API src

Found 1426 results.

Hybride Brennstoffzellenantriebe für mobile Arbeitsmaschinen, Teilvorhaben: Technoökonomische Systemanalyse

Ziel des Projekts ist die Entwicklung und Anwendung eines Model-Based Systems Engineering (MBSE)-Systemmodells zum Zweck der Neu- oder Umrüstungsentwicklung von wirtschaftlich konkurrenzfähigen Wasserstoff-Brennstoffzellenantrieben (H2-BZ-Antrieb) für mobile Arbeitsmaschinen. Hybride H2-BZAntriebe für mobile Arbeitsmaschinen stoßen in der im Projekt angestrebten technischen Umsetzung im Betrieb lokal keine Luftschadstoffe und Treibhausgase aus und ermöglichen bei der Verwendung von grünem Wasserstoff Emissionsfreiheit. Die unmittelbare Verringerung von Luftschadstoff- und Treibhausgasemissionen gegenüber Dieselmotorantrieben adressiert die Klimaschutzziele der Bundesregierung, die im Klimaschutzplan festgelegt wurden. Mit Hilfe des MBSE werden die technische (Robustheit, Dynamik, Sicherheit, Betriebsführung) und technoökonomische (Lebenszykluskosten, Umfelddynamik) Sichtweise auf hybride H2-BZ-Antriebe in einem Systemmodell verknüpft. So werden technische Anforderungen erfüllt und die Systemkomplexität handhabbar. Die Sichtweisen werden durch geeignete domänenübergreifende Teilmodelle repräsentiert. Das MBSE schafft eine einheitliche Datengrundlage (single source of truth), formale Modellspezifikationen (Modellontologien) und Modellierungssprache (SysML). Die Komplexität wird handhabbar, die Modelldokumentation systematisch und transparent, was den Wissensaustausch begünstigt. Im Projekt wird dieser systemanalytische Ansatz angewendet und für FuE von H2-BZ-Antrieben weiterentwickelt. Damit trägt das Projekt weiterhin zum Ziel der Entwicklung systemanalytischer Werkzeuge mit fachdisziplinübergreifender Beteiligung im 7. EfP bei. Die methodische Entwicklung wird im Projekt dazu verwendet, einen hybriden H2-BZ-Antrieb für eine Materialumschlagmaschine zu entwickeln und zu integrieren. Mit der Erprobung im realen Einsatz soll eine TRL-Erhöhung von 6 auf 7 erfolgen.

Verwertung von PUMA-Produkten

Im April 2012 führte PUMA das Rücknahmesystem Bring Me Back ein. Seither können Kunden in PUMA Stores weltweit gebrauchte Produkte zurückgeben, die dann durch die Firma I:CO der Weiterverwendung und Verwertung zugeführt werden. Auch die Produkte der neuen recyclefähigen und biologisch abbaubaren PUMA-InCycle-Kollektion, die seit März 2013 auf dem Markt sind, werden so erfasst. Hierzu gehört etwa das recycelbare PUMA Track Jacket, das zu 98 Prozent aus Polyester aus gebrauchten PET-Flaschen besteht. Der PUMA-Rucksack aus Polypropylen wird nach Gebrauch an den ursprünglichen Hersteller zurückgegeben, der das Material wieder zu neuen Rucksäcken verarbeitet. Durch solche Neuentwicklungen will PUMA seine Planungs- und Entscheidungsbasis verbessern. Deshalb hat sie bifa mit der Analyse abfallwirtschaftlicher Optionen für gebrauchte PUMA Produkte beauftragt. bifa untersuchte hierzu Referenzprodukte und Optionen für die Erfassung und Sortierung von Produkten und Materialien. 35 Pfade mit unterschiedlichen Verwertungs- und Beseitigungsansätzen wurden entwickelt und bewertet. Die Realisierungschancen der Pfade wurden dann dem zu erwartenden Nutzen insbes. für die Umwelt gegenübergestellt. Dabei wurde zwischen gut entwickelten und wenig entwickelten Abfallwirtschaften (Waste-Picking-Szenario W-P-Szenario) unterschieden. Es zeigte sich, dass Pfade, die im Szenario Abfallwirtschaft ökologisch nachteilig sind, im W-P-Szenario durchaus vorteilhaft sein können. Im W-P-Szenario sind zudem Pfade realisierbar, die in entwickelten Abfallwirtschaften keine Chance hätten. Die moderne Abfallverbrennung ist für W-P-Szenarien ökologisch vorteilhaft, aber dennoch eine schwierige Option. In entwickelten Abfallwirtschaften sollten Sammlung und Wiedereinsatz gebrauchter Schuhe und Textilien weiterentwickelt werden. Die folgenden generellen Empfehlungen wurden gegeben: - Der Einsatz von Recyclingmaterialien in PUMA-Produkten ist aus ökologischer Sicht zu empfehlen. Diese Erkenntnis wird auch durch die Ergebnisse der ersten ökologischen Gewinn-und-Verlust-Rechnung von PUMA belegt. Über die Hälfte aller Umweltauswirkungen entlang der gesamten Produktions- und Lieferkette des Unternehmens werden bei der Herstellung von Rohmaterialien verursacht - Das Produktdesign sollte auch für bestehende Verwertungspfade optimiert werden, da realistischerweise nur ein Teil der Produkte über das Sammelsystem erfasst werden kann - Die ökologischen Vorteile von Produkten, die aus nur einem Material bestehen, kommen nur dann zum Tragen, wenn das Produkt nach Gebrauch aussortiert und das Material tatsächlich recycelt wird - Biol. abbaubare Produkte können auch Nachteile haben, zum Beispiel die schnellere Entwicklung von klimaschädlichem Methan bei ungeordneter Deponierung - Eine Verlängerung der Produktlebensdauer über den gesamten Lebenszyklus einschl. der Verwendung als Gebrauchtprodukt ist der effektivste Weg, Umweltlasten zu reduzieren. Meth. Ökobilanzierung und Systemanalyse (Text gekürzt)

Sonderforschungsbereich Transregio 32 (SFB TRR): Muster und Strukturen in Boden-Pflanzen-Atmosphären-Systemen: Erfassung, Modellierung und Datenassimilation; Patterns in Soil-Vegetation-Atmosphere Systems: Monitoring, Modelling and Data Assimilation, Teilprojekt B05: Hochskalieren von räumlich-zeitlichen pflanzenbaulichen Prozessen

Die Einflüsse von Bodenheterogenität und Managementpraktiken auf dynamische Veränderungen von ökophysiologischen Wachstumsmustern der wichtigen Kulturarten des Rur Einzugsgebiets werden charakterisiert. Auf einander abgestimmte experimentelle Ansätze, Modellierung und Skalierung werden angewandt, um die Vegetationscharakterisierung in TerrSysMP zu verbessern. Hierbei werden die Kopplung von Pflanzen- und Wurzelmodellen, Einflüsse von Landnutzungsänderung und Management auf Flussmuster, und die Einbeziehung von Fernerkundungsverfahren zur Bestimmung von funktionalen Pflanzentypparametern besonders berücksichtigt.

Sonderforschungsbereich (SFB) 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien), Teilprojekt B09: Oberirdische Biodiversitätsmuster und Prozesse in Regenwaldtransformations-Landschaften

Die Steigerung ökologischer und sozio-ökonomischer Funktionen in tropischen Kulturlandschaften ist eine große Herausforderung. In diesem Projekt untersuchen wir oberirdische Biodiversitätsmuster und assoziierte ökologische Funktionen auf lokaler und Landschafts-Skala, wobei wir Tieflandregenwald, Kautschukplantagen und Palmölplantagen mit und ohne angrenzende Gewässer vergleichen. In Palmölplantagen untersuchen wir Insekten, Fledermäuse und Vögel sowie Herbivorie, Prädation, Parasitierung, Samenausbreitung und Bestäubung in Abhängigkeit von Management, Aufforstungen mit indigenen Baumarten sowie ISPO und RSPO Zertifizierung. Somit ist unser Projekt mit den ökologischen wie auch sozio-ökonomischen Projekten des SFB eng vernetzt.

Sonderforschungsbereich (SFB) 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien), Teilprojekt INF: Forschungsdatenmanagement und integrative statistische Datenanalyse

Das INF Projekt unterstützt den gesamten Lebenszyklus der Forschungsdaten im SFB von der Infrastruktur für sicheren Datenaustausch, der Metadatenanreicherung, nachhaltigen Maßnahmen zum Datenmanagement bis hin zur direkten Unterstützung der Datenanalyse durch statistische Verfahren. In die wissenschaftlichen Teilprojekte integriert, zielt INF auf die Verbesserung der Datenqualität und ihrer Stabilität, fördert Austausch und Nachnutzung der erstellten Datensätze und unterstützt mit statistischer Analyse die Synthese der Forschungsergebnisse. Die Kernkomponenten von INF bilden die modulare Forschungsinfrastruktur mit dem zentralen Informationssystem, das übergreifende Konzept zum Forschungsdatenmanagement und zur Datenkuration, sowie eine umfassende statistische Expertise mit Beratungsangebot, Methodenentwicklung und Datenanalyse.

Zusammenarbeit Ingenieur/Arbeitsmediziner bei Risikoanalysen

Bei Unfallverhuetung sollte man nicht einseitig an Sicherheit und Zuverlaessigkeit technischer Systeme denken. Neben den Arbeitsmitteln (Einrichtungen) muessen Arbeitsablaeufe geplant werden, wobei durch Gesundheit und Ausbildung begrenzte Einsatzmoeglichkeiten der Menschen beruecksichtigt werden muessen. Z.B. zeigt auch die Analyse der Beinahekatastrophe bei Harrisburg, dass die wichtigsten Probleme Fehlleistungen von Menschen waren. In der Unfallverhuetung muessen Nahtstellen in komplexen Systemen beachtet und koordiniert werden / z.B. Systemsicherheitsprogramme der NASA und der US-AEC). Ingenieure und Aerzte muessen unmittelbare und Hintergrundfaktoren beachten. Zur Reduktion von Folgekosten ist die Wiedereingliederung von Verunfallten wichtig. Die Unfallverhuetungs AG organisiert mit der E.K.A.S. zweijaehrliche Tagungen an der ETH-Z.

TransHyDE_UP2: Infrastrukturelle - und betriebstechnische Aspekte bei der Umstellung von Erdgastransportleitungen auf Wasserstoffbetrieb und beim Neubau von Wasserstoffnetzen, Teilvorhaben DVGW: Wissenschaftliche Untersuchungen zu Aspekten der Gasbeschaffenheit und der Volumenstrommessung

Die Bedeutung der Sektorintegration im Rahmen der Energiewende in Deutschland - Modellierung mit einem nationalen Open Source ReferenzEnergieSystem, Teilvorhaben: Wärme und Industrie

Forschergruppe (FOR) 2416: Space-Time Dynamics of Extreme Floods (SPATE), Research group (FOR) 2416: Space-Time Dynamics of Extreme Floods (SPATE)

River floods are extremely important to society because of their potential damage and fatalities. Floods are also very interesting research subjects because of the intriguing non-linear interactions and feedbacks involved, interesting issues of generalisation and the need for investigating them in an interdisciplinary way. Extreme floods are not very well understood to date but new, high resolution data and new concepts for quantifying interactions promise a major breakthrough of a body of research carried out in a coordinated way. The objective of this Research Unit is to understand in a coherent way the atmospheric, catchment and river system processes and their interactions leading to extreme river floods and how these evolve in space and time. An innovative and coherent concept has been adopted in order to maximise the potential of the cooperation between the research partners which consists of three layers of integration: research themes focusing on the science questions, subprojects revolving around specific research tasks, and a joint study object of extreme floods in Germany and Austria. Using scales as a binding element, the research plan is organised into the research themes of event processes, spatial (regional) variability, temporal (decadal) variability, and uncertainty and predictability. The members of the Research Unit have been selected to obtain a team of leading experts with expertise that is complementary in terms of processes, methods and regional knowledge. The cooperation and communication strategy will be implemented through themed cluster groups, combining several subprojects, regular meetings of the cluster groups, an annual project symposium and a private cloud facilitating data exchange on the joint study object. Equal opportunity policies will be adopted and female and early career scientists will be promoted in a major way. Overall, the outcomes of the Research Unit will constitute a step change in the understanding of the coupled system of flood processes in the atmosphere, catchments and rivers which will have major implications for a range of sciences and the society.

GRK 2043: Naturgefahren und Risiken in einer Welt im Wandel

Angesichts sich wandelnder Randbedingungen in Umwelt und Gesellschaft werden sich die Häufigkeiten, Intensitäten und Auswirkungen von Naturgefahren ebenfalls ändern. Dies ist von besonderer Bedeutung für Regionen, in denen Risiken durch Naturgefahren bewältigt, gesteuert und gemindert werden müssen. Dafür möchte das Graduiertenkolleg 'Naturgefahren und Risiken in einer Welt im Wandel' (NatRiskChange) die Wissensgrundlage verbessern: Hauptziel ist es, Methoden zu entwickeln, die die Analyse, Quantifizierung und Vorhersage von transienten Gefahren und Risiken verbessern, indem Wissen und Methoden zwischen Systemanalyse, Geo- und Umweltwissenschaften sowie Risikoforschung aktiv ausgetauscht werden. Die mathematisch orientierten Wissenschaftler bringen statistische Methoden, insbesondere Bayessche Statistik, die Theorie der dynamischen Systeme mit einem Schwerpunkt auf nicht-linearen Prozessen und Chaos sowie Rekurrenzplots und andere innovative Methoden zur Analyse geophysikalischer Zeitreihen ein. Die Geo- und Umweltwissenschaften steuern hingegen für verschiedene Naturgefahren Wissen über zugrundeliegende Mechanismen und Prozesse des Wandels bei, inklusive regionaler Besonderheiten, Interaktionen zwischen Gefahren und Vulnerabilitäten. Diese interdisziplinäre Forschung von NatRiskChange begann im Oktober 2015 und wird durch ein Qualifizierungsprogramm in den Bereichen der Statistik, Daten- und Risikoanalyse begleitet. Lehrkonzept und Forschungsprogramm ergänzen sich gegenseitig und sind tief in der Expertise der teilnehmenden Institutionen aus Potsdam und Berlin verankert, um den Weg für neue Forschungsstränge zur Quantifizierung von Veränderungen in Geo-, Hydro- und sozio-ökologischen Systemen zu ebnen.

1 2 3 4 5141 142 143