API src

Found 2433 results.

Related terms

SYSIPHUS - Systematische Informationen über Produktionsanlagen und Herstellungsverfahren mit umweltrelevanten Schadstoffemissionen

Bei der Bearbeitung von branchenspezifischen und medienübergreifenden Fragen des technischen Umweltschutzes spielen Informationen zu produktionsbezogenen Stoffflüssen eine große Rolle. Schwerpunkt der Anwendung ist die Beschreibung chemischer Verfahren, der wichtigsten Prozeßparameter sowie die Ermittlung der gehandhabten Stoffe, die zur Herstellung eines chemischen Produktes notwendig sind bzw. die als Nebenprodukte und Verunreinigungen anfallen. Zusätzlich sind Angaben über Kapazitäts- und Produktionsmengen sowie Hersteller und Standort der Anlagen enthalten. In der Datenbank sind rund 11.000 Chemieanlagen in Deutschland mit Angaben zu Hersteller, Standort sowie teilweise Kapazitäts- und Produktmengen enthalten. Davon sind etwa 32.000 Produkte mit folgenden Merkmalen enthalten: - teilweise Mengenangaben der Einsatzstoffe, ggf. Zwischenprodukte und Nebenprodukte sowie weitere Stoffe, die zur Synthese eines chemischen Produktes benötigt werden oder zwangsweise anfallen (z.B. Lösungsmittel, Katalysator, Hilfsstoff, Verunreinigung). - Verfahrensbeschreibung der Synthese des Produktes - auch unter Einbeziehung möglicher Prozeßvarianten - Verwendung des Produktes - Emissionsangaben (noch unvollständig) - Energieverbrauch (noch keine Daten) Insgesamt enthält die Datenbank über 50.000 chemische Stoffe (u.a. auch Stoffgemische wie Polymere:Stand: 9/03 ), die direkt einer Anlage (Synthese) zugeordnet werden können. Recherchen können nach Einzelstoffen (Stoffflußanalyse über Einsatz, Synthese und Verbleib der Stoffe als Produkte oder Emissionen) oder Produktgruppen (z. B. Flammschutzmittel, Lösemittel, Riech- und Aromastoffe) oder chemischen Synthesen (z. B. Alkylierung, Carboxylierung, Diazotierung) durchgeführt werden. Beispielhafte Abfragen sind: Bei welcher Synthese bzw. Anlage wird der gesuchte Stoff als Einsatzstoff benötigt oder ist im Nebenprodukt, im Abfall oder in der Abluft enthalten? Wie hoch ist der Energieverbrauch? Wo steht die Anlage und wer stellt den Stoff her? Wie wird der Stoff verwendet? Wie hoch sind die Kapazitäts- bzw. Produktionsmengen? Die Ergebnisse unterstützen bzw. ermöglichen die genaue Analyse des Einsatzes und der Weiterverarbeitung eines Stoffes in Chemieanlagen. Die Analyse der Stoffflüsse innerhalb der chemischen Industrie wird in Zukunft eine noch größere Bedeutung für einen produktionsintegrierten Umweltschutz und ein nachhaltiges Stoffstrommanagement haben.

Significance of xylem translocated sulfate in early responses of stomata to drought in poplar plants

Das Projekt "Significance of xylem translocated sulfate in early responses of stomata to drought in poplar plants" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Institut für Forstbotanik und Baumphysiologie durchgeführt. Water deficiency, sensed by the root, is supposed to be signaled via xylem transport from the root to the shoot by chemical as well as hydraulic signals. In response to these signals stomatal conductance is reduced to prevent excessive water loss. The chemical signal mostly responsible for stomatal closure in response to drought is thought to be the photohormone abscisic acid (ABA). However, the origin of the ABA involved in this process is still a matter of debate, since it can be synthesized in roots and the shoot. Recent experiments indicated that increasing sulfate con-centrations in the xylem constitute an early response to drought; therefore, it has been hypothesized that xylem-borne sulfate accelerates the ABA signal for stomatal closure and that enhanced ABA in the leaves in response to drought does not necessarily originate from synthesis in roots; acceleration of stomatal closure by sulfate is thought to be achieved by activating malate efflux channels of guard cells. To test this hypothesis, (i) mass transport of ABA and sulfate in the xylem, (ii) its sources and the sinks during drought, (iii) drought mediated regulation of expression of sulfate transporters / anion channels, and (iv) the effects of sulfate and ABA on malate efflux from isolated guard cells will be studied. Experiments will be performed with wild type and transgenic poplar lines with altered expression of sulfate transporters, enhanced sulfate use for reduction, and in ABA insensitive mutants.

FHprofUnt 2018: Synthese von L-(-)-Menthol aus Abfällen der Papierindustrie (Waste2Menthol)

Das Projekt "FHprofUnt 2018: Synthese von L-(-)-Menthol aus Abfällen der Papierindustrie (Waste2Menthol)" wird vom Umweltbundesamt gefördert und von Technische Hochschule Köln, Campus Leverkusen, Fakultät für Angewandte Naturwissenschaften - CHEMPARK Leverkusen durchgeführt. Im Rahmen dieses Projekts soll ein neuer Prozess zur Herstellung von Menthol ausgehend von Abfallprodukten der Papierindustrie aufgezeigt werden. Bisherige Syntheserouten zu Menthol verwenden meist erdölbasierte Startmaterialien wie beispielsweise toxisches m-Kresol. Auf der Suche nach einem neuen Startmaterial rückte für das vorliegende Projekt ein Abfallstrom der Papierindustrie in den Fokus, da dieser biogenen Ursprungs ist und in großen Mengen zur Verfügung steht. Die Papierindustrie führt dieses Produkt bisher lediglich einer sehr geringen Wertschöpfung in Form einer Verbrennung zu. Dieses Startmaterial steht - im Gegensatz zu vielen anderen biogenen Startmaterialien der chemischen Industrie - nicht in Konkurrenz zur Verwendung als Nahrungsmittel. Unter ökologischen, ökonomischen und sozialen Aspekten handelt es sich daher um ein ideales Startmaterial. Mit Hilfe chemischer Methoden soll dieses Ausgangsmaterial in Menthol umgewandelt werden. Hierzu sind der Entwurf einer neuen Syntheseroute und deren Übertragung in den technischen Maßstab nötig.

Prevention of selected diseases and parasites in organic pig herds - by means of a HACCP based management and surveillance programme

Das Projekt "Prevention of selected diseases and parasites in organic pig herds - by means of a HACCP based management and surveillance programme" wird vom Umweltbundesamt gefördert und von Universität Kassel, FB 11 - Ökologische Agrarwissenschaften, Fachgebiet Tierernährung und Tiergesundheit durchgeführt. The health of the pigs varies a lot between different organic pig herds. This is likely to be caused by the different management routines implemented in the herd. Since the use of antibiotics and antiparasitic drugs is undesirable in organic pig production, the main focus is on prevention of diseases and parasites. It is therefore important to acquire knowledge of the correlation between management routines and disease occurrence in organic pig production and convert this knowledge into a management tool that the individual farmer can use to improve livestock health on farm. The overall objective of the project is to promote animal health and welfare in organic pig herds in Europe. This will be achieved by carrying out the following three components: - To conduct an international knowledge synthesis for establishing future needs for research into disease and parasite prevention in organic pig production - To estimate risk factors for selected diseases and parasites in pigs in European organic herds - To develop and evaluate a management and surveillance system for organic pig herds based on a so-called HACCP (Hazard Analysis and Critical Control Points) concept.

Einsatz von integrierten Biosensoren mit Antikoerper- und makrocyclischen Rezeptorbibliotheken bei der Messung von Algenzellen und Toxinen in Wasser

Das Projekt "Einsatz von integrierten Biosensoren mit Antikoerper- und makrocyclischen Rezeptorbibliotheken bei der Messung von Algenzellen und Toxinen in Wasser" wird vom Umweltbundesamt gefördert und von Technische Universität Berlin, Fachbereich 07 Umwelt und Gesellschaft, Institut für Ökologie und Biologie, Fachgebiet Ökotoxikologie durchgeführt. General Information: The objective of the proposed work is to develop biosensor systems for the reliable monitoring of algae toxins and cells. Diagnosis will also be carried out using newly developed immunotoxicity assay. The use of an integrated electronic sensing principle is a very flexible approach, allowing the sample to be probed in many ways. The proposed approach is to use simple, disposable electrochemical affinity sensors. Affinity sensors are based on a receptor molecule specifically recognizing and binding an analyte. This is a very sensitive method and for biosensors the receptor most commonly used is an antibody. Recently a number of chemically or biochemically derived artificial receptors have been developed and their use in the construction of sensors has led to a new class of bio mimetic sensors. The principle of producing immunosensors has been demonstrated for other applications and is considered to have a high chance of success. Two state-of-the-art approaches are proposed for the production of receptor molecules. This is clearly a difficult task, but one which we believe will be successful. The proposers have considerable experience in antibody production, and significant experience in combinatorial synthesis. Both approaches have been demonstrated for use with compounds which are not dissimilar to those considered for this project. These approaches have the added advantage that they can be adapted to airy group of compounds. The biosensor array will be combined with multivariate analysis software for use in analyzing real samples taken from a number of sites throughout Europe. The instruments will be compared with current laboratory based methods such as chromatography. Immunotoxicity assay method will also be developed. The toxic and non-toxic algae will be fed to bivalves. The hemocytes will be tested concerning their phagozytotic activity. By recording immunological resistance (phagocytosis) in terms of quality and quantity, it is possible to detect biotoxins and their effects on the aquatic organisms. Experiments with reference biotoxins will be done with microcystin and anatoxin. Measurement of phagocytic activity offers ample opportunities for detecting unknown biotoxins by their influence on mussel immunology and hence a sensor can be constructed from this assay. Prime Contractor: Cranfield University, Biotechnology Centre; Cranfield.

Teilvorhaben 1/2: Bakterielle Metabolite

Das Projekt "Teilvorhaben 1/2: Bakterielle Metabolite" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Siedlungswasserbau, Wassergüte- und Abfallwirtschaft durchgeführt. Bakterien sind - wie auch Pilze - haeufig zu einem Stoffwechsel von PAK befaehigt, ohne sie dabei als alleinige Kohlenstoff- und Energiequelle nutzen zu koennen. Solche Biotransformationen fuehren in der Regel zur Ausscheidung von oxidierten Metaboliten ins umgebende Milieu. Im Boden kann durch biotische wie abiotische Reaktionen eine auf verschiedenen chemischen Bindungen beruhende Festlegung geschehen. Ziel des vorliegenden Projektes ist es dabei, die Moeglichkeit einer 'Humifizierung' von Modellsubstanzen der PAK sowie dieser PAK selbst, beurteilen zu helfen. Diese Humifizierung koennte sowohl rein biologisch als auch in einer Kombination biologisch-chemischer Reaktionen ablaufen. Im Rahmen des Projektes sollen radioaktiv markierte Metabolite des bakteriellen PAK-Abbaus isoliert, charakterisiert und in Mengen dargestellt werden, die anderen beteiligten Arbeitsgruppen eine Beurteilung Ihres Humifizierungsverhaltens erlauben.

Katalytische Addition von Stickstoff-Nucleophilen an Mehrfachbindungen

Das Projekt "Katalytische Addition von Stickstoff-Nucleophilen an Mehrfachbindungen" wird vom Umweltbundesamt gefördert und von Technische Universität Kaiserslautern, Fachbereich Chemie, Lehrgebiet Organische Chemie, Arbeitsgruppe Lukas Gooßen durchgeführt. Das Ziel dieses Forschungsprojekts war die auf mechanistische Untersuchungen gestützte, rationale Entwicklung neuer übergangsmetallkatalysierter Additionsreaktionen von N-, C-, P-, S- und O-Nucleophilen an C-C-Mehrfachbindungen. Im Mittelpunkt dieser Arbeiten sollte dabei die Erschließung der katalytischen Addition von Amiden an terminale Alkine als ein generell anwendbarer, umweltfreundlicher Zugang zur synthetisch wertvollen Substanzklasse der Enamide stehen. In bisherigen Studien gelang es uns, die beschriebene Addition von Amiden an terminale Alkine zu einer präparativ breit einsetzbaren Reaktion zu entwickeln. Neben sekundären Amiden können so mittlerweile auch Imide, Thioamide und primäre Amide an eine Vielzahl von Alkinen unterschiedlicher Funktionalität in guten Ausbeuten addiert werden. Der Katalysator ist in situ aus kommerziell verfügbaren Bis(2-methallyl)(cycloocta-1,5-dien)ruthenium(II) ((cod)Ru(met)2) zugänglich und ohne besonderen apparativen Aufwand einfach handhabbar. Je nach verwendetem Phosphin und Additiv kann regio- und stereoselektiv das E bzw Z-konfigurierte anti-Markovnikov Enamid dargestellt werden. In umfangreichen mechanistischen Studien wurden neue Erkenntnisse zum Reaktionsmechanismus der Hydroamidierung gesammelt. Dabei konnte unter anderem nachgewiesen werden, dass keiner der ursprünglichen Liganden der Rutheniumquelle (cod)Ru(met)2 während der Katalyse am Rutheniumzentrum verbleibt. Basierend auf diesen Erkenntnissen wurde ein wesentlich kostengünstigeres Hydroamidierungsverfahren entwickelt, bei dem der Katalysator in situ aus einfachem Rutheniumtrichlorid-Hydrat erzeugt wird. Vielleicht der bisher größte Erfolg dieses Projektes war die Entwicklung von Katalysatoren, die erstmals die Addition von primären Amiden an terminale Alkine erlauben. Entscheidend dabei ist die Verwendung anspruchsvoller, chelatisierender Phosphinliganden in Kombination mit starken Lewis-Säuren als Co-Katalysatoren. Diese Methode eröffnet die regio- und stereoselektive Darstellung von ansonsten schwer zugänglichen Synthesebausteinen und Naturstoffen. In weiteren Arbeiten sollen zunächst die mechanistischen Arbeiten abgeschlossen werden. Danach soll die Anwendungsbreite der Hydroamidierung anhand der Synthese komplexer Naturstoffe demonstriert werden. Abschließend soll Hinweisen nachgegangen werden, dass sich die Regioselektivität der Hydroamidierung bei Verwendung von anderen Übergangsmetallkatalysatoren umkehren lässt.

Synthese und Prozessierung von nanoskaligen Absorbermaterialien

Das Projekt "Synthese und Prozessierung von nanoskaligen Absorbermaterialien" wird vom Umweltbundesamt gefördert und von Universität Duisburg-Essen, IVG Institut für Verbrennung und Gasdynamik - Reaktive Fluide durchgeführt. Im Verbundvorhaben sollen hocheffiziente, neuartige Absorberschichten unter Verwendung nano-kristalliner Materialien entwickelt werden. Die vorgesehenen Materialien sind nach aktuellem Kenntnisstand als unbedenklich einzustufen und bestehen aus nahezu unbegrenzt verfügbaren Rohstoffen. Insbesondere sollen im Projekt die Wirkungsgrade von Silizium-Dünnschichtsolarzellen (Stapelzellen) bei gleichzeitiger Reduzierung der Schichtdicke signifikant verbessert werden unter Ausnutzung der wesentlichen Vorteile der Silizium-Dünnschichttechnologie. Bevorzugt werden Materialien mit einem sehr hohen Absorptionskoeffizienten ausgewählt, die in nanopartikulärer Form in silizium-basierte Absorberschichten eingebaut werden. Geplant ist die Synthese und Verwendung von Materialien mit unterschiedlicher, direkter Bandlücke und hohem Absorptionskoeffizienten wie FeSi2, FeS2, Cu2S, Cu2O und ZrS2, um das Absorptionsspektrum der Schichten im Vergleich zu Silizium deutlich zu erweitern. Durch die Entkopplung von Nanopartikelsynthese und Schichtwachstum sollen wichtige Freiheitsgrade bezüglich der Optimierung von Partikel- und Schichteigenschaften genutzt werden. Dadurch werden die Ziele einer signifikant verbesserten Wirtschaftlichkeit bei reduziertem Materialbedarf mit einer unbegrenzten Ressourcenverfügbarkeit kombiniert und eine nachhaltige Entwicklung bei der umweltfreundlichen Energiewandlung durch Photovoltaik gesichert.

European Union Basin-scale Analysis, Synthesis and Integration (EURO-BASIN)

Das Projekt "European Union Basin-scale Analysis, Synthesis and Integration (EURO-BASIN)" wird vom Umweltbundesamt gefördert und von Danmarks Tekniske Universitet durchgeführt. Objective: EURO-BASIN is designed to advance our understanding on the variability, potential impacts, and feedbacks of global change and anthropogenic forcing on the structure, function and dynamics of the North Atlantic and associated shelf sea ecosystems as well as the key species influencing carbon sequestering and ecosystem functioning. The ultimate goal of the program is to further our capacity to manage these systems in a sustainable manner following the ecosystem approach. Given the scope and the international significance, EURO-BASIN is part of a multidisciplinary international effort linked with similar activities in the US and Canada. EURO-BASIN focuses on a number of key groups characterizing food web types, e.g. diatoms versus microbial loop players; key species copepods of the genus Calanus; pelagic fish, herring (Clupea harengus), mackerel (Scomber scombrus), blue whiting (Micromesistius poutassou) which represent some of the largest fish stocks on the planet; piscivorous pelagic bluefin tuna (Thunnus thynnus) and albacore (Thunnus alalunga) all of which serve to structure the ecosystem and thereby influence the flux of carbon from the euphotic zone via the biological carbon pump. In order to establish relationships between these key players, the project identifies and accesses relevant international databases and develops methods to integrate long term observations. These data will be used to perform retrospective analyses on ecosystem and key species/group dynamics, which are augmented by new data from laboratory experiments, mesocosm studies and field programs. These activities serve to advance modelling and predictive capacities based on an ensemble approach where modelling approaches such as size spectrum; mass balance; coupled NPZD; fisheries; and ?end to end? models and as well as ecosystem indicators are combined to develop understanding of the past, present and future dynamics of North Atlantic and shelf sea ecosystems and their living marine resources.

Teilprojekt Uni Ulm

Das Projekt "Teilprojekt Uni Ulm" wird vom Umweltbundesamt gefördert und von Universität Ulm, Institut für Mikrobiologie und Biotechnologie durchgeführt. Die nachhaltige Produktion von Chemikalien und Kraftstoffen aus nicht-fossilen Rohstoffen ist eine der größten Herausforderungen für die Zukunft. Die Ein-Kohlenstoffverbindung (C1) Methanol wird in diesem Vorhaben als Ausgangsbasis für die Synthese von Chemikalien und Kraftstoffen verwendet. Methanol ist flüssig, in Wasser löslich, leicht zu lagern und zu transportieren. Es lässt sich aus zahlreichen verschiedenen nachhaltigen Quellen, wie z.B. industriellen Abfallgasen, Biogas (Methan) oder erneuerbarer Elektrizität in Kombination mit CO2 herstellen. Das Ziel dieses Teilvorhabens in dem Verbundvorhaben BIOMETCHEM' ist die Entwicklung von rekombinanten Bakterienstämmen zur Produktion der Chemikalien --Aminobuttersäure und 1,4-Butandiol mit Methanol als Einsatzstoff. Dafür dient das acetogene Bakterium Eubacterium limosum als Entwicklungsplattform, um die benötigten Bakterienstämme herzustellen. Das 'BIOMETCHEM'-Vorhaben wird von einer Analyse der Ökobilanzen sowie Auswirkungen auf Umwelt und Gesellschaft begleitet. Das Verbundvorhaben wird einen neuen nachhaltigen Industrieprozess aufzeigen und zu einer Zukunft ohne fossile Brennstoffe beitragen. Diese Vorhabenbeschreibung kann veröffentlicht werden.

1 2 3 4 5242 243 244