In dieser Karte wird das Risiko für die Verbreitung von aktuell und potenziell sulfatsauren Böden von 0 bis 2 m Tiefe dargestellt. Wichtig: Diese Karte wurde neu überarbeitet anhand der neuen Bodenkarte BK50, für deren Erstellung insbesondere auch die hier relevanten Küstengebiete neu kartiert wurden. Daher kann es deutlich andere Einschätzungen geben als in der vorherigen Karte der Sulfatsauren Böden (Tiefenbereich 0-2 m). Die erläuternden Geofakten 24 befinden sich derzeit noch in Überarbeitung. Sogenannte „Sulfatsaure Böden“ kommen in Niedersachsen vor allem im Bereich der Küstengebiete vor. Diese Bezeichnung umfasst sowohl Böden als auch tiefergelegene Sedimente sowie Torfe. Charakteristisch für die verschiedenen sulfatsauren Materialien (SSM) sind hohe, geogen bedingte Gehalte an reduzierten anorganischen Schwefelverbindungen. Ursprünglich gelangte der Schwefel in Form von Sulfationen aus dem Meerwasser in die holozänen Ablagerungen. Aufgrund wassergesättigter, anaerober Bedingungen wurden die Sulfationen zu Sulfid reduziert und vor allem als Pyrit und FeS über lange Zeit wegen konstant hoher Grundwasserstände konserviert. Typische SSM sind tonreiche Materialien mit höheren Gehalten an organischer Substanz und/oder groben Pflanzenresten sowie über- und durchschlickte Niedermoortorfe. Bei Entwässerung und Belüftung dieser Materialien kommt es zur Oxidation der Sulfide und zur Bildung von Schwefelsäure, wenn sie z. B. im Rahmen von Bauvorhaben entwässert oder aus dem natürlichen Verbund herausgenommen werden. Aus potenziell sulfatsauren Böden können so aktuell sulfatsaure Böden werden. Das hohe Gefährdungspotenzial ergibt sich durch: • extreme Versauerung (pH < 4,0) des Baggergutes mit der Folge von Pflanzenschäden, • deutlich erhöhte Sulfatkonzentrationen im Bodenwasser bzw. Sickerwasser, • erhöhte Schwermetallverfügbarkeit bzw. -löslichkeit und erhöhte Konzentrationen im Sickerwasser; • hohe Korrosionsgefahr für Beton- und Stahlkonstruktionen. Zur Gefahrenabwehr bzw. -minimierung bedürfen in den betroffenen Gebieten alle Baumaßnahmen mit Bodenaushub oder Grundwasserabsenkungen einer eingehenden fachlichen Planung und Begleitung. Dabei ist zu beachten, dass die Verbreitung der Eisensulfide in der Fläche und in der Tiefe oft eher fleckenhaft ist. Daher sollten die Identifikation von aktuell und potenziell SSM sowie Bauplanung und -begleitung nur durch qualifiziertes bodenkundliches Fachpersonal vorgenommen werden. Aufgrund der oft geringen Tragfähigkeit dieser Böden und insbesondere der Torfe müssen bei Baumaßnahmen relativ große Baugruben ausgehoben werden, so dass in kurzer Zeit viel SSM als Aushubmaterial anfällt. Zudem laufen Oxidation und Versauerung oft sehr schnell ab. Diese Auswertungskarte kann schon bei Planung und Ausweisung von Gebieten, z. B. im Rahmen von Trassenplanungen, Flächennutzungs- und Bebauungsplänen etc., genutzt werden. Konkrete Handlungsanweisungen zu Bauplanung und -begleitung sowie zu Beprobung und Laboranalyse des umzulagernden SSM finden sich in den Geofakten 25. Achtung: Die Karte ist nur die Grundlage für eine konkrete Erkundung am Ort der Baumaßnahme.
Organische Schwefelkomponenten sind abundant in marinen Sedimenten. Diese Verbindungen werden v.a. durch die abiotische Reaktion anorganischer Schwefelverbindungen mit Biomolekülen gebildet. Wegen seiner Bedeutung für globale Stoffkreisläufe, für die Nutzung von Erdöllagerstätten und für die Erhaltung des Paleorecords, gibt es eine Vielzahl von Studien zum Thema. Sehr wenig Aufmerksamkeit wurde allerdings wasserlöslichen Komponenten geschenkt, die beim Prozess der Sulfurisierung entstehen und als gelöster organischer Schwefel (DOS) in die Meere gelangen können. Anhand der wenigen verfügbaren Informationen ist Schwefel vermutlich das dritthäufigste Heteroelement im gelösten organischen Material (DOM) der Meere, nach Sauerstoff und Stickstoff. Einige Schwefelverbindungen, insbesondere Thiole, sind für die Verbreitung von Schadstoffen aber auch essenzieller Spurenstoffe verantwortlich. Wichtige klimarelevante Schwefelverbindungen entstehen aus DOS. Daher spielt der marine DOS-Kreislauf eine Rolle für die Meere und Atmosphäre. Trotz seiner Bedeutung sind die Quellen marinen DOS, seine Umsetzung im Meer und Funktion für Meeresbewohner unbestimmt. Auch ist die molekulare Zusammensetzung von DOS unbekannt. In diesem Projekt werden wir Pionierarbeit in einem neuen Forschungsfeld der marinen Biogeochemie leisten. Wir wollen grundlegende Fragen bzgl. der Bildung und Verteilung von nicht-flüchtigem DOS im Meer beantworten. Unsere wichtigsten Hypothesen:* Bildung von DOS:(1) Sulfatreduzierende Sedimente sind wesentlich für die Bildung von DOS.(2) Reduzierte Schwefelverbindungen (v.a. Thiole) dominieren in Zonen der DOS-Entstehung.(3) DOS wird v.a. über abiotische Sulfurisierung in der Frühdiagenese gebildet.* Transport und Schicksal von DOS im Ozean:(4) DOS wird von sulfat-reduzierenden intertidalen Grundwässern an das Meer abgeben.(5) In der Wassersäule oxidiert DOS schnell (z.B. zu Sulfonsäuren).(6) DOS aus intertidalen Sedimenten ist in oxidierter Form auf den Kontintentalschelfen stabil.Neben dem wissenschaftlichen Ziel der Beantwortung dieser Hypothesen, wird das Projekt drei Promovierenden (eine in Deutschland und zwei in Brasilien) die außergewöhnliche Gelegenheit bieten, ihre Doktorarbeiten im Rahmen eines internationalen Projektes durchzuführen. Wir werden die Stärken beider Partner in Feld- und Laborstudien und Elementar-, Isotopen- und molekularen Analysen kombinieren. Wir werden unterschiedliche Regionen im deutschen Wattenmeer und in brasilianischen Mangroven (Rio de Janeiro and Amazonien) beproben, sowie die benachbarten Schelfmeere. Sulfurisierungsexperimente werden die Feldstudien ergänzen. Zur quantitativen Bestimmung und molekularen Charakterisierung von DOS werden wir neue Ansätze anwenden, die von den beiden Arbeitsgruppen entwickelt wurden. Dabei kommen u.a. ultrahochauflösende Massenspektrometrie (FT-ICR-MS), und andere massenspektrometrischen und chromatographischen Methoden zu Anwendung.
Kenntnisse über S-Bindungsformen und deren Flüsse in terrestrischen Ackerböden können nicht auf Sumpfreisböden übertragen werden, da nach deren Überflutung anaerobe Verhältnisse vorherrschen. Ergebnisse über die Bedeutung der einzelnen S-Fraktionen für die S-Nachlieferung in Sumpfreisböden und somit der S-Versorgung von Reis liegen kaum vor bzw. sind aufgrund des Trocknens der Bodenproben vor der Analyse nicht aussagefähig. Weiterhin wurde seither nicht berücksichtigt, dass in unmittelbarer Wurzelnähe von Reispflanzen im Gegensatz zum Restboden aerobe Verhältnisse vorherrschen. Aus diesem Grund soll in zwei typischen chinesischen Sumpfreisböden nach Dotierung mit 35S der Einbau des zugeführten Schwefels in definierte S-Fraktionen (SO42- in der Bodenlösung, adsorbiertes SO42-, FeS, FeS2, Sulfatester, Kohlenstoff gebundener S, Biomasse S) erfasst und in einer Zeitreihenuntersuchung Flüsse zwischen ihnen abgebildet werden. Dabei gilt es, zwischen der oberflächennahen aeroben Zone und der darunter liegenden anaeroben Zone bzw. dem wurzelnahen und wurzelfernen Boden zu differenzieren. Da Reisstroh häufig nach der Ernte in den Boden eingearbeitet wird, soll dessen Mineralisierungsverhalten mittels Einsatz von 35S markiertem Reisstroh untersucht werden. Des weiteren soll in speziellen Versuchsgefäßen, die das Gewinnen von Bodenproben in definierten Abständen von der Wurzeloberfläche erlauben, die Dynamik anorganischer und organischer S-Fraktionen in der Rhizosphäre erfasst werden.
In jüngster Zeit wurde ein neuer Mechanismus zum Ozonabbau über besiedelten Gebieten in der wissenschaftlichen Gemeinschaft diskutiert, der vor einer zunehmenden Gefahr von niedrigem Ozon im Sommer in mittleren Breiten in der unteren Stratosphäre warnt. Der Ozonabbau soll durch erhöhte Mengen an Wasserdampf verursacht werden, die konvektiv in die Stratosphäre injiziert werden und zu durch Chlor bedingtem katalytischen Ozonverlust führen soll durch heterogene Reaktionen an binären Sulfat-Wasser-Aerosolen (H2SO4/H2O). Diese heterogenen Reaktionen werden durch erhöhte Mengen an Wasserdampf und niedrige Temperaturen beschleunigt. Vorausgesetzt, dass die Intensität und die Frequenz des konvektiv injizierten Wasserdampfes durch den anthropogenen Klimawandel in den nächsten Jahrzehnten ansteigen, ist mit einer Erhöhung der ultravioletten Strahlung (UV) auf der Erdoberfläche über besiedelten Gebieten zu rechnen. Die Details dieses neuen Ozonverlust-Mechanismus sind jedoch noch unklar, so dass eine genaue Quantifizierung des Ozonverlustes und seiner Sensitivität auf stratosphärischen Schwefel und Wasserdampf noch nicht möglich war. Ferner wurde im Rahmen von Climate-Engineering-Methoden, die Injektion von Sulfat-Aerosol in die Stratosphäre vorgeschlagen, um die globale Erderwärmung abzuschwächen. Dies könnte zusätzlich den Ozonabbau in der unteren Stratosphäre in mittleren Breiten verstärken. Motiviert durch diese Wissenslücken in unserem gegenwärtigen Verständnis von Ozonverlustprozessen in mittleren Breiten in der unter Stratosphäre, schlagen wir im Rahmen des DFG Schwerpunktprogramms 'Climate Engineering' ein Projekt vor, dass unter Bedingungen mit sowohl erhöhtem Wasserdampf als auch erhöhtem Sulfat-Aerosol den Ozonverlust analysiert. Unser Projekt basiert auf verschiedenen Simulationen mit dem drei-dimensionalen Chemie-Transport-Modell CLaMS mit dem Ziel die Details dieses neuen Ozonverlust-Mechanismus zu verstehen und zu quantifizieren. Ferner soll der mögliche Ozonverlustes unter Klima-Engineering-Bedingungen zuverlässig simulieren werden. Ein Algorithmus, der die Abhängigkeit des Ozonverlustes in mittleren Breiten von erhöhtem stratosphärischem Schwefel beschreibt, wird der Klima-Engineering-Community als Basis für weitere ökonomische Analysen zur Verfügung gestellt. Unsere Ergebnisse werden helfen zukünftige Entscheidungen über Klima-Engineering zu bewerten, um mögliche Risiken und Kosten für die Gesellschaft zu minimieren.
Dieses Projekt umfasst zum einen Untersuchungen zur Verweilzeit des SO2 in der Atmosphaere, zum anderen die Messung sehr niedriger SO2 und H2S Konzentrationen. Zur Bestimmung des Ausscheidungsgrades des SO2 am Boden wurden Vertikalprofile (parallel zu Feuchte und Windprofilen) an einem meteorologischen Turm aufgenommen; zur Untersuchung der Oxidationsgeschwindigkeit wurde die Schwefel-38 Aktivitaet (Halbwertszeit 4 h, Produktion durch Hoehenstrahlung) im SO2 und Sulfat gemessen.
Die FeatureClass enthält die aktuellen Konzentrationen ausgewählter Grundwassergüteparameter für die Grundwassermessstellen der Messprogramme Wasserrahmenrichtlinie-Güte und Grundwassergüte. Sie dient der Darstellung der Gütedaten im Rahmen des Grundwasserberichts Niedersachsen. Die Darstellung erfolgt in separaten Layern für die einzelnen Güteparameter. Durch Klick auf eine Messstelle können weitere Informationen zum Parameter bzw. zur Messstelle abgerufen werden:- Parameterdatenblatt – Datenblatt mit tabellarischer Darstellung der Jahresmittelwerte und Zeitreihe der Konzentrationsentwicklung.- Messstellenbericht - Aktuellste Konzentrationen der an der Messstelle bestimmten Güteparameter.- Messstellenprofil – Informationen zum Ausbau der Messstelle. Die FeatureClass enthält die aktuellen Konzentrationen ausgewählter Grundwassergüteparameter für die Grundwassermessstellen der Messprogramme Wasserrahmenrichtlinie-Güte und Grundwassergüte. Sie dient der Darstellung der Gütedaten im Rahmen des Grundwasserberichts Niedersachsen. Die Daten werden in separaten Layern für die einzelnen Güteparameter angezeigt. Im Einzelnen sind die folgenden Layer enthalten: Gwb_Al - Aluminium, Gwb_NH4 - Ammonium, Gwb_AOX - AOX, Gwb_As - Arsen, Gwb_Pb - Blei, Gwb_KS8.2 - Basenkapazität pH 8,2, Gwb_B - Bor, Gwb_Ca - Calcium, Gwb_Cd - Cadmium, Gwb_Cr - Chrom, Gwb_Cl - Chlorid, Gwb_CN - Cyanid, Gwb_DOC – Gelöster organischer Kohlenstoff (DOC), Gwb_Fe - Eisen, Gwb_F - Fluorid, Gwb_K - Kalium, Gwb_Cu - Kupfer, Gwb_LHKW - LHKW, Gwb_LF - elektrische Leitfähigkeit, Gwb_Mg - Magnesium, Gwb_Mn - Mangan, Gwb_Na -Natrium, Gwb_Ni - Nickel, Gwb_NO3 - Nitrat, Gwb_NO2 - Nitrit, Gwb_PO4 - Ortho-Phosphat, Gwb_PSM - Pflanzenschutzmittel (PSM), Gwb_pH - pH-Wert, Gwb_Hg - Quecksilber, Gwb_SAK254 -SAK 254 / UV-Adsorption, Gwb_SAK436 - SAK 436 / Adsorption von sichtbarem Licht, Gwb_O2 - Sauerstoff, Gwb_Si - Silicium, Gwb_SO4 - Sulfat, Gwb_KS43 - Säurekapazität pH 4,3, Gwb_Zn - Zink.
Die hier dargestellten Karten zeigen die Auswertungen für etwa 250 Messstellen in Deutschlands Flüssen (LAWA Messstellennetz). Grundlage für die Einstufung in die Klassen sind die rechtlich vorgegebenen Hintergrundwerte und Orientierungswerte (Zielwerte), die in der Oberflächengewässerverordnung festgeschrieben sind. Durch Auswahl der Messstelle werden in einem Fenster die Informationen zur Messstelle und ein Diagramm der Jahresmittelwerte angezeigt. Für Nitrat wird der 90-Perzentil verwendet. Die Datengrundlage steht als Download (siehe Link unter Info-Links) zur Verfügung.
Die Hydrogeologische Übersichtskarte von Niedersachsen 1 : 500 000 - Grundwasserbeschaffenheit: Sulfatgehalt zeigt die Auswertung einer repräsentativen Auswahl von Sulfatkonzentrationen aus der Labordatenbank des LBEG. Die über einen Zeitraum von 1967 bis 2000 erhobenen Daten wurden zweifach gemittelt. Bei Grundwasser-Messstellen mit Mehrfachanalysen wurden Mittelwerte der jeweils vorliegenden Untersuchungsergebnisse gebildet. Zusätzlich wurden die Werte aller Probenahmestellen in einem Radius von 2000 m einer weiteren Mittelwertbildung unterzogen. Die Einteilung der Klassen erfolgt unter Berücksichtigung des Geringfügigkeitsschwellenwertes (GFS) bzw. des Grenzwertes der Trinkwasserverordnung (TVO) von 240 mg/l sowie des TVO-Wertes von 500 mg/l bei geogen bedingter Überschreitung. Erhöhte Konzentrationen, die eindeutig auf punktförmige anthropogene Einträge (z.B. Altdeponien) zurückzuführen sind, werden im Rahmen dieser Übersichtskarte nicht wiedergegeben. Die Sulfatgehalte sind in Tiefenstufen ohne Bezug zur lokalen hydrogeologischen Situation dargestellt. Die Stabdiagramme im rechts gezeigten Beispiel spiegeln Ergebnisse für die Tiefenstufen bis 20 Meter, über 20 bis 50 Meter, über 50 bis 100 Meter und über 100 bis 200 Meter wieder. Ein Vergleich von Werten ist daher ohne Berücksichtigung der jeweiligen hydrogeologischen Situation (z.B. hydrogeologischer Stockwerksbau) ebenso wie die Heranziehung der Daten für Detailuntersuchungen nicht zulässig. Sehr hohe Sulfatkonzentrationen sind z. T. auf geogene Einflüsse zurückzuführen: Die höchsten Konzentrationen für Sulfat finden sich in Niedersachsen im Bereich der Küstenversalzung (Ostfriesische Küste und nördlich des Jadebusens). Ebenfalls sehr hohe geogene Sulfatkonzentrationen gibt es im Verbreitungsgebiet gipshaltiger Gesteine (Oberer Buntsandstein, Mittlerer Muschelkalk, Mittlerer Keuper, Zechstein), wo im Grundwasser Sulfatkonzentrationen von mehr als 1000 mg/l erreicht werden. Die Oxidation von Sulfiden (z.B. Pyrit) führt ebenfalls zu hohen Sulfatgehalten. Im nördlichen Bereich von Hannover werden Konzentrationen von 100 – 400 mg/l erreicht. Eine Ursache dafür ist die Oxidation von Pyritmineralen aus Gesteinen der Kreidezeit. Erhöhte Eisengehalte und niedrige pH-Werte sind weitere Folgen dieser Reaktion. Sehr niedrige Sulfatgehalte mit wesentlich weniger als 10 mg/l sind meist auf Sulfatreduktion zurückzuführen, wobei bei dieser Reaktion häufig organisches Material im Gestein Oxidationsprozessen unterliegt. Das Grundwasser in den holozänen Ablagerungen östlich und südöstlich des Jadebusens ist zu einem großen Teil durch Sulfatreduktion verändert.
In dieser Karte wird das Risiko für die Verbreitung von potenziell sulfatsauren Böden unterhalb von 2 m Tiefe bis zur Basis der holozänen Sedimente dargestellt. Wichtig: Diese Karte wurde im Gegensatz zu der Karte für den Tiefenbereich 0-2 m in 2018 nicht neu überarbeitet, aber es werden auch hier die gleichen, neuen Legenden verwendet. Die erläuternden Geofakten 24 befinden sich derzeit noch in Überarbeitung. Für diese Karte gibt es keine Werte östlich von Cuxhaven und Bremerhaven, da deren Datengrundlage, die Geologische Küstenkarte von Niedersachsen, dort ebenfalls endet. Sogenannte „Sulfatsaure Böden“ kommen in Niedersachsen vor allem im Bereich der Küstengebiete vor. Diese Bezeichnung umfasst sowohl Böden als auch tiefergelegene Sedimente sowie Torfe. Charakteristisch für die verschiedenen sulfatsauren Materialien (SSM) sind hohe, geogen bedingte Gehalte an reduzierten anorganischen Schwefelverbindungen. Ursprünglich gelangte der Schwefel in Form von Sulfationen aus dem Meerwasser in die holozänen Ablagerungen. Aufgrund wassergesättigter, anaerober Bedingungen wurden die Sulfationen zu Sulfid reduziert und vor allem als Pyrit und FeS über lange Zeit wegen konstant hoher Grundwasserstände konserviert. Typische SSM sind tonreiche Materialien mit höheren Gehalten an organischer Substanz und/oder groben Pflanzenresten sowie über- und durchschlickte Niedermoortorfe. Bei Entwässerung und Belüftung dieser Materialien kommt es zur Oxidation der Sulfide und zur Bildung von Schwefelsäure, wenn sie z. B. im Rahmen von Bauvorhaben entwässert oder aus dem natürlichen Verbund herausgenommen werden. Aus potenziell sulfatsauren Böden können so aktuell sulfatsaure Böden werden. Das hohe Gefährdungspotenzial ergibt sich durch: • extreme Versauerung (pH < 4,0) des Baggergutes mit der Folge von Pflanzenschäden, • deutlich erhöhte Sulfatkonzentrationen im Bodenwasser bzw. Sickerwasser, • erhöhte Schwermetallverfügbarkeit bzw. -löslichkeit und erhöhte Konzentrationen im Sickerwasser; • hohe Korrosionsgefahr für Beton- und Stahlkonstruktionen. Zur Gefahrenabwehr bzw. -minimierung bedürfen in den betroffenen Gebieten alle Baumaßnahmen mit Bodenaushub oder Grundwasserabsenkungen einer eingehenden fachlichen Planung und Begleitung. Dabei ist zu beachten, dass die Verbreitung der Eisensulfide in der Fläche und in der Tiefe oft eher fleckenhaft ist. Daher sollten die Identifikation von aktuell und potenziell SSM sowie Bauplanung und -begleitung nur durch qualifiziertes bodenkundliches Fachpersonal vorgenommen werden. Aufgrund der oft geringen Tragfähigkeit dieser Böden und insbesondere der Torfe müssen bei Baumaßnahmen relativ große Baugruben ausgehoben werden, so dass in kurzer Zeit viel SSM als Aushubmaterial anfällt. Zudem laufen Oxidation und Versauerung oft sehr schnell ab. Diese Auswertungskarte kann schon bei Planung und Ausweisung von Gebieten, z. B. im Rahmen von Trassenplanungen, Flächennutzungs- und Bebauungsplänen etc., genutzt werden. Konkrete Handlungsanweisungen zu Bauplanung und -begleitung sowie zu Beprobung und Laboranalyse des umzulagernden SSM finden sich in den Geofakten 25. Achtung: Die Karte ist nur die Grundlage für eine konkrete Erkundung am Ort der Baumaßnahme.
| Origin | Count |
|---|---|
| Bund | 525 |
| Land | 20 |
| Wissenschaft | 330 |
| Type | Count |
|---|---|
| Chemische Verbindung | 11 |
| Daten und Messstellen | 15 |
| Förderprogramm | 500 |
| Gesetzestext | 7 |
| Text | 11 |
| unbekannt | 331 |
| License | Count |
|---|---|
| geschlossen | 25 |
| offen | 527 |
| unbekannt | 316 |
| Language | Count |
|---|---|
| Deutsch | 489 |
| Englisch | 408 |
| Resource type | Count |
|---|---|
| Archiv | 10 |
| Bild | 2 |
| Datei | 9 |
| Dokument | 10 |
| Keine | 405 |
| Unbekannt | 2 |
| Webdienst | 7 |
| Webseite | 441 |
| Topic | Count |
|---|---|
| Boden | 452 |
| Lebewesen und Lebensräume | 441 |
| Luft | 393 |
| Mensch und Umwelt | 868 |
| Wasser | 452 |
| Weitere | 540 |