweise erhöhtes Krankheitsrisiko aufgrund der zusätzlichen Strahlenbelastung nachzuweisen (siehe auch Broschüre " Der Reaktorunfall 1986 in Tschernobyl "). Bei den Beschäftigten und Einsatzkräften, die an den Aufräumarbeiten beteiligt waren und eine relativ hohe Strahlendosis erhalten hatten, wurden teilweise massive gesundheitliche Folgen beobachtet. Bei Personen, die als Kinder und Jugendliche in den am stärksten durch radioaktive Stoffe belasteten Gebieten (Ukraine, Belarus und Teile Russlands) einer Belastung mit Jod-131 ausgesetzt waren, war ein deutlicher Anstieg der Erkrankungen an Schilddrüsenkrebs zu beobachten. Ein erhöhtes Risiko tritt auch heute noch in dieser Personengruppe auf. Für andere Krebs- und Leukämieerkrankungen in diesen Regionen liegen bisher keine belastbaren Daten hinsichtlich eines erhöhten Risikos vor. Es gibt allerdings Hinweise auf ein erhöhtes Leukämierisiko bei den Einsatzkräften und Aufräumarbeitern sowie ein erhöhtes Brustkrebsrisiko bei Frauen in der Ukraine, die erhöhten Strahlenbelastungen ausgesetzt waren. Für Deutschland gibt es bisher keinen Nachweis, dass durch die erhöhte Strahlenbelastung aufgrund des Reaktorunfalls von Tschornobyl ( russ. : Tschernobyl) negative gesundheitliche Effekte verursacht wurden. Insbesondere gibt es in Deutschland keine Hinweise für ein vermehrtes Auftreten von Schilddrüsenkrebs bei Kindern. Es zeigen sich in einzelnen Studien zwar entsprechende Hinweise zur Säuglingssterblichkeit, zur Häufigkeit von Fehlbildungen und von Tumoren bei Kindern oder Erwachsenen. Diese Studien haben aber methodische Schwächen, so dass die Ergebnisse nicht als Nachweis für einen Zusammenhang zwischen Strahlenbelastung und diesen gesundheitlichen Wirkungen zu bewerten sind. Nach der überwiegenden Meinung von Experten sind zusätzliche strahlenbedingte Krebsfälle und andere Erkrankungen durch Tschornobyl zwar denkbar. Vor dem Hintergrund der so genannten spontanen Krebshäufigkeit bzw. der spontanen Raten für andere Erkrankungen einerseits und der in Deutschland vorhandenen natürlichen Strahlenbelastung von 2 bis 3 Millisievert im Jahr andererseits sowie der je nach Erkrankung unterschiedlichen Wirkmechanismen von Strahlung werden sie sich aber mit bestehenden wissenschaftlichen Mitteln praktisch nicht nachweisen lassen. Deutlich niedrigere Strahlenbelastung durch den Unfall in Fukushima Der erste Nachweis radioaktiver Stoffe aus dem Reaktorunfall in Fukushima , die über die Atmosphäre nach Deutschland getragen wurden, erfolgte rund zwei Wochen nach Unfallbeginn. Mit der Messung vom 25. März 2011 wurde von der BfS -Messstation auf dem Schauinsland erstmals Jod-131 gemessen, das auf den Unfall in Fukushima zurückzuführen war. Wegen der sehr großen Entfernung gelangte nur eine sehr geringe Menge an radioaktiven Stoffen nach Deutschland. Dies entspricht nur einem Bruchteil der Menge, die in der Vergangenheit aufgrund der Atomwaffentests und des Unfalls in Tschornobyl ( russ. : Tschernobyl) durch die Luft nach Deutschland getragen wurden. Langfristig keine gesundheitlichen Folgen des Unfalls in Fukushima für Deutschland zu erwarten Da die in Deutschland aufgetretene Strahlenbelastung durch den Unfall in Fukushima sehr weit unter der Belastung durch die Atomwaffentests und den Unfall in Tschornobyl blieb, sind auch langfristig für Deutschland keine negativen gesundheitlichen Auswirkungen zu erwarten. Stand: 12.12.2025

Der Unfall von Fukushima

Der Unfall von Fukushima Ein starkes Erdbeben mit nachfolgendem Tsunami führte im März 2011 zu großen Schäden im Kernkraftwerk Fukushima Daiichi in Japan. In der Folge wurden radioaktive Substanzen freigesetzt. Ungefähr 120.000 Menschen in einem Radius von bis zu 40 Kilometern um das Kernkraftwerk wurden vorbeugend oder aufgrund der hohen Strahlung evakuiert. Kernkraftwerk Fukushima Daiichi Quelle: Taro Hama @ e-kamakura/Moment/Getty Images Am 11. März 2011 um 14:46 Uhr Ortszeit erschütterte ein Erdbeben der Stärke 9,0 (Richterskala) den Norden der japanischen Hauptinsel Honshu. Wenig später erreichte ein Tsunami die nördliche Ostküste der Insel, der katastrophale Auswirkungen für die Menschen der Region hatte. Unfall im Kernkraftwerk Fukushima Daiichi Durch das Erdbeben wurde das Kernkraftwerk Fukushima Daiichi vom öffentlichen Stromnetz getrennt. Die nukleare Kettenreaktion in den zu diesem Zeitpunkt betriebenen Reaktorblöcken 1 bis 3 wurde durch Schnellabschaltung gestoppt. Durch den auf das Erdbeben folgenden Tsunami fiel in den Blöcken 1 bis 4 zusätzlich die Notstromversorgung langfristig aus. Somit fehlte diesen Blöcken die Energieversorgung für die Kühlung der Brennelemente in den Reaktorkernen und den Brennelement -Lagerbecken, die auch nach der Reaktorschnellabschaltung erforderlich ist. In den Blöcken 5 und 6 fielen ebenfalls große Teile der Notstromversorgung aus. Ein verbleibender, einsatzfähiger Notstromdiesel wurde für die Blöcke 5 und 6 wechselseitig benutzt. Schwere Kernschäden in diesen Blöcken konnten hierdurch vermieden werden. In den Blöcken 1, 2 und 3 des Kernkraftwerks kam es zum Ausfall der Kernkühlung sowie der Kühlung der Brennelement -Lagerbecken. Dies führte zur Überhitzung der Reaktorkerne und in der Folge zum Schmelzen von Kernmaterial. Über den Unfallhergang und langfristige Planungen zum Rückbau der Anlage informiert das Bundesamt für Sicherheit in der nuklearen Entsorgung ( BASE ) auf seiner Webseite. Freisetzung von Radioaktivität in die Umwelt Aufgrund des Unfalls kam es zur erheblichen Freisetzung radioaktiver Stoffe in die Umwelt . Dies führte auch zur Einstufung des Unfalls im Kernkraftwerk Fukushima Daiichi in die Stufe 7 "Katastrophaler Unfall" in der internationalen Meldeskala INES (International Nuclear and Radiological Event Scale). Besonders relevant für die radioaktive Kontamination der Umwelt (und des Menschen) nach dem Unfall in Fukushima waren Radionuklide der Elemente Jod-131, Tellur-132, und Cäsium-134/137. Jod-131 hat eine Halbwertszeit von etwa 8 Tagen (das heißt: nach 8 Tagen ist die Hälfte des Jod-131 zerfallen). Tellur-132 besitzt eine Halbwertszeit von nur drei Tagen, bei seinem Zerfall entsteht radioaktives Jod-132. Jod-132 hat eine Halbwertszeit von etwa 2 Stunden. Dadurch ist radioaktives Jod praktisch nach drei Monaten aus der Umwelt verschwunden. So war es auch in Fukushima. Cäsium-137 hat eine Halbwertzeit von rund 30 Jahren und kontaminiert die Umwelt somit langfristig. Cäsium-134 wurde bei dem Unfall im Kernkraftwerk Fukushima Daiichi in ungefähr gleicher Menge wie Cäsium-137 freigesetzt, zerfällt aber aufgrund seiner Halbwertszeit von zwei Jahren schneller. Heute ist vor allem noch Cäsium-137 für die erhöhte Strahlung im Gebiet um das Kernkraftwerk Fukushima verantwortlich. Um die weitere Freisetzung radioaktiver Stoffe in die Atmosphäre zu vermeiden, werden Stabilisierungsmaßnahmen im Innern der Reaktoren vorgenommen, die zerstörten Reaktorgebäude abgedeckt und die Brennelemente der Blöcke 1 bis 4 entfernt. Neben der Freisetzung in die Atmosphäre kam es zur Freisetzung von radioaktiven Stoffen (vor allem von Jod-131, Cäsium-134, Cäsium-137 und Strontium-90) in Wasser – hauptsächlich als Kontamination des zur Notkühlung eingespeisten Wassers. Große Mengen kontaminierten Wassers haben sich über Leckagen der Sicherheitsbehälter in den Gebäuden angesammelt. Im März/April 2011 kam es zum Ausfluss von stark kontaminiertem Wasser ins Meer. Auch heute noch dringt Wasser – hauptsächlich Grundwasser - von außen in die Gebäude ein. Der Zufluss von Grundwasser in die Gebäude konnte inzwischen erheblich reduziert werden. Zudem ist eine Reinigungsanlage für das kontaminierte Wasser, das aus dem Gebäude wieder austritt, in Betrieb. Damit kann beispielsweise radioaktives Cäsium (und alle anderen Radionuklide außer Tritium ) fast vollständig herausgefiltert werden. Das im Kühlwasser enthaltene Radionuklid Tritium lässt sich nicht mit den üblichen Reinigungsmethoden herausfiltern. (Mehr dazu: Fukushima – Zehn Jahre nach dem Reaktorunfall ( GRS )). Wasser, das nach der Behandlung nicht wieder zur Kühlung in die Reaktoren eingespeist wird, wird daher auf dem Anlagengelände in verschiedenen Behältern zwischengelagert. Teile des gereinigten Wassers dürfen inzwischen auch ins Meer abgeleitet werden . Der Bericht des BfS " Die Katastrophe im Kernkraftwerk Fukushima nach dem Seebeben vom 11. März 2011 " gibt genaue Auskunft über den Unfallablauf und die radiologischen Konsequenzen. Frühe Schutzmaßnahmen Um gesundheitliche Folgen des Unfalls von Fukushima durch interne (Einatmen von radioaktiven Stoffen aus der Luft und Aufnahme über die Nahrung) und externe (in der Luft befindliche radioaktive Stoffe und auf dem Boden deponierte Radionuklide ) Strahlenbelastung für die Menschen zu minimieren, wurden nach dem Reaktorunfall im März 2011 ungefähr 120.000 Menschen in einem Radius von bis zu 40 Kilometern um das Kernkraftwerk Fukushima Daiichi vorbeugend oder aufgrund der hohen Strahlung evakuiert. Wer evakuiert wurde, wurde auf äußere Strahlenbelastung untersucht, um gegebenenfalls zum Beispiel kontaminierte Kleidungsstücke erkennen und entsorgen zu können. Zunächst wurde der 2-Kilometer-Umkreis (11. März, 20:50 Uhr), dann der 10-Kilometer-Umkreis (12. März, 5:00 bis 17:00 Uhr) und schließlich der 20-Kilometer-Umkreis um den Reaktor (12. März, 18:25 Uhr) evakuiert. In einem Umkreis bis 30 Kilometer wurde die Bevölkerung aufgefordert, in Gebäuden zu bleiben (15. März, 11:00 Uhr). Von April bis Juni 2011 wurden auch Regionen außerhalb des 20-Kilometer-Umkreises evakuiert, in denen Dosen von mehr als 20 Millisievert pro Jahr zu erwarten gewesen wären. (Zum Vergleich : die jährliche natürliche Strahlenexposition in Deutschland beträgt etwa 2-3 Millisievert .) Die Größe des ursprünglichen Evakuierungsgebiets verringert sich seither durch intensive Dekontaminationsmaßnahmen . Um die Bevölkerung vor der Aufnahme radioaktiver Stoffe mit der Nahrung zu schützen, verboten die Behörden in Japan den Verkauf radioaktiv kontaminierter Lebensmittel; auch selbst erzeugte Lebensmittel aus belasteten Regionen sollten nicht verzehrt werden. Heute sind fast keine Nahrungsmittel in Japan mehr radioaktiv belastet , nur sehr wenige Proben von Wildschweinen, Wildpilzen und Süßwasserfischen überschreiten die Grenzwerte. Medien zum Thema Mehr aus der Mediathek Wie funktioniert Notfallschutz? Welche Szenarien gibt es für den radiologischen Notfall ? Wer macht im Ernstfall was? Das BfS klärt auf - in Videos, Grafiken und Broschüren. Stand: 04.12.2025

BioVeStRa: Untersuchung des Potenzials biologischer Verfahren zur Strahlenschutzvorsorge bei Radionuklidbelastungen, BioVeStRa: Untersuchung des Potenzials biologischer Verfahren zur Strahlenschutzvorsorge bei Radionuklidbelastungen

Ziel des Vorhabens ist es, einen Beitrag zur Strahlenschutz-Vorsorge zu leisten, indem untersucht werden soll, inwiefern auf der Basis eingebrachter mycelbildender Pilze eine schnelle, stabilere und quantitativ hohe Akkumulation von Radionukliden aus tieferliegendem Erdreich und aus Wässern im Myzel möglich ist. Aufbauend auf die im Rahmen von Vorläuferprojekten erlangten Erkenntnisse soll durch Grundlagenforschung, über anwendungsorientierte Laboruntersuchungen bis hin zu praxisnahen Verfahrensansätzen das Ziel in Form einer Machbarkeitsstudie erreicht werden. Im Rahmen des beantragten Projekts soll die Eignung von Pilzen zur schnellen und ausgedehnten Durchdringung eines Bodenkörpers zum Zwecke der mittelfristigen Immobilisierung von freigesetzten Radionukliden überprüft werden. Ergänzend werden entsprechende Untersuchungen auch an Pflanzen durchgeführt. Dazu wird die Translokation von Radionukliden aus der Bodenmatrix in Pilze und Pflanzen sowie die Migration der Radionuklide in dem Organismus analytisch erfasst. Durch die Untersuchung der Radionuklid-Speziation im Boden, an und in der Biomasse sollen außerdem physikalische, chemische und biologische Einflussfaktoren für die Metallaufnahme identifiziert werden. Ziel ist es zusätzlich bestehende analytische Verfahren (SIMS) dafür entsprechend weiter zu entwickeln. Das Projekt ist in zwei Phasen gegliedert. Eine erste Phase, in der grundlegende Prozesse im Labor an je zwei Pilzen und Pflanzen in einem für Deutschland und die Ukraine relevanten Referenzboden (Refesol 04, Gley-Podsol, schwach schluffiger Sand, mittel sauer, mittel humos) und einem zweiten kontaminierten Boden (z.B. VKTA) untersucht werden sollen. Für die Experimente werden die Isotope Sr-90/Sr-85, Cs-137 und Am-241 (ggf. auch Eu-152) verwendet. Darüber hinaus werden auch inaktives Sr, Cs sowie Eu genutzt. In der zweiten Phase sollen die erhaltenen Erkenntnisse in einem Freilandversuch unter Verwendung von Pflanzen und Pilzen überprüft werden.

BioVeStRa: Untersuchung des Potenzials biologischer Verfahren zur Strahlenschutzvorsorge bei Radionuklidbelastungen, BioVeStRa: Untersuchung des Potenzials biologischer Verfahren zur Strahlenschutzvorsorge bei Radionuklidbelastungen

Ziel des Vorhabens ist es, einen Beitrag zur Strahlenschutz-Vorsorge zu leisten, indem untersucht werden soll, inwiefern auf der Basis eingebrachter mycelbildender Pilze eine schnelle, stabilere und quantitativ hohe Akkumulation von Radionukliden aus tieferliegendem Erdreich und aus Wässern im Myzel möglich ist. Aufbauend auf die im Rahmen von Vorläuferprojekten erlangten Erkenntnisse soll durch Grundlagenforschung, über anwendungsorientierte Laboruntersuchungen bis hin zu praxisnahen Verfahrensansätzen das Ziel in Form einer Machbarkeitsstudie erreicht werden. Im Rahmen des beantragten Projekts soll die Eignung von Pilzen zur schnellen und ausgedehnten Durchdringung eines Bodenkörpers zum Zwecke der mittelfristigen Immobilisierung von freigesetzten Radionukliden überprüft werden. Ergänzend werden entsprechende Untersuchungen auch an Pflanzen durchgeführt. Dazu wird die Translokation von Radionukliden aus der Bodenmatrix in Pilze und Pflanzen sowie die Migration der Radionuklide in dem Organismus analytisch erfasst. Durch die Untersuchung der Radionuklid-Speziation im Boden, an und in der Biomasse sollen außerdem physikalische, chemische und biologische Einflussfaktoren für die Metallaufnahme identifiziert werden. Ziel ist es zusätzlich, nach Möglichkeit bestehende analytische Verfahren (SIMS) dafür zu adaptieren. Das Projekt ist in zwei Phasen gegliedert. Eine erste Phase, in der grundlegende Prozesse im Labor an je zwei Pilzen und Pflanzen in einem für Deutschland und die Ukraine relevanten Referenzboden (Refesol 04, Gley-Podsol, schwach schluffiger Sand, mittel sauer, mittel humos) und einem zweiten kontaminierten Boden (z.B. VKTA) untersucht werden sollen. Für die Experimente werden die Isotope Sr-90/Sr-85, Cs-137 und Am-241 (ggf. auch Eu-152) verwendet. Darüber hinaus werden auch inaktives Sr, Cs sowie Eu genutzt. In der zweiten Phase sollen die erhaltenen Erkenntnisse in einem Freilandversuch unter Verwendung von Pflanzen und Pilzen überprüft werden.

Radioaktive Stoffe in menschlichen Knochen

Zielsetzung ist es, die Hoehe und Schwankungsbreite der Strahlenexposition durch inkorporierte natuerlich-radioaktive Stoffe sowie Strontium-90 aus dem Fall-out in menschlichen Knochen zu bestimmen. Es soll versucht werden, die Gehalte von natuerlichem Uran, natuerlichem Thorium, Radium-226 sowie von Strontium-90 auf eine moegliche Korrelation mit verschiedenen Parametern (Alter, Geschlecht, Knochenart und -abschnitt) zu untersuchen.

Teilprojekt G^Teilprojekt H^Teilprojekt E^TransAqua: Transfer von Radionukliden in aquatischen Ökosystemen^Teilprojekt A^Teilprojekt I: Messung und Modellierung der Verteilung und des Transportes von Radiocäsium in einem eutrophen Seesystem, Teilprojekt D

Die Freisetzung von Radionukliden aus kerntechnischen Anlagen im Rahmen zulässiger Emissionen führt zu einer diffusen Belastung von großräumigen Reservoiren wie der Atmosphäre, den Ozeanen und Binnengewässern und der Böden. Die Hauptquelle für anthropogene Radionuklide in Westeuropa sind die Wiederaufarbeitungsanlagen. Im Rahmen der Nachhaltigkeitsdiskussion stellt sich die Frage nach den langfristigen lokalen Auswirkungen für die Umwelt vor dem Hintergrund, dass der generelle Schutz der Umwelt im Strahlenschutz an Bedeutung zunimmt. Auf der Grundlage von experimentellen Ergebnissen sollen Modelle von Trinkwassergewinnungsgebieten (Beispiele: Fuhrberger Feld, Westharztalperren) erstellt und eine Langzeitsicherheitsanalyse der Entwicklung durchgeführt werden. Daraus ergeben sich folgende Aufgaben: Zusammenstellung von Kenntnissen über Stoffkreisläufe (Stoffflüsse, Inventare, Austauschzeiten, ggf. Reaktionen) der chemischen Elemente H, C, Cl, Sr, I, Pu, Einordnung der Radionuklide H-3, C -14, Cl-36, Sr-90, I-129, Pu-239/Pu-240 in diese Kreisläufe, Prüfung der Sensitivität von Reservoiren in Hinblick auf Radionuklideinträge und -akkumulationen, dabei auch Prüfung von Strahlenschutzaspekten und Wirkungsketten, Aufzeigen von Kenntnisdefizite.

Landwirtschaftskammer Niedersachsen / LUFA Nord-West: „Zusätzliche Umgebungsüberwachung im Bereich des Endlagers Asse - Bericht für das Jahr 2010“ (PDF, nicht barrierefrei)

Zusätzliche Umgebungsüberwachung im Bereich des Endlagers Asse Bericht für das Jahr 2010 202020102010 Landwirtschaftskammer Bezirksstelle Braunschweig und LUFA Nord-West, Institut für Futtermittel, Bereich Rückstandsanalytik Oldenburg, 18.4.2011 1 EINLEITUNG ....................................................................................................... 4 1.1 Art und Umfang der Untersuchungen ....................................................................................................... 5 1.1.1 Zu untersuchende Umweltmedien ........................................................................................................ 5 1.1.2 Probenahmefrequenzen ........................................................................................................................ 5 1.1.3 Geplante Probenahmezeiträume ........................................................................................................... 6 1.1.4 Probenahmeplanung ............................................................................................................................. 6 1.1.5 Probenahmeorte ................................................................................................................................... 7 1.1.6 Probenahme.......................................................................................................................................... 9 1.1.7 Probentransport .................................................................................................................................... 9 2ÜBERSICHT DER DURCHGEFÜHRTEN PROBENAHMEN ............................. 9 3MESSVERFAHREN UND MESSPROGRAMM ................................................ 13 3.1Gammaspektrometrie ............................................................................................................................... 13 3.2Strontium-90 Messung .............................................................................................................................. 13 4MESSWERTE UND ERGEBNISSE .................................................................. 14 4.1Nachweisgrenzen ....................................................................................................................................... 14 4.2Messwerte für H-3 ..................................................................................................................................... 15 4.3Messwerte für Kalium 40 .......................................................................................................................... 16 4.4Messwerte für Cs-137 ................................................................................................................................ 17 4.5Messwerte für Ra-226 ............................................................................................................................... 18 4.6Messwerte für Sr-90 .................................................................................................................................. 19 5INTERPRETATION DER MESSWERTE .......................................................... 20 5.1Kalium 40 (K-40) ....................................................................................................................................... 20 5.2Cäsium 137 (Cs-137).................................................................................................................................. 21 5.3Radium 226 (Ra-226)................................................................................................................................. 22 5.4Strontium 90 (Sr-90).................................................................................................................................. 22 6ANHANG: ......................................................................................................... 23 6.1Probenahme ............................................................................................................................................... 23 Boden.................................................................................................................................................................... 23 6.1.1 Entnahmetiefen .................................................................................................................................. 24 6.1.1.1 Ackerböden .............................................................................................................................. 24 6.1.1.2 Weiden, Wiesen und andere unbearbeitete Böden ................................................................... 24 6.1.1.3 Waldböden................................................................................................................................ 25 6.1.2 Gras .................................................................................................................................................... 25 6.1.3 Mais, Getreide, Raps, Rüben.............................................................................................................. 26 6.1.3.1 Allgemeines zur Probennahme: ................................................................................................ 26 6.1.3.2 Mais .......................................................................................................................................... 26 6.1.3.3 Getreide und Raps .................................................................................................................... 27 6.1.3.4 Rüben ....................................................................................................................................... 27 2 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8 Milch .................................................................................................................................................. 27 Obst und Gemüse ............................................................................................................................... 28 Wasser ................................................................................................................................................ 29 Laub ................................................................................................................................................... 29 Nadeln ................................................................................................................................................ 29 6.2 Probenvorbereitung................................................................................................................................... 29 6.2.1 Gammaspektrometrie ......................................................................................................................... 29 6.2.1.1 Boden ....................................................................................................................................... 29 6.2.1.2 Gras, Blätter, Nadeln ................................................................................................................ 30 6.2.1.3 Mais .......................................................................................................................................... 30 6.2.1.4 Getreide, Raps .......................................................................................................................... 30 6.2.1.5 Rüben ....................................................................................................................................... 30 6.2.1.6 Milch ........................................................................................................................................ 30 6.2.1.7 Gemüse und Obst ..................................................................................................................... 31 6.2.1.7.1 Normiertes Waschen der Proben ......................................................................................... 31 6.2.1.8 Wasser ...................................................................................................................................... 32 6.2.2 Strontium-90 Analysen ...................................................................................................................... 32 6.2.2.1 Boden, Gras, Blätter, Mais, Getreide, Raps, Rüben ................................................................. 32 6.2.2.2 Obst und Gemüse ..................................................................................................................... 32 6.2.2.3 Milch ........................................................................................................................................ 32 6.2.2.4 Wasser ...................................................................................................................................... 32 6.3 Gammaspektrometrie ............................................................................................................................... 33 6.3.1 Aufbau eines Gammaspektrometers................................................................................................... 33 6.3.1.1 Detektor .................................................................................................................................... 34 6.3.1.2 Abschirmung ............................................................................................................................ 34 6.3.1.3 Elektronik ................................................................................................................................. 34 6.3.1.4 Auswerteeinheit ........................................................................................................................ 34 6.3.2 Prinzip der Gammamessung .............................................................................................................. 35 6.3.2.1 Energiekalibrierung des Gammaspektrometers ........................................................................ 36 6.3.2.2 Intensitätskalibrierung des Gammaspektrometers .................................................................... 37 6.4 Sr-90 Messung ............................................................................................................................................ 38 6.4.1 Verwendete Messsysteme .................................................................................................................. 38 6.4.1.1 Messprinzip .............................................................................................................................. 39 6.4.1.2 Messprinzip der Proportionalzählrohre (Gasgefüllte Detektoren) ............................................ 40 7 ZUSAMMENFASSUNG .................................................................................... 41 3

1 2 3 4