API src

Found 1441 results.

Systemanalyse und Visualisierung regionaler Auswirkungen

Ziel des Projektes ist die partizipative Entwicklung eines web-basierten Dashboards für die Wärmewende, mit dem die Auswirkungen verschiedener Transformationspfade für die Wärmewende flächenaufgelöst in nutzerfreundlicher Form dargestellt werden. Das Forschungsvorhaben unterstützt damit die Verbreitung von technischen, regulatorischen, organisatorischen und (sozio-)ökonomischen Entwicklungen im Bereich der Wärmewende, indem durch die Bereitstellung von Daten und Analysen die Auswirkungen der Entwicklungspfade für relevante Akteure der Wärmewende sichtbar gemacht werden. In engem Austausch mit Akteuren der Wärmewende wird ein Modellierungs- und Visualisierungsrahmen geschaffen, der die Auswirkungen auf die zentralen Infrastrukturen, die planerischen Notwendigkeiten sowie die sozio-ökonomischen Folgewirkungen regional und lokal differenziert betrachtet. In den Szenarien werden verschiedene Ausbaupfade der Technologien sowie verschiedene sozio-ökonomische und weitere Rahmenbedingungen betrachtet. Das Dashboard wird auf einer Webplattform mit interaktiven Karten und weiteren Grafiken zur Verfügung gestellt. Um eine breite Nutzung der Ergebnisse zu ermöglichen, werden die Szenarien sowie das Dashboard in enger Kooperation mit zentralen Akteuren der Wärmewende entwickelt. Die Zusammenarbeit erfolgt über einen Projektbeirat, in dem verschiedene Akteure vertreten sind. Die Hauptziele des Öko-Instituts sind: - Entwicklung einer interaktiven Webplattform, in der die Auswirkungen verschiedener Transformationspfade für die Wärmewende in Form von Grafiken und GIS-basierten Karten für ein breites Feld an Akteuren im Kontext der Wärmewende sichtbar gemacht werden. - Analyse und Aufbereitung von flächenaufgelösten Daten, die für die Wärmewende relevant sind. Die Daten werden als open data zur Verfügung gestellt. - Die quantitative und modellgestützte flächenaufgelöste Analyse der Entwicklung des Wärmesektors in Deutschland als Teil der Entwicklung des gesamten Energiesystems

Forschergruppe (FOR) 2416: Space-Time Dynamics of Extreme Floods (SPATE), Research group (FOR) 2416: Space-Time Dynamics of Extreme Floods (SPATE)

River floods are extremely important to society because of their potential damage and fatalities. Floods are also very interesting research subjects because of the intriguing non-linear interactions and feedbacks involved, interesting issues of generalisation and the need for investigating them in an interdisciplinary way. Extreme floods are not very well understood to date but new, high resolution data and new concepts for quantifying interactions promise a major breakthrough of a body of research carried out in a coordinated way. The objective of this Research Unit is to understand in a coherent way the atmospheric, catchment and river system processes and their interactions leading to extreme river floods and how these evolve in space and time. An innovative and coherent concept has been adopted in order to maximise the potential of the cooperation between the research partners which consists of three layers of integration: research themes focusing on the science questions, subprojects revolving around specific research tasks, and a joint study object of extreme floods in Germany and Austria. Using scales as a binding element, the research plan is organised into the research themes of event processes, spatial (regional) variability, temporal (decadal) variability, and uncertainty and predictability. The members of the Research Unit have been selected to obtain a team of leading experts with expertise that is complementary in terms of processes, methods and regional knowledge. The cooperation and communication strategy will be implemented through themed cluster groups, combining several subprojects, regular meetings of the cluster groups, an annual project symposium and a private cloud facilitating data exchange on the joint study object. Equal opportunity policies will be adopted and female and early career scientists will be promoted in a major way. Overall, the outcomes of the Research Unit will constitute a step change in the understanding of the coupled system of flood processes in the atmosphere, catchments and rivers which will have major implications for a range of sciences and the society.

Integration von Qualitätsparametern bei der Energieoptimierung von Wassergewinnungen - Entwicklung eines ganzheitlichen Optimierungsansatzes, Teilvorhaben: Qualitätsorientierte Steuerung von Brunnengalerien

In zahlreichen Forschungsprojekten wurden bereits Energieverbräuche und Energieeinsparpotentiale in den Bereichen Wassergewinnung, -aufbereitung und -verteilung über separate Systemanalysen untersucht. Nur wenige Forschungsprojekte, wie z.B.das BMBF-geförderte ENERWA-Vorhaben, haben durch die gekoppelte Betrachtung der genannten Bereiche einen ganzheitlichen energetischen Betrachtungsansatz der wasserwirtschaftlichen Wertschöpfungskette erarbeitet. Aber auch diese Ansätze haben bei der energetischen Betrachtung die Wasserressource ausgegrenzt. Ein wichtiger Grund für das Fehlen solcher integrativer Betriebsstrategien ist, dass die Entwicklung innovativer Ansätze mit einem hohen Personalaufwand und finanziellen Risiko verbunden ist, welche im Betrieb durch die Wasserunternehmen nicht geleistet werden kann. Optimierungsmaßnahmen orientieren sich deshalb gemeinhin ausschließlich an den allgemein anerkannten Regeln der Technik und können nur selten darüber hinaus erprobt werden. Das vorliegende Vorhaben zielt daher darauf ab, diese Lücke bestehender Optimierungsansätze zu schließen, indem es intelligente, praxisorientierte Analysewerkzeuge zur integrierten qualitäts- und energieoptimierten Steuerung von Brunnengalerien für Anlagenbetreiber entwickelt. Hierbei kommen innovative Analysemethoden aus den Bereichen Big Data und KI zur Anwendung, um die bereits in der Praxis angewendete Methoden zur energetischen Optimierung von Pump- und Verteilungssystemen in der Wassergewinnung und die durch Grundwasserdargebot und -qualität vorgegebenen Limitierungen bzw. Optimierungspotentiale zu verbinden. Aufbauend auf den praktischen Erkenntnissen wird eine fachlich anerkannte Optimierungsmethodik, bestehend aus praxisorientierten Leitfäden und Tools, entwickelt, welche die wasserwirtschaftliche Nutzung von Einzelbrunnen und Brunnengalerien fokussiert und somit Wasserversorgungsunternehmen und Industriebetriebe mit eigener Wassergewinnung adressiert.

IWaTec - Integrated Water Technologies

Egypt passed a revolution and changed its political system, but many problems are still lacking a solution. Especially in the field of water the North African country has to face many challenges. Most urgent are strategies to manage the limited water resources. About 80% of the available water resources are consumed for agriculture and the rest are for domestic and industrial activities. The management of these resources is inefficient and a huge amount of fresh water is discarded. The shortage of water supply will definitely influence the economic and cultural development of Egypt. In 2010, Egypt was ranked number 8 out of 165 nations reviewed in the so-called Water Security Risk Index published by Maplecroft. The ranking of each country in the index depends mainly on four key factors, i.e. access to improved drinking water and sanitation, the availability of renewable water and the reliance on external supplies, the relationship between available water and supply demands, and the water dependency of each countrys economy. Based on this study, the situation of water in Egypt was identified as extremely risky. A number of programs and developed strategies aiming to efficiently manage the usage of water resources have been carried out in the last few years by the Egyptian Government. But all these activities, however, require the availability of trained and well-educated individuals in water technology fields. Unfortunately, the number of water science graduates are decreasing and also there are few teaching and training courses for water science offered in Egypt. However, there is still a demand for several well-structured and international programs to fill the gap and provide the Egyptian fresh graduates with the adequate and up-to-date theoretical and practical knowledge available for water technology. IWaTec is designed to fill parts of this gap.

Schicksal und Auswirkungen von anthropogenen Verbindungen in der Umwelt

Mit den Projekten 'Ausbreitung und Abbau von xenobiotischen Verbindungen im Grundwasser' und 'Diffusionsraten von Schadstoffen durch Zellmembranen' werden die Wechselwirkungen zwischen organischen Verunreinigungssubstanzen und Mikroorganismen untersucht. Neben diesen chemisch-biologisch ausgerichteten Arbeiten sollen auch die Aktivitaeten auf dem Gebiet der Modellierung verstaerkt werden. Es ist vorgesehen, ein Paket von mathematischen Modellen zu entwickeln, um das Verhalten von xenobiotischen Verbindungen in der aquatischen Umwelt zu beschreiben. Im Gegensatz zu dem von der amerikanischen EPA entwickelten Model EXAMS sollen die 'EAWAG'-Modelle moeglichst einfach und transparent gestaltet und zuerst fuer einzelne Untersysteme (See, Fluss, Grundwasserleiter, ev. Klaeranlage) konstruiert werden. Als Ausgangspunkt dient das bereits funktionierende Modell CHEMSE fuer die Beschreibung reaktiver Spezies in Seen.

Emissionsarme und energieeffiziente Energiebereitstellung im urbanen Raum unter Nutzung neuester, intelligenter IKT-Strukturen, Teilvorhaben: Systemanalyse / Messtechnische Untersuchungen im Combined Energy Lab 3.0

Besonders im städtischen Kontext stellen hydraulische Netze zur Wärme- und Kälteversorgung eine erprobte Technologie dar, da sie mit zentralen energetischen Wandlungseinheiten ausgestattet sind. Die Einbindung von regenerativen Quellen in diese zentralen Systeme ist erstrebenswert, jedoch technisch schwierig. Zwar gibt es eine ganze Reihe von Feldtests, die z.B. solarthermische Erzeugungseinheiten einzubinden versuchen, jedoch treten hier neue limitierende Elemente auf, welche den gemeinsamen Betrieb beeinflussen. Auch bei PV-Systemen existieren Hemmnisse, obwohl im urbanen Raum Dach- und theoretisch auch Fassadenflächen zur Verfügung stehen. PV-Systeme im urbanen Raum werden für eine ganzheitliche Betrachtung derzeit kaum mit Fernwärmesystemen in Bezug gesetzt, was zu einer starken Belastung des örtlichen Niederspannungsnetzes führt. Ziel muss es daher sein, Anlagentechnik sowie digitale Lösungen zu entwickeln, welche es ermöglichen, ein lokales Energiemanagementsystem zu realisieren und somit zur energetischen Versorgung der Liegenschaft mehr regenerative Energie in einem multienergetischen System zu integrieren. Ein digitalisierter Ein- und Ausspeisepunkt löst dieses Problem und ermöglicht prädiktiv den Wärme- und Kältebedarf in der Liegenschaft vorauszubestimmen. Zielorientiert muss der Ein- und Ausspeisepunkt so gestaltet sein, dass er möglichst eine Verknüpfung der Energiemanagementsysteme des Gebäudes und des übergeordneten regionalen hydraulischen Netzbetreibers aufweist. Weiterhin muss es möglich sein, verschiedene dezentrale Systeme anzubinden. Im Rahmen des Forschungsvorhabens wird die TU Dresden an der Systemanalyse arbeiten, welche sich besonders auf die Sekundärtechnologie, d.h. die Technologie im Gebäude bezieht. Des Weiteren werden messtechnische Untersuchungen des zu entwickelnden Prototyps im Combined Energy Lab 3.0 durchgeführt.'

Emissionsarme und energieeffiziente Energiebereitstellung im urbanen Raum unter Nutzung neuester, intelligenter IKT-Strukturen, Teilvorhaben: Thermische Systemanalyse und Entwicklung der theoretischen Reglerstrukturen

Besonders im städtischen Kontext stellen hydraulische Netze zur Wärme- und Kälteversorgung eine erprobte Technologie dar, da sie mit zentralen energetischen Wandlungseinheiten ausgestattet sind. Die Einbindung von regenerativen Quellen in diese zentralen Systeme ist erstrebenswert, jedoch technisch schwierig. Zwar gibt es eine ganze Reihe von Feldtests, die z.B. solarthermische Erzeugungseinheiten einzubinden versuchen, jedoch treten hier neue limitierende Elemente auf, welche den gemeinsamen Betrieb beeinflussen. Auch bei PV-Systemen existieren Hemmnisse, obwohl im urbanen Raum Dach- und theoretisch auch Fassadenflächen zur Verfügung stehen. PV-Systeme im urbanen Raum werden für eine ganzheitliche Betrachtung derzeit kaum mit Fernwärmesystemen in Bezug gesetzt, was zu einer starken Belastung des örtlichen Niederspannungsnetzes führt. Ziel muss es daher sein, Anlagentechnik sowie digitale Lösungen zu entwickeln, welche es ermöglichen, ein lokales Energiemanagementsystem zu realisieren und somit zur energetischen Versorgung der Liegenschaft mehr regenerative Energie in einem multienergetischen System zu integrieren. Ein digitalisierter Ein- und Ausspeisepunkt löst dieses Problem und ermöglicht prädiktiv den Wärme- und Kältebedarf in der Liegenschaft vorauszubestimmen. Zielorientiert muss der Ein- und Ausspeisepunkt so gestaltet sein, dass er möglichst eine Verknüpfung der Energiemanagementsysteme des Gebäudes und des übergeordneten regionalen hydraulischen Netzbetreibers aufweist. Weiterhin muss es möglich sein, verschiedene dezentrale Systeme anzubinden. Im Rahmen des Forschungsvorhabens wird die TU Berlin an einer thermischen Systemanalyse arbeiten die sich besonders auf die Sekundärtechnologie, d.h. die Technologie im Gebäude bezieht. Zusätzlich werden die theoretischen Grundlagen eines Systemreglers erarbeitet.

Saisonale Kaeltespeicherung im Erdreich

Zielsetzung: Bereits 1987 wurde in einem Firmengebaeude in Wetzlar erstmals der Erdsondenteil einer erdgekoppelten Waermepumpe als Kaeltespeicher benutzt und direkt zur Kuehlung eines Konferenzraumes im Sommer herangezogen. Nunmehr sollen durch weitere Untersuchungen die Einsatzfaehigkeit und Auslegungskriterien fuer derartige energiesparende Raumkuehlungsanlagen festgestellt werden. Arbeiten und bisherige Ergebnisse: In zwei Gebaeuden (Technorama, Duesseldorf, und Betriebsgebaeude Geotherm, Linden) wird eine Raumkuehlung mit Kaeltespeicherung im Erdreich betrieben. Dabei ist in Linden nur die direkte Kaelterueckgewinnung vorgesehen, waehrend in Duesseldorf zur Deckung des Spitzenbedarfs reversible Waermepumpen zugeschaltet werden koennen. Beide Anlagen haben im Sommer 1991 voll zufriedenstellend gearbeitet. Studien fuer den Einsatz in anderen Gebaeuden liegen vor; fuer die Auslegungsrechnung wurden PC-Programme der Universitaet Lund, Schweden, eingesetzt. In einem eigenen Projekt wurde ein Bericht zum Stand der Technik erstellt.

Generierung eines offenen meteorologischen Datensatzes mit zeitlich und räumlich hoher Auflösung für die Energiesystemanalyse und -wirtschaft, Teilvorhaben: Erstellung und Demonstration eines angepassten meteorologischen Datensatzes für die Energiesystemanalyse und -wirtschaft

Im Projektvorhaben MEDAILLON wird ein neuer offener meteorologischer Datensatz erstellt, welcher sich als Standarddatensatz für Anwendungen in der Energiewirtschaft etablieren soll. Der Datensatz soll Deutschland abdecken, eine räumliche Auflösung von 250m aufweisen und Zeitreihen ausgewählter meteorologischer Parameter (Wind, Globalstrahlung, Temperatur usw.) für einen Zeitraum von 15 Jahren in 15-minütiger Auflösung bereitstellen. Zusätzlich wird die Möglichkeit zur Integration des Datensatzes in einen europäischen Wetterdatensatz sowie eine Bereitstellung von Informationen zur zeitlichen und räumlichen Unsicherheit angestrebt. Durch eine frühzeitige Nutzereinbindung wird die Entwicklung des Datensatzes entsprechend der Nutzeranforderungen sichergestellt. Für die technische Umsetzung werden neue Ansätze aus dem Bereich der Wettermodell-Reanalyse-Ensembles, aber auch die Anwendung von strömungsmechanischen, statistischen und Machine-Learning-Verfahren eingesetzt. Als Projektkoordinator verfolgt das Fraunhofer IEE das übergeordnete Ziel, die verschiedenen Teilvorhaben zu verknüpfen, zu lenken und den Fortschritt zu überwachen, um einen erfolgreichen Projektablauf und -Abschluss zu gewährleisten. Die inhaltlichen Ziele des Fraunhofer IEE umfassen primär die Erarbeitung und Erprobung von Methoden zur (1) Kombination verschiedener Reanalyse-Datensätze innerhalb eines Multi-Model-Ensembles sowie (2) zur Erhöhung der räumlichen Auflösung der Modelldaten mit PYWAsP im flachen Gelände und in Zusammenarbeit mit menzio mit RANS CFD im komplexen Gelände. Des Weiteren zielen die Arbeiten des Fraunhofer IEE auf eine nachhaltige Nutzung der Daten ab. Dies beinhaltet die Bearbeitung der Use Cases zur Evaluierung des Nutzens des neuen Datensatzes innerhalb der Systemanalyse sowie im Stromnetzrelevanten Anwendungsfall Freileitungsmonitoring. Darüber hinaus hat das IEE zum Ziel, die verbesserten Wetterdaten der Öffentlichkeit frei zur Verfügung zu stellen.

Generierung eines offenen meteorologischen Datensatzes mit zeitlich und räumlich hoher Auflösung für die Energiesystemanalyse und -wirtschaft

Im Projektvorhaben MEDAILLON wird ein neuer offener meteorologischer Datensatz erstellt, welcher sich als Standarddatensatz für Anwendungen in der Energiewirtschaft etablieren soll. Der Datensatz soll Deutschland abdecken, eine räumliche Auflösung von 250m aufweisen und Zeitreihen ausgewählter meteorologischer Parameter (Wind, Globalstrahlung, Temperatur usw.) für einen Zeitraum von 15 Jahren in 15-minütiger Auflösung bereitstellen. Zusätzlich wird die Möglichkeit zur Integration des Datensatzes in einen europäischen Wetterdatensatz sowie eine Bereitstellung von Informationen zur zeitlichen und räumlichen Unsicherheit angestrebt. Durch eine frühzeitige Nutzereinbindung wird die Entwicklung des Datensatzes entsprechend der Nutzeranforderungen sichergestellt. Für die technische Umsetzung werden neue Ansätze aus dem Bereich der Wettermodell-Reanalyse-Ensembles, aber auch die Anwendung von strömungsmechanischen, statistischen und Machine-Learning-Verfahren eingesetzt. Als Projektkoordinator verfolgt das Fraunhofer IEE das übergeordnete Ziel, die verschiedenen Teilvorhaben zu verknüpfen, zu lenken und den Fortschritt zu überwachen, um einen erfolgreichen Projektablauf und -Abschluss zu gewährleisten. Die inhaltlichen Ziele des Fraunhofer IEE umfassen primär die Erarbeitung und Erprobung von Methoden zur (1) Kombination verschiedener Reanalyse-Datensätze innerhalb eines Multi-Model-Ensembles sowie (2) zur Erhöhung der räumlichen Auflösung der Modelldaten mit PYWAsP im flachen Gelände und in Zusammenarbeit mit menzio mit RANS CFD im komplexen Gelände. Des Weiteren zielen die Arbeiten des Fraunhofer IEE auf eine nachhaltige Nutzung der Daten ab. Dies beinhaltet die Bearbeitung der Use Cases zur Evaluierung des Nutzens des neuen Datensatzes innerhalb der Systemanalyse sowie im Stromnetzrelevanten Anwendungsfall Freileitungsmonitoring. Darüber hinaus hat das IEE zum Ziel, die verbesserten Wetterdaten der Öffentlichkeit frei zur Verfügung zu stellen.

1 2 3 4 5143 144 145