API src

Found 135 results.

Forschungsgruppe (FOR) 2694: Large-Scale and High-Resolution Mapping of Soil Moisture on Field and Catchment Scales - Boosted by Cosmic-Ray Neutrons, Koordinationsfonds

Das Projekt "Forschungsgruppe (FOR) 2694: Large-Scale and High-Resolution Mapping of Soil Moisture on Field and Catchment Scales - Boosted by Cosmic-Ray Neutrons, Koordinationsfonds" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Potsdam, Institut für Umweltwissenschaften und Geographie, Arbeitsgruppe Wasser- und Stofftransport in Landschaften.

Redox processes along gradients

Das Projekt "Redox processes along gradients" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bayreuth, Lehrstuhl für Hydrologie, Limnologische Forschungsstation.The relevance of biogeochemical gradients for turnover of organic matter and contaminants is yet poorly understood. This study aims at the identification and quantification of the interaction of different redox processes along gradients. The interaction of iron-, and sulfate reduction and methanogenesis will be studied in controlled batch and column experiments. Factors constraining the accessibility and the energy yield from the use of these electron acceptors will be evaluated, such as passivation of iron oxides, re-oxidation of hydrogen sulfide on iron oxides. The impact of these constraints on the competitiveness of the particular process will then be described. Special focus will be put on the evolution of methanogenic conditions in systems formerly characterized by iron and sulfate reducing condition. As methanogenic conditions mostly evolve from micro-niches, methods to study the existence, evolution and stability of such micro-niches will be established. To this end, a combination of Gibbs free energy calculations, isotope fractionation and tracer measurements, and mass balances of metabolic intermediates (small pool sizes) and end products (large pool sizes) will be used. Measurements of these parameters on different scales using microelectrodes (mm scale), micro sampling devices for solutes and gases (cm scale) and mass flow balancing (column/reactor scale) will be compared to characterize unit volumes for organic matter degradation pathways and electron flow. Of particular interest will be the impact of redox active humic substances on the competitiveness of involved terminal electron accepting processes, either acting as electron shuttles or directly providing electron accepting capacity. This will be studied using fluorescence spectroscopy and parallel factor analysis (PARAFAC) of the gained spectra. We expect that the results will provide a basis for improving reactive transport models of anaerobic processes in aquifers and sediments.

ACTRIS-D National Facilities, Phase 1, Teilprojekt 8 (BUW-NF): Implementierung der BUW National Facility

Das Projekt "ACTRIS-D National Facilities, Phase 1, Teilprojekt 8 (BUW-NF): Implementierung der BUW National Facility" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Universität Wuppertal, Fachgruppe Physik, Institut für Atmosphären- und Umweltforschung.

The effect of elevated atmospheric CO2 concentration on gross nitrogen dynamics, plant N-uptake and microbial community dynamics in a permanent grassland

Das Projekt "The effect of elevated atmospheric CO2 concentration on gross nitrogen dynamics, plant N-uptake and microbial community dynamics in a permanent grassland" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Gießen, Institut für Pflanzenökologie (Botanik II).To predict ecosystem reactions to elevated atmospheric CO2 (eCO2) it is essential to understandthe interactions between plant carbon input, microbial community composition and activity and associated nutrient dynamics. Long-term observations (greater than 13 years) within the Giessen Free Air Carbon dioxide Enrichment (Giessen FACE) study on permanent grassland showed next to an enhanced biomass production an unexpected strong positive feedback effect on ecosystem respiration and nitrous oxide (N2O) production. The overall goal of this study is to understand the long-term effects of eCO2 and carbon input on microbial community composition and activity as well as the associated nitrogen dynamics, N2O production and plant N uptake in the Giessen FACE study on permanent grassland. A combination of 13CO2 pulse labelling with 15N tracing of 15NH4+ and 15NO3- will be carried out in situ. Different fractions of soil organic matter (recalcitrant, labile SOM) and the various mineral N pools in the soil (NH4+, NO3-, NO2-), gross N transformation rates, pool size dependent N2O and N2 emissions as well as N species dependent plant N uptake rates and the origin of the CO2 respiration will be quantified. Microbial analyses will include exploring changes in the composition of microbial communities involved in the turnover of NH4+, NO3-, N2O and N2, i.e. ammonia oxidizing, denitrifying, and microbial communities involved in dissimilatory nitrate reduction to ammonia (DNRA). Stable Isotope Probing (SIP) and mRNA based analyses will be employed to comparably evaluate the long-term effects of eCO2 on the structure and abundance of these communities, while transcripts of these genes will be used to target the fractions of the communities which actively contribute to N transformations.

Biogenic formation of non-extractable residues from pesticides in soil

Das Projekt "Biogenic formation of non-extractable residues from pesticides in soil" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Department Umweltbiotechnologie.During microbial turnover of organic chemicals in soil, non-extractable residues (NER) are formed frequently. Studies on NER formation usually performed with radioisotope labelled tracer compounds are limited to localisation and quantitative analyses but their chemical composition is left unknown. Recently, we could show for 2,4-dichlorophenoxyacetic acid and ibuprofen that during microbial turnover in soil nearly all NER were derived from microbial biomass, since degrading bacteria use the pollutant carbon for their biomass synthesis. Their cell debris is subsequently stabilised within soil organic matter (SOM) forming biogenic NER (bioNER). It is still unknown whether bioNER are also formed during biodegradation of other, structurally different compound classes of organic contaminants. Therefore, agricultural soil will be incubated with labelled compounds of five classes of commonly used and emerging pesticides: organophosphate, phenylurea, triazinone, benzothiadiazine and aryloxyphenoxypropionic acid. The fate of the label will be monitored in both living and non-living SOM pools and the formation of bioNER will be quantified for each compound over extended periods of time. In addition, soil samples from long-term lysimeter studies with 14C-labelled pesticide residues (e.g. triazine, benzothiazole and phenoxypropionic acid group) will be also analysed for bioNER formation. The results will be summarised to identify the metabolic conditions of microorganisms needed for bioNER formation and to develop an extended concept of risk assessment including bioNER formation in soils.

Forschungsgruppe (FOR) 2694: Large-Scale and High-Resolution Mapping of Soil Moisture on Field and Catchment Scales - Boosted by Cosmic-Ray Neutrons, Erfassung von Vegetation und anderen zeit-variablen Wasserstoffpools an der Landoberfläche

Das Projekt "Forschungsgruppe (FOR) 2694: Large-Scale and High-Resolution Mapping of Soil Moisture on Field and Catchment Scales - Boosted by Cosmic-Ray Neutrons, Erfassung von Vegetation und anderen zeit-variablen Wasserstoffpools an der Landoberfläche" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Forschungszentrum Jülich GmbH, Institut für Bio-und Geowissenschaften (IBG), IBG-3 Agrosphäre.Es ist allgemein bekannt, dass andere Wasserstoffpools neben Bodenfeuchte die Neutronenzählrate von 'cosmic-ray neutron sensing' (CRNS) Detektoren beeinflussen. Bisher wurden diese zusätzlichen Pools meist als störende Einflüsse betrachtet, die korrigiert werden müssen. Dafür wurden verschiedene Ansätze zur Korrektur von Wasserstoff entwickelt, welcher zum Beispiel im Kristallwasser, in der organischen Substanz des Bodens, in der Atmosphäre oder in der Biomasse gespeichert ist. Es wurde gezeigt, dass solche Korrekturen wesentlich sind, um die Genauigkeit der mit CRNS erhaltenen SWC-Schätzungen zu verbessern. Aktuelle Publikationen zeigen, dass das Verhältnis von thermalen zu schnellen Neutronen (Nr) zur Schätzung von Biomasse genutzt werde kann und außerdem Informationen zu zeit-variablen Wasserstoffpools enthält. Beides soll im Rahmen des Forschungsmoduls VG untersucht werden. Das Projekt verfolgt zwei Hauptziele. Zunächst wollen wir universell gültige Methoden zur Korrektur von CRNS-basierten Bodenfeuchtemessungen für den Einfluss von zeit-variablen Wasserstoffpools wie Biomasse und Interzeption entwickeln. Dazu werden empirische Funktionen basierend auf zusätzlichen Messungen, wie Pflanzenparametern und Throughfall, getestet und kalibriert. Diese Messungen werden mit einem gekoppelten Boden-Vegetations-Modell integriert, das außerdem die Simulation des Interzeptionsspeichers ermöglicht. Zweitens, wollen wir Methoden entwickeln, um die Wasserstoffpools direkt aus dem CRNS-Signal - ohne zusätzliche Messungen und Kalibrierung - zu schätzen. Dazu werden wir die Verwendung des Nr untersuchen. Unter Verwendung geeigneter Neutronenenergie-Korrekturen werden wir verbesserte thermale und epithermale Neutronen-Signale erhalten, was eine bessere Untersuchung von Biomasse- und Interzeptionseffekten auf das Nr-Signal ermöglicht. Um diese Ziele zu erreichen, werden wir drei Arten von Feldexperimenten durchführen: a) dedizierte kontinuierliche Experimente an repräsentativen landwirtschaftlichen Standorten, b) Feldmesskampagnen einer Vielzahl von Feldern mit verschiedenen Nutzpflanzen mit dem Jülich Cosmic Rover und c) Analyse von Neutronen- und Biomassedaten aus dem bestehenden TERENO CRNS-Netzwerk. Die Messungen im Rahmen der Feldexperimente werden durch bodenhydrologische Modellierungen ergänzt, um Referenzinformationen mit verbesserter räumlicher und zeitlicher Auflösung zu erhalten (z.B. vertikale Verteilung von Bodenfeuchte im Profil; Auftreten von Stauwasser auf der Bodenoberfläche).Das Forschungsmodul VG wird gemessene Vegetationsparameter für die gemeinsamen Feldkampagnen (JFC) liefern, die insbesondere von RV, MC, HG und RS benötigt werden. In Zusammenarbeit mit NS wird der Einfluss von Biomasse und Interzeption auf das Nr modelliert. Durch DD verbesserte CRNS-Sensoren, werden für eine verbesserte Quantifizierung der Interzeption verwendet.

Forschergruppe (FOR) 1806: The Forgotten Part of Carbon Cycling: Organic Matter Storage and Turnover in Subsoils (SUBSOM), Forschergruppe (FOR) 1806: The Forgotten Part of Carbon Cycling: Organic Matter Storage and Turnover in Subsoils (SUBSOM)

Das Projekt "Forschergruppe (FOR) 1806: The Forgotten Part of Carbon Cycling: Organic Matter Storage and Turnover in Subsoils (SUBSOM), Forschergruppe (FOR) 1806: The Forgotten Part of Carbon Cycling: Organic Matter Storage and Turnover in Subsoils (SUBSOM)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bochum, Geographisches Institut, Arbeitsgruppe Bodenkunde und Bodenökologie.We are currently facing the urgent need to improve our understanding of carbon cycling in subsoils, because the organic carbon pool below 30 cm depth is considerably larger than that in the topsoil and a substantial part of the subsoil C pool appears to be much less recalcitrant than expected over the last decades. Therefore, small changes in environmental conditions could change not only carbon cycling in topsoils, but also in subsoils. While organic matter stabilization mechanisms and factors controlling its turnover are well understood in topsoils, the underlying mechanisms are not valid in subsoils due to depth dependent differences regarding (1) amounts and composition of C-pools and C-inputs, (2) aeration, moisture and temperature regimes, (3) relevance of specific soil organic carbon (SOC) stabilisation mechanisms and (4) spatial heterogeneity of physico-chemical and biological parameters. Due to very low C concentrations and high spatio-temporal variability of properties and processes, the investigation of subsoil phenomena and processes poses major methodological, instrumental and analytical challenges. This project will face these challenges with a transdisciplinary team of soil scientists applying innovative approaches and considering the magnitude, chemical and isotopic composition and 14C-content of all relevant C-flux components and C-fractions. Taking also the spatial and temporal variability into account, will allow us to understand the four-dimensional changes of C-cycling in this environment. The nine closely interlinked subprojects coordinated by the central project will combine field C-flux measurements with detailed analyses of subsoil properties and in-situ experiments at a central field site on a sandy soil near Hannover. The field measurements are supplemented by laboratory studies for the determination of factors controlling C stabilization and C turnover. Ultimately, the results generated by the subprojects and the data synthesized in the coordinating project will greatly enhance our knowledge and conceptual understanding of the processes and controlling factors of subsoil carbon turnover as a prerequisite for numerical modelling of C-dynamics in subsoils.

Indonesian Throughflow variability on sub-orbital timescales during Marine Isotopes Stages (MIS) 2 and 3

Das Projekt "Indonesian Throughflow variability on sub-orbital timescales during Marine Isotopes Stages (MIS) 2 and 3" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Kiel, Institut für Geowissenschaften, Abteilung Angewandte Geophysik.This project will provide quantitative estimates of the flow of low-salinity warm water through the Indonesian Gateway on suborbital timescales during MIS 2 and 3 (focusing on Dansgaard Oeschger (D-O) oscillations) and will assess the Indonesian Throughflow (ITF) s impact on the hydrography of the eastern Indian Ocean and global thermohaline circulation during this critical interval of high climate variability. ITF fluctuations, associated with sea level change, temperature and salinity variations in the West Pacific Warm Pool (WPWP) strongly influence precipitation over Australia, the strength of the southeast-Asian summer monsoon, and the intensity of warm meridional currents in the Indian Ocean. We will test the hypothesis that increased ITF is associated with warm interstadials of MIS 3, whereas a strong reduction in ITF occurred during stadials. We will use as main proxies planktonic and benthic foraminiferal isotopes in conjunction with Mg/Ca temperature estimates and radiogenic isotopes (mainly Nd) as tracers of Pacific water masses along depth transects in the Timor Passage and the eastern Indian Ocean. This project will provide the paleoceanographic framework that will be crucial to validate and refine circulation models of D-O events and high-frequency climate variability on a global scale.

Effects of water content, input of roots and dissolved organic matter and spatial inaccessibility on C turnover & determination of the spatial variability of subsoil properties

Das Projekt "Effects of water content, input of roots and dissolved organic matter and spatial inaccessibility on C turnover & determination of the spatial variability of subsoil properties" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Kassel, Lehr- und Forschungsgebiet Umwelt- und Lebensmittelwissenschaften, Fachgebiet Umweltchemie.It is well established that reduced supply of fresh organic matter, interactions of organic matter with mineral phases and spatial inaccessibility affect C stocks in subsoils. However, quantitative information required for a better understanding of the contribution of each of the different processes to C sequestration in subsoils and for improvements of subsoil C models is scarce. The same is true for the main controlling factors of the decomposition rates of soil organic matter in subsoils. Moreover, information on spatial variabilities of different properties in the subsoil is rare. The few studies available which couple near and middle infrared spectroscopy (NIRS/MIRS) with geostatistical approaches indicate a potential for the creation of spatial maps which may show hot spots with increased biological activities in the soil profile and their effects on the distribution of C contents. Objectives are (i) to determine the mean residence time of subsoil C in different fractions by applying fractionation procedures in combination with 14C measurements; (ii) to study the effects of water content, input of 13C-labelled roots and dissolved organic matter and spatial inaccessibility on C turnover in an automatic microcosm system; (iii) to determine general soil properties and soil biological and chemical characteristics using NIRS and MIRS, and (iv) to extrapolate the measured and estimated soil properties to the vertical profiles by using different spatial interpolation techniques. For the NIRS/MIRS applications, sample pretreatment (air-dried vs. freeze-dried samples) and calibration procedures (a modified partial least square (MPLS) approach vs. a genetic algorithm coupled with MPLS or PLS) will be optimized. We hypothesize that the combined application of chemical fractionation in combination with 14C measurements and the results of the incubation experiments will give the pool sizes of passive, intermediate, labile and very labile C and N and the mean residence times of labile and very labile C and N. These results will make it possible to initialize the new quantitative model to be developed by subproject PC. Additionally, we hypothesize that the sample pretreatment 'freeze-drying' will be more useful for the estimation of soil biological characteristics than air-drying. The GA-MPLS and GA-PLS approaches are expected to give better estimates of the soil characteristics than the MPLS and PLS approaches. The spatial maps for the different subsoil characteristics in combination with the spatial maps of temperature and water contents will presumably enable us to explain the spatial heterogeneity of C contents.

SP1.1 Dynamische Anreicherungsprozesse von organischer Substanz in der SML

Das Projekt "SP1.1 Dynamische Anreicherungsprozesse von organischer Substanz in der SML" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR).Der Oberflächenfilm (SML) ist die oberste dünne Schicht des Ozeans und Teil jeglicher Wechselwirkung zwischen Luft und Meer, wie Gasaustausch, atmosphärische Deposition und Aerosolemission. Die Anreicherung von organischer Materie (OM) in der SML modifiziert die Luft-Meer-Austauschprozesse, aber welche OM-Komponenten selektiv angereichert werden, sowie warum und wann sie dies tun, ist weitgehend unbekannt (Engel et al., 2017). Unsere bisherige Forschung hat gezeigt, dass Biopolymere aus photoautotropher Produktion wichtige Komponenten der SML sind und den Luft-Meer-Austausch beeinflussen, indem sie als Biotenside (Galgani et al., 2016; Engel et al., 2018) und als Quelle primärer organischer Aerosole (Trueblood et al., 2021) wirken. Die Motivation unseres Projektes ist es daher, die dynamischen Anreicherungsprozesse von OM in der SML aufzuklären und zu beschreiben, wobei ein besonderer Schwerpunkt auf der Auflösung der OM-Quellen liegt. Mit unserem Modellierungsansatz ist es das Ziel, unser mechanistisches Verständnis der Zusammenhänge zwischen den Wachstumsbedingungen des Planktons, der Produktion und der Freisetzung von Biomolekülen, einschließlich potentieller Tenside, und der Akkumulation von OM in der SML zu konsolidieren. Eine solche Modellentwicklung wird in hohem Maße von den Ergebnissen und Erkenntnissen der verschiedenen Teilprojekte des BASS-Konsortiums profitieren. Umgekehrt ist es unsere Motivation, ein Modell zu etablieren, das als Synthesewerkzeug für die Interpretation und Integration von Feld-, Mesokosmen- und Labormessungen der OM-Anreicherung in der SML anwendbar wird.Relevanz für die Forschungsgruppe BASS - SP1.1 wird die Quellen, die Menge und die biochemische Zusammensetzung von OM in der SML entschlüsseln und damit wichtige Informationen für alle BASS-Teilprojekte liefern. Der primäre Ursprung von OM im Oberflächenozean ist die photosynthetische Produktion und die wichtigsten biochemischen Komponenten von frisch produzierter OM, d.h. Kohlenhydrate, Aminosäuren und Lipide, unterliegen der mikrobiellen Verarbeitung (SP1.2) und Photoreaktionen innerhalb der SML (SP1.3, SP1.4) und füllen auch den Pool der gelösten organischen Substanz (DOM) auf (SP1.5). Die Modellentwicklung in SP1.1 stellt eine Verbindung zwischen der Produktion von OM und ihrer Anreicherung innerhalb der SML her und zielt darauf ab, die entsprechenden Auswirkungen auf den Luft-Meer-Gasaustausch (SP2.1) zu bestimmen, indem Änderungen des Impulsflusses auf den Ozeanoberflächenschichten (SP2.2) sowie des Auftriebs (SP2.3) berücksichtigt werden. Das vorgeschlagene SML-Submodell wird auf der Grundlage der Ergebnisse aus SP1.4 und SP2.3 verfeinert. Ergebnisse aus den Modellsensitivitätsanalysen werden ergänzende Informationen über oberflächenaktive Eigenschaften verschiedener OM Komponenten und deren Auswirkungen auf Luft-Meer-Austauschprozesse liefern, die innerhalb von BASS ausgewertet werden.

1 2 3 4 512 13 14