Kurzinformation des wissenschaftlichen Dienstes des Deutschen Bundestages. 2 Seiten. Auszug der ersten drei Seiten: Wissenschaftliche Dienste Kurzinformation Zum Verhältnis der Richtlinie 98/70/EG zu den Europäischen Normen zur Qualität von Dieselkraftstoffen Die Bundesregierung hat Anfang Oktober 2019 die „Verordnung zur Umsetzung der Richtlinie 2014/94/EU und weiterer immissionsschutzrechtlicher Rechtsakte der Europäischen Union“ be- schlossen, mit der unter anderem die „Verordnung über die Beschaffenheit und die Auszeich- nung der Qualitäten von Kraft- und Brennstoffen“ (10. BImSchV) geändert werden soll. Die Ver- 1 ordnung bedarf noch der Zustimmung des Bundesrates. § 4 Absatz 1 10. BImSchV soll zukünftig vorsehen, dass Dieselkraftstoffe nur dann in Verkehr ge- bracht werden dürfen, wenn sie der Norm DIN EN 590 (Ausgabe Oktober 2017) entsprechen. In dieser Norm werden auch in der jüngsten Fassung unter anderem eine Mindest- und eine Maxi- maldichte für Dieselkraftstoffe festgelegt. Synthetische Kraftstoffe, die unter anderem mit Hilfe erneuerbarer Energien hergestellt werden können, weisen demgegenüber eine geringere Dichte auf. Daher können solche Kraftstoffe auch nach Inkrafttreten der von der Bundesregierung be- 2 schlossenen Änderung der 10. BImSchV nur als Beimischung in Verkehr gebracht werden. Die technischen Spezifikationen von Kraftstoffen sind zudem Gegenstand der Richtlinie 3 98/70/EG. Ziel der Richtlinie ist insbesondere eine Harmonisierung der technischen Spezifikati- onen an die Kraftstoffqualität, die sich aus den Aspekten des Gesundheits- und Umweltschutzes ergeben (Artikel 1). Dabei werden auch die technischen Anforderungen der Motoren berücksich- tigt. Mit Blick auf die Dichte von Dieselkraftstoffen wird in Anhang II der Richtlinie lediglich ein Maximalwert von 845 kg/m³ festgelegt. 1 Bundesratsdrucksache 486/19. 2 Vgl. die Begründung auf Bundesratsdrucksache 486/19, S. 45. 3 Richtlinie 98/70/EG des Europäischen Parlaments und des Rates vom 13. Oktober 1998 über die Qualität von Otto- und Dieselkraftstoffen, zuletzt geändert durch die Verordnung (EU) 2018/1999. Eine konsolidierte Fassung ist verfügbar unter https://eur-lex.europa.eu/legal-content/DE/TXT/HTML/?uri=CELEX:01998L0070- 20181224&from=EN . WD 8 - 3000 - 142/19 (28. November 2019) © 2019 Deutscher Bundestag Die Wissenschaftlichen Dienste des Deutschen Bundestages unterstützen die Mitglieder des Deutschen Bundestages bei ihrer mandatsbezogenen Tätigkeit. Ihre Arbeiten geben nicht die Auffassung des Deutschen Bundestages, eines sei- ner Organe oder der Bundestagsverwaltung wieder. Vielmehr liegen sie in der fachlichen Verantwortung der Verfasse- rinnen und Verfasser sowie der Fachbereichsleitung. Arbeiten der Wissenschaftlichen Dienste geben nur den zum Zeit- punkt der Erstellung des Textes aktuellen Stand wieder und stellen eine individuelle Auftragsarbeit für einen Abge- ordneten des Bundestages dar. Die Arbeiten können der Geheimschutzordnung des Bundestages unterliegende, ge- schützte oder andere nicht zur Veröffentlichung geeignete Informationen enthalten. Eine beabsichtigte Weitergabe oder Veröffentlichung ist vorab dem jeweiligen Fachbereich anzuzeigen und nur mit Angabe der Quelle zulässig. Der Fach- bereich berät über die dabei zu berücksichtigenden Fragen.[.. next page ..]Wissenschaftliche Dienste Kurzinformation Seite 2 Zum Verhältnis der Richtlinie 98/70/EG zu den Europäischen Normen zur Qualität von Dieselkraftstoffen Artikel 5 der Richtlinie 98/70/EG sieht vor, dass die Mitgliedstaaten das Inverkehrbringen von Kraftstoffen, die den Vorschriften dieser Richtlinie entsprechen, weder untersagen noch be- schränken noch verhindern dürfen. Artikel 6 der Richtlinie 98/70/EG ermöglicht unter bestimm- ten Voraussetzungen strengere umweltbezogene Anforderungen. Die vom Europäischen Komitee für Normung angenommene Norm EN 590 (Ausgabe Oktober 2017) übernimmt zum einen den Wert der Maximaldichte für Dieselkraftstoffe aus der Richtlinie 98/70/EG. Die in der Norm EN 590 (Oktober 2017) zum anderen festgelegte Mindestdichte von 820 kg/m³ beruht hingegen nicht unmittelbar auf der Richtlinie 98/70/EG, wie auch die Erläute- rung der Tabelle 1 dieser Norm angibt. Hintergrund ist, dass sich dieser Grenzwert nicht dem Umweltschutz dient, sondern Aspekte der Betriebs- und Anlagensicherheit der Tankstellen so- wie des Verbraucherschutzes betrifft. Dies verdeutlicht auch der Umstand, dass das Europäische Komitee für Normung einen eigenen Standard für paraffinierte Dieselkraftstoffe (EN 15940) aufgestellt hat und nicht den allgemeinen Standard für Dieselkraftstoffe so angepasst hat, dass er auch sortenreine synthetische Kraftstoffe zulässt. Aus Sicht des Umweltschutzes wäre eine Lockerung des Standards für Dieselkraftstoffe funktional äquivalent zu der Normierung eines eigenen Standards. Andere Aspekte können hinge- gen nur durch eine differenzierte Standardsetzung berücksichtigt werden. Die Aspekte der Anlagensicherheit und des Verbraucherschutzes können die Beschränkungen der Verkehrsfähigkeit unabhängig von den Aspekten des Umweltschutzes tragen. Dies gilt insbeson- dere, wenn sie in einer europäischen Norm festgelegt werden und daher keine einseitigen und potentiell diskriminierenden Handelshemmnisse begründet werden, die mit der Warenverkehrs- freiheit in Konflikt stünden. Artikel 5 der Richtlinie 98/70/EG steht solchen Spezifikationen nicht entgegen, da er nach Sinn und Zweck der Regelung nur umweltbezogene Spezifikationen betrifft. *** Fachbereich WD 8 Umwelt, Naturschutz, Reaktorsicherheit, Bildung und Forschung
Biokraftstoffe werden aus Biomasse hergestellt und dienen als Kraftstoffe (Treibstoffe) für Verbrennungsmotoren. Der Kraftstoffsektor als Bereich nachwachsender Rohstoffe wurde bis 2005 fast ausschließlich von Biodiesel bestritten. Im Rahmen des EU-Aktionsprogramms Biotreibstoffe mit Richtwerten für Mindestanteile von Biokraftstoffen sowie der Richtlinie zur Steuerbefreiung/-reduzierung von biogenen Treibstoffen und -komponenten wird 2010 ein Absatz von 3,2 Mio. t in Deutschland angestrebt (5,75 % des Kraftstoffmarktes). Ziel des Aktionsprogramms ist die Minderung der Abhängigkeit von Rohstoffimporten für die Kraftstoffproduktion. Zusätzlich wird eine Minderung der CO2-Belastung angestrebt. Mit den Steigerungsraten im Verkehrsaufkommen besteht die Gefahr, dass die CO2-Einsparungen anderer Wirtschaftsbereiche überdeckt und die gestellten Ziele insgesamt nicht erreicht werden. Neben Kraftstoffen in reiner Form wurden mit Inkrafttreten des neuen Mineralölsteuergesetzes in Deutschland auch Anteile biogener Kraftstoffe in Mischungen mit fossilen Kraftstoffen von der Mineralölsteuer befreit. Damit sind auch Mischungen wirtschaftlich. Als Alternative zu fossilen Kraftstoffen kommen u. a. Pflanzenölmethylester, Pflanzenöl, Alkohol, Biogas und synthetische Kraftstoffe auf Biomassebasis in Frage, wobei reine Kraftstoffe oder Mischungen mit fossilen Kraftstoffen möglich sind.
reTURN wird ein Verfahren zur Herstellung CO2-neutraler synthetischer Kraftstoffe demonstrieren. Dieses beinhaltet nicht nur das Potenzial signifikanter CO2-Reduktionen, sondern auch das Erzielen einer wesentlichen Effizienzsteigerung in der Produktion synthetischer Kraftstoffe und damit eine drastische Kostenreduktion. Im Verfahren werden drei etablierte Prozessschritte erstmalig in einem skalierbaren Einzelreaktor integriert, um auf Basis von rezykliertem CO2 und Biomethan aus organischen landwirtschaftlichen/ städtischen Restabfällen Synthesegas herzustellen: (1) Plasma-Verfahren mittels Biomethanpyrolyse, (2) Boudouard-Reaktion, (3) heterogene Wassergas-Shift-Reaktion mit anschließendem Quenching. Diese Kombination ermöglicht eine flexible Zusammensetzung des entstehenden Synthesegases, sodass nachfolgend verschiedene Konversionstechnologien als vierter Schritt des reTURN Verfahrens eingesetzt und damit verschiedene klimafreundliche Kraftstoffe oder Grundchemikalien produziert werden können. Das Projekt verwendet die Fischer-Tropsch-Synthese, um die gesamte Prozesskette bis hin zu den Endprodukten in einer Testanlage zu erforschen und zu erproben sowie einen Nachweis der technischen Machbarkeit und Massenmarkttauglichkeit zu erbringen. Schwerpunkte von reTURN sind der Bau und Testbetrieb des neuartigen Reaktors, begleitet von verschiedenen Forschungen am Reaktor, wie bspw. Messkampagnen und einer ökologischen Nachhaltigkeitsbetrachtung mit dem Fokus auf CO2. reTURN bietet vielfältige Verwertungsmöglichkeiten, insb. neue Geschäftsmodelle für CAPHENIA und Betreiber von Biogas- bzw. Fermentationsanlagen. Mit dem Einsatz erneuerbarer Energie entsteht zudem ein wesentliches Potenzial für eine nachhaltige Sektorenkopplung des Verkehrs- und Stromsektors in Deutschland. Damit stellt reTURN nicht nur ein Vehikel zur Stärkung der nationalen Vorreiterrolle im Nachhaltigkeitskontext bereit, sondern leistet auch einen entscheidenden Beitrag zum weltweiten Klimaschutz.
EwOPro ist ein Entwicklungs- und Demonstrationsvorhaben zur Erzeugung synthetischer Kraftstoffe / eFuels, mit dem Fokus auf der Herstellung von erneuerbarem Kerosin. Das Hauptziel von EwOPro ist die detaillierte Untersuchung des Prozesses zur Umsetzung der Olefine zu Paraffinen bzw. Oligomeren in der entsprechenden Kettenlänge und Verzweigung im Rahmen des Methanol-to-Jetfuel-Prozesses, welche für die Ziel-Produktfraktion Kerosin und die Koppelprodukte hochoktaniges/aromatenfreies Benzin und Diesel/Heizöl von Relevanz sind. Dabei stehen insbesondere die wissensbasierte Katalysatorweiterentwicklung sowie die Optimierung der prozesstechnischen Parameter der einzelnen Prozessstufen Methanol-to-Olefins, Olefin-Oligomerisierung und Hydrierung sowie in Kombination im Vordergrund. Die Kombination der Verfahrensschritte ist essentiell, um die zielgerichtete Steuerung des Produktspektrums je nach wirtschaftlichem Bedarf untersuchen und entsprechend optimieren zu können. Die gesamte Prozesskette soll in einer Pilotanlage im Technikumsmaßstab unter Nutzung vorhandener Infrastruktur und Peripherie aufgebaut werden (TRL 6). Für Oligomerisierung soll ein Kerosin-Anteil von mind. 62,5 Ma.-% im flüssigen Produkt erreicht werden. Zudem stehen je 20 Ma.-% hochoktangies aromatenfreies Benzin sowie Diesel in entsprechender Qualität im Fokus der quantitativen Zielstellung. Für die Übertragbarkeit der Ergebnisse steht die Auslegung eines großtechnischen Reaktorsystems basierend auf Tests auf der Pilotanlage im Ergebnis des beantragten Vorhabens. Dies dient der schnellen und effizienten technologischen Umsetzung des Prozesses nach Abschluss des Förderprojekts. Das Ziel des Teilprojekts ist die Entwicklung einer Methode zur umfassenden und detaillierten Analytik von synthetisch erzeugten Kerosinen auf Grundlage der komprehensiven Gaschromatographie (GCxGC) und die Anwendung dieser Methode auf Proben, die in den Versuchskampagnen des Projekts an einer Technikumsanlage gewonnen werden.
reTURN wird ein Verfahren zur Herstellung CO2-neutraler synthetischer Kraftstoffe demonstrieren. Dieses beinhaltet nicht nur das Potenzial signifikanter CO2-Reduktionen, sondern auch das Erzielen einer wesentlichen Effizienzsteigerung in der Produktion synthetischer Kraftstoffe und damit eine drastische Kostenreduktion. Im Verfahren werden drei etablierte Prozessschritte erstmalig in einem skalierbaren Einzelreaktor integriert, um auf Basis von rezykliertem CO2 und Biomethan aus organischen landwirtschaftlichen/ städtischen Restabfällen Synthesegas herzustellen: (1) Plasma-Verfahren mittels Biomethanpyrolyse, (2) Boudouard-Reaktion, (3) heterogene Wassergas-Shift-Reaktion mit anschließendem Quenching. Diese Kombination ermöglicht eine flexible Zusammensetzung des entstehenden Synthesegases, sodass nachfolgend verschiedene Konversionstechnologien als vierter Schritt des reTURN Verfahrens eingesetzt und damit verschiedene klimafreundliche Kraftstoffe oder Grundchemikalien produziert werden können. Das Projekt verwendet die Fischer-Tropsch-Synthese, um die gesamte Prozesskette bis hin zu den Endprodukten in einer Testanlage zu erforschen und zu erproben sowie einen Nachweis der technischen Machbarkeit und Massenmarkttauglichkeit zu erbringen. Schwerpunkte von reTURN sind der Bau und Testbetrieb des neuartigen Reaktors, begleitet von verschiedenen Forschungen am Reaktor, wie bspw. Messkampagnen und einer ökologischen Nachhaltigkeitsbetrachtung mit dem Fokus auf CO2 Äquivalenten. reTURN bietet vielfältige Verwertungsmöglichkeiten, insb. neue Geschäftsmodelle für CAPHENIA und Betreiber von Biogas- bzw. Fermentationsanlagen. Mit dem Einsatz erneuerbarer Energie entsteht zudem ein wesentliches Potenzial für eine nachhaltige Sektorenkopplung des Verkehrs- und Stromsektors. Damit stellt reTURN nicht nur ein Vehikel zur Stärkung der nationalen Vorreiterrolle im Nachhaltigkeitskontext bereit, sondern leistet auch einen entscheidenden Beitrag zum weltweiten Klimaschutz.
reTURN wird ein Verfahren zur Herstellung CO2-neutraler synthetischer Kraftstoffe demonstrieren. Dieses beinhaltet nicht nur das Potenzial signifikanter CO2-Reduktionen, sondern auch das Erzielen einer wesentlichen Effizienzsteigerung in der Produktion synthetischer Kraftstoffe und damit eine drastische Kostenreduktion. Im Verfahren werden drei etablierte Prozessschritte erstmalig in einem skalierbaren Einzelreaktor integriert, um auf Basis von rezyklierten CO2 und Biomethan aus organischen landwirtschaftlichen/ städtischen Restabfällen Synthesegas herzustellen: (1) Plasma-Verfahren mittels Biomethanpyrolyse, (2) Boudouard-Reaktion, (3) heterogene Wassergas-Shift-Reaktion mit anschließendem Quenching. Diese Kombination ermöglicht eine flexible Zusammensetzung des entstehenden Synthesegases, sodass nachfolgend verschiedene Konversionstechnologien als vierter Schritt des reTURN Verfahrens eingesetzt und damit verschiedene klimafreundliche Kraftstoffe oder Grundchemikalien produziert werden können. Das Projekt verwendet die Fischer-Tropsch-Synthese, um die gesamte Prozesskette bis hin zu den Endprodukten in einer Testanlage zu erforschen und zu erproben sowie einen Nachweis der technischen Machbarkeit und Massenmarkttauglichkeit zu erbringen. Schwerpunkte von reTURN sind der Bau und Testbetrieb des neuartigen Reaktors, begleitet von verschiedenen Forschungen am Reaktor, wie bspw. Messkampagnen und einer ökologischen Nachhaltigkeitsbetrachtung mit dem Fokus auf CO2 Äquivalenten. reTURN bietet vielfältige Verwertungsmöglichkeiten, insb. neue Geschäftsmodelle für CAPHENIA und Betreiber von Biogas- bzw. Fermentationsanlagen. Mit dem Einsatz erneuerbarer Energie entsteht zudem ein wesentliches Potenzial für eine nachhaltige Sektorenkopplung des Verkehrs- und Stromsektors. Damit stellt reTURN nicht nur ein Vehikel zur Stärkung der nationalen Vorreiterrolle im Nachhaltigkeitskontext bereit, sondern leistet auch einen entscheidenden Beitrag zum weltweiten Klimaschutz.
reTURN wird ein Verfahren zur Herstellung CO2-neutraler synthetischer Kraftstoffe demonstrieren. Dieses beinhaltet nicht nur das Potenzial signifikanter CO2-Reduktionen, sondern auch das Erzielen einer wesentlichen Effizienzsteigerung in der Produktion synthetischer Kraftstoffe und damit eine drastische Kostenreduktion. Im Verfahren werden drei etablierte Prozessschritte erstmalig in einem skalierbaren Einzelreaktor integriert, um auf Basis von rezykliertem CO2 und Biomethan aus organischen landwirtschaftlichen/ städtischen Restabfällen Synthesegas herzustellen: (1) Plasma-Verfahren mittels Biomethanpyrolyse, (2) Boudouard-Reaktion, (3) heterogene Wassergas-Shift-Reaktion mit anschließendem Quenching. Diese Kombination ermöglicht eine flexible Zusammensetzung des entstehenden Synthesegases, sodass nachfolgend verschiedene Konversionstechnologien als vierter Schritt des reTURN Verfahrens eingesetzt und damit verschiedene klimafreundliche Kraftstoffe oder Grundchemikalien produziert werden können. Das Projekt verwendet die Fischer-Tropsch-Synthese, um die gesamte Prozesskette bis hin zu den Endprodukten in einer Testanlage zu erforschen und zu erproben sowie einen Nachweis der technischen Machbarkeit und Massenmarkttauglichkeit zu erbringen. Schwerpunkte von reTURN sind der Bau und Testbetrieb des neuartigen Reaktors, begleitet von verschiedenen Forschungen am Reaktor, wie bspw. Messkampagnen und einer ökologischen Nachhaltigkeitsbetrachtung mit dem Fokus auf CO2 Äquivalenten. reTURN bietet vielfältige Verwertungsmöglichkeiten, insb. neue Geschäftsmodelle für CAPHENIA und Betreiber von Biogas- bzw. Fermentationsanlagen. Mit dem Einsatz erneuerbarer Energie entsteht zudem ein wesentliches Potenzial für eine nachhaltige Sektorenkopplung des Verkehrs- und Stromsektors. Damit stellt reTURN nicht nur ein Vehikel zur Stärkung der nationalen Vorreiterrolle im Nachhaltigkeitskontext bereit, sondern leistet auch einen entscheidenden Beitrag zum weltweiten Klimaschutz.
EwOPro ist ein Entwicklungs- und Demonstrationsvorhaben zur Erzeugung synthetischer Kraftstoffe / eFuels, mit dem Fokus auf der Herstellung von erneuerbarem Kerosin. Das Hauptziel von EwOPro ist die detaillierte Untersuchung des Prozesses zur Umsetzung der Olefine zu Paraffinen bzw. Oligomeren in der entsprechenden Kettenlänge und Verzweigung im Rahmen des Methanol-to-Jetfuel-Prozesses, welche für die Ziel-Produktfraktion Kerosin und die Koppelprodukte hochoktaniges/aromatenfreies Benzin und Diesel/Heizöl von Relevanz sind. Dabei stehen insbesondere die wissensbasierte Katalysatorweiterentwicklung sowie die Optimierung der prozesstechnischen Parameter der einzelnen Prozessstufen Methanol-to-Olefins, Olefin-Oligomerisierung und Hydrierung sowie in Kombination im Vordergrund. Die Kombination der Verfahrensschritte ist essentiell, um die zielgerichtete Steuerung des Produktspektrums je nach wirtschaftlichem Bedarf untersuchen und entsprechend optimieren zu können. Die gesamte Prozesskette soll in einer Pilotanlage im Technikumsmaßstab unter Nutzung vorhandener Infrastruktur und Peripherie aufgebaut werden (TRL 6). Für Oligomerisierung soll ein Kerosin-Anteil von mind. 62,5 Ma.-% im flüssigen Produkt erreicht werden. Zudem stehen je 20 Ma.-% hochoktangies aromatenfreies Benzin sowie Diesel in entsprechender Qualität im Fokus der quantitativen Zielstellung. Für die Übertragbarkeit der Ergebnisse steht die Auslegung eines großtechnischen Reaktorsystems basierend auf Tests auf der Pilotanlage im Ergebnis des beantragten Vorhabens. Dies dient der schnellen und effizienten technologischen Umsetzung des Prozesses nach Abschluss des Förderprojekts.
EwOPro ist ein Entwicklungs- und Demonstrationsvorhaben zur Erzeugung synthetischer Kraftstoffe / eFuels, mit dem Fokus auf der Herstellung von erneuerbarem Kerosin. Das Hauptziel von EwOPro ist die detaillierte Untersuchung des Prozesses zur Umsetzung der Olefine zu Paraffinen bzw. Oligomeren in der entsprechenden Kettenlänge und Verzweigung im Rahmen des Methanol-to-Jetfuel-Prozesses, welche für die Ziel-Produktfraktion Kerosin und die Koppelprodukte hochoktaniges/aromatenfreies Benzin und Diesel/Heizöl von Relevanz sind. Dabei stehen insbesondere die wissensbasierte Katalysatorweiterentwicklung sowie die Optimierung der prozesstechnischen Parameter der einzelnen Prozessstufen Methanol-to-Olefins, Olefin-Oligomerisierung und Hydrierung sowie in Kombination im Vordergrund. Die Kombination der Verfahrensschritte ist essentiell, um die zielgerichtete Steuerung des Produktspektrums je nach wirtschaftlichem Bedarf untersuchen und entsprechend optimieren zu können. Die gesamte Prozesskette soll in einer Pilotanlage im Technikumsmaßstab unter Nutzung vorhandener Infrastruktur und Peripherie aufgebaut werden (TRL 6). Für Oligomerisierung soll ein Kerosin-Anteil von mind. 62,5 Ma.-% im flüssigen Produkt erreicht werden. Zudem stehen je 20 Ma.-% hochoktangies aromatenfreies Benzin sowie Diesel in entsprechender Qualität im Fokus der quantitativen Zielstellung. Für die Übertragbarkeit der Ergebnisse steht die Auslegung eines großtechnischen Reaktorsystems basierend auf Tests auf der Pilotanlage im Ergebnis des beantragten Vorhabens. Dies dient der schnellen und effizienten technologischen Umsetzung des Prozesses nach Abschluss des Förderprojekts.
EwOPro ist ein Entwicklungs- und Demonstrationsvorhaben zur Erzeugung synthetischer Kraftstoffe / eFuels, mit dem Fokus auf der Herstellung von erneuerbarem Kerosin. Das Hauptziel von EwOPro ist die detaillierte Untersuchung des Prozesses zur Umsetzung der Olefine zu Paraffinen bzw. Oligomeren in der entsprechenden Kettenlänge und Verzweigung im Rahmen des Methanol-to-Jetfuel-Prozesses, welche für die Ziel-Produktfraktion Kerosin und die Koppelprodukte hochoktaniges/aromatenfreies Benzin und Diesel/Heizöl von Relevanz sind. Dabei stehen insbesondere die wissensbasierte Katalysatorweiterentwicklung sowie die Optimierung der prozesstechnischen Parameter der einzelnen Prozessstufen Methanol-to-Olefins, Olefin-Oligomerisierung und Hydrierung sowie in Kombination im Vordergrund. Die Kombination der Verfahrensschritte ist essentiell, um die zielgerichtete Steuerung des Produktspektrums je nach wirtschaftlichem Bedarf untersuchen und entsprechend optimieren zu können. Die gesamte Prozesskette soll in einer Pilotanlage im Technikumsmaßstab unter Nutzung vorhandener Infrastruktur und Peripherie aufgebaut werden (TRL 6). Für Oligomerisierung soll ein Kerosin-Anteil von mind. 62,5 Ma.-% im flüssigen Produkt erreicht werden. Zudem stehen je 20 Ma.-% hochoktangies aromatenfreies Benzin sowie Diesel in entsprechender Qualität im Fokus der quantitativen Zielstellung. Für die Übertragbarkeit der Ergebnisse steht die Auslegung eines großtechnischen Reaktorsystems basierend auf Tests auf der Pilotanlage im Ergebnis des beantragten Vorhabens. Dies dient der schnellen und effizienten technologischen Umsetzung des Prozesses nach Abschluss des Förderprojekts.
| Origin | Count |
|---|---|
| Bund | 83 |
| Land | 4 |
| Zivilgesellschaft | 3 |
| Type | Count |
|---|---|
| Ereignis | 1 |
| Förderprogramm | 64 |
| Text | 17 |
| unbekannt | 8 |
| License | Count |
|---|---|
| geschlossen | 23 |
| offen | 66 |
| unbekannt | 1 |
| Language | Count |
|---|---|
| Deutsch | 79 |
| Englisch | 26 |
| Resource type | Count |
|---|---|
| Bild | 1 |
| Datei | 3 |
| Dokument | 6 |
| Keine | 58 |
| Webseite | 28 |
| Topic | Count |
|---|---|
| Boden | 60 |
| Lebewesen und Lebensräume | 59 |
| Luft | 64 |
| Mensch und Umwelt | 90 |
| Wasser | 43 |
| Weitere | 88 |