Introduction: In Malaysia, excessive nutrients from livestock waste management systems are currently released to the environment. Particularly, large amounts of manure from intensive pig production areas are being excreted daily and are not being fully utilised. Alternatively, the excess manure can be applied as an organic fertiliser source in neighbouring cropping systems on the small landholdings of the pig farms to improve soil fertility so that its nutrients will be available for crop uptake instead of being discharged into water streams. Thus, there is a need for better tools to analyse the present situation, to evaluate and monitor alternative livestock production systems and manure management scenarios, and to support farmers in the proper management of manure and fertiliser application. Such tools are essential to quantify, and assess nutrient fluxes, manure quality and content, manure storage and application rate to the land as well as its environmental effects. Several computer models of animal waste management systems to assist producers and authorities are now available. However, it is felt that more development is needed to adopt such models to the humid tropics and conditions of Malaysia and other developing countries in the region. Objectives: The aim is to develop a novel model to evaluate nutrient emission scenarios and the impact of livestock waste at the landscape or regional level in humid tropics. The study will link and improve existing models to evaluate emission of N to the atmosphere, and leaching of nutrients to groundwater and surface water. The simulation outputs of the models will be integrated with a GIS spatial analysis to model the distribution of nutrient emission, leaching and appropriate manure application on neighbouring crop lands and as an information and decision support tool for the relevant users.
The project aims at achieving a better understanding of the processes that drive or limit the response of grassland systems in a world of increasing atmospheric pCO2. We will test the hypothesis that the previously shown increase in below-ground allocation of C under elevated pCO2 provides the necessary energy excess and will stimulate free-living N2 fixers in a low N grassland environment. The project thus aims at assessing the occurrence and importance of free-living N2 fixers under elevated pCO2 and identify the associated microbial communities involved in order to better understand ecosystems response and sustainability of grassland systems. This project had the last opportunity to obtain soil samples from a grassland ecosystem adapted to long-term (10 year) elevated atmospheric pCO2 as the Swiss FACE experiment. The project aims to identify the relevant components of free-living diazotrophs of the microbial community using 15N stable isotope - DNA probing.
Das Geoportal Hamburg ist das zentrale Kartenportal der Stadt Hamburg. Es enthält alle verfügbaren Geodaten der Hamburger Verwaltung in der stets aktuellen Version. Die Daten werden hierbei durch die einzelnen Fachbehörden gepflegt und über die Urban Data Platform, der zentralen Datendrehscheibe der Stadt veröffentlicht. Es stehen so mehr als 500 Datensätze verschiedener Kategorien zur Verfügung sowie zahlreiche Werkzeuge zum Suchen, Zeichnen, Messen oder Drucken. Die technische Basis des Geoportals ist die Opensource-Software „Masterportal“ die vom Landesbetreib Geoinformation und Vermessung entwickelt und von zahlreichen anderen Städten und Kommunen genutzt und in Zusammenarbeit gepflegt und weiterentwickelt wird.
Dieser WebMapService (WMS) stellt die meisten der im Hamburger Liegenschaftskataster vorkommenden, heute zum Teil historischen, Bezugssysteme und deren zugehörige Abbildungen für Kartenwerke dar. Zzt. sind folgende Gitternetze verfügbar (Bezugssystem mit Abbildung): * DHDN mit GK Maßeinheit Meter Bezugsmaßstab 1: 1000 * ETRS89 mit UTM Maßeinheit Meter Bezugsmaßstab 1: 1000 * Lokales System Hamburg mit Ebenenabbildung In den Maßeinheiten Meter und Fuß und den Bezugsmaßstäben 1: 200, 250, 500, 1000, 4000 Zur genaueren Beschreibung der Daten und Datenverantwortung nutzen Sie bitte den Verweis zur Datensatzbeschreibung.
In der kartenbasierten, interaktiven Liegenschaftskataster-Auskunft bekommen Sie Auszüge aus der Liegenschaftskarte. Daten der Liegenschaftskarte können von Jedermann online bezogen werden, sind jedoch kostenpflichtig. Für das von uns online angebotene Zahlverfahren benötigen Sie eine Kreditkarte oder eine Bankverbindung.
The Siberian Earth System Science Cluster is a recently started project of the Department of Earth Observation at the Friedrich-Schiller University Jena (Germany) to generate and disseminate information products of central Siberia along with advanced analysis services in support of Earth System Science. Products provided cover central Siberia and have been created by a consortium of research institutions that joined forces in the FP 5 EU project SIBERIA-II (Multi-Sensor Concepts for Greenhouse Gas Accounting of Northern Eurasia, EVG2-2001-00008). The study region comprises a number of ecosystems in northern Eurasia ranging from the tundra, the boreal and temperate forests, mountainous areas and grasslands. The region is believed to play a critical role in global climate change and has been also defined as one of IGBP's Boreal transects representing a strong climate change hot spot in Northern Eurasia.
Background: IRIS builds on former Framework Programme 4 and 5 projects, extends their networks to Russia and adopts some of their findings to the specific needs of the involved governmental agency. This implements for the first time that the scientific results from former EC-funded scientific co-operations are being collected and transformed to tools for regional management by the administration. Consequently, the involvement of the potential IRIS user community is the most challenging objective and remains an ongoing process. Impacts: As a result of project implementation the prospective research initiatives for the creation of regional GIS, pollution transport models, industrial development scenarios and risk assessments will be formulated. IRIS will be useful for officials of the Russian Federation at different levels of state hierarchy, i.e. at regional level (Irkutsk Region), inter-regional level (since the neighbouring areas are also included in IRIS as the present/potential sources of pollution) and federal level (e.g. management of federally controlled nature resources and stress on the environment by enterprises held in federal property). The international dimension of project implementation is strongly connected with problems of climate change essential worldwide and, in particular, for EU Member States. There is no doubt today that the role of the boreal forests is essential. In this context the Siberian taiga, which is the largest forest region in the world, and Irkutsk region as a part of taiga is of vital importance. Thus the strategic impact of the project could be felt on both national and international levels, helping to manage the environment and develop effective solutions of regional and global problems facing the society. Objectives: The Irkutsk Regional Information System for Environmental Protection - 'IRIS' assesses the current status and dynamics of the Irkutsk Region's forestry environment, influenced by man-made changes and anthropogenic impact arising from pollution sources and other negative anthropogenic drivers located in the region and in adjacent areas. It will investigate the responsiveness and vulnerability of forestry environment within the region under different scenarios of industrial development and nature-preserving measures. The major goal of IRIS is to efficiently share Earth Observation data and domain-specific (ecologic and economic) information within earth science community and regional governance to identify environmental impacts that are both economic and socially responsible. Thus, for integrated environmental management methodical designs are necessary which refer to the complexity of the natural resource to be managed and the difficulty to predict the factors or driving forces influencing them.