API src

Found 4 results.

Drained ring-shear test data of wet silica powder-glass beads-PVC powder mixture “CM2” used for analogue modelling in the laboratory for experimental tectonics (LET) at RomaTre University, Rome, Italy

This dataset provides friction data from drained ring-shear tests on a wet (water saturated) silica powder-glass beads-PVC powder mixture (40:40:20 wt.%) “CM2”, used in analogue modelling of tectonic and erosion processes as a rock analogue for the earth’s upper crust (e.g. Conrad et al., 2023, Reitano et al., 2020, 2022. 2023). According to our analysis the materials show a Mohr-Coulomb behaviour characterized by a linear failure envelope. Peak, dynamic and reactivation friction coefficients of CM2 are µP = 0.66, µD = 0.58, and µR = 0.61, respectively. Cohesion of the material ranges between 60-230 Pa. The tested bulk material CM2 consists of a mixture of 40 wt. % silica powder, 40 wt.% glass beads and 20 wt.% PVC powder which has been saturated with water (Table 1). Specification of silica powder is “Ventilated Quartz VR16” (https://www.valligranulati.it/products-granules-quartz-marble-sands-premixed/sheet-m/ventilated-quartz) by the company Valli Granulati S.r.l. (Italy). Ventilated quartz is obtained by micronisation of quartz sands with a high content of SiO2 (around 96%), and used e.g. in paints and abrasives. It should be handled with care to omit generation of dust and a half mask (filter class FFA1P2 RD) should be worn because it can harm the human respiratory tract with the potential of causing silicosis. Glass beads used here have a size (diameter) of 700-110 µm and their individual properties are described in detail Pohlenz et al. (2020). The commercial name for the PVC powder is “PVC K.57 Inovyn 257RF” by the company TPV Compound (Italy). PVC powder is mainly used for cleaning industrial structures (as abrasives) or for the production of PVC tubing, plastic sheets etc. The composition of this PVC powder is the same of the common Polyvinyl chloride. According to the regulation CE n.1272/2008 (CLP), this type of PVC powder is classified as not dangerous for the supply, also thanks to its low value of density and round shape.

Ring-shear test data of glass beads 200-300 µm used for analogue experiments in the tectonic modelling labs at GFZ Potsdam and the Institute of Geophysics of the Czech Academy of Science, Prague

This dataset provides friction data from ring-shear tests on glass beads with a diameter of 200-300 µm used in analogue modelling of tectonic processes as a rock analogue for “weak” layers in the earth’s upper crust (e.g. Klinkmüller et al., 2016; Ritter et al., 2016; Lohrmann et al., 2003) or as “seismogenic” crust (Rudolf et al., 2022). The glass beads are characterized by means of internal friction coefficients µ and cohesion C. According to our analysis the materials show a Mohr-Coulomb behaviour characterized by a linear failure envelope. Peak, dynamic and reactivation friction coefficients of the glass beads are µP = 0.51 , µD = 0.40, and µR = 0.44, respectively (Table 5). Cohesion of the material ranges between 40 Pa and 70 Pa. The material shows a minor rate-weakening of ~1% per ten-fold change in shear velocity v and a stick-slip behaviour at low shear velocities and at high loads.

Ring-shear test data of glass beads 100-200 µm used for analogue experiments in the tectonic modelling labs at GFZ Potsdam and the Institute of Geophysics of the Czech Academy of Sciences, Prague

This dataset provides friction data from ring-shear tests on glass beads with a diameter of 100-200 µm used in analogue modelling of tectonic processes as a rock analogue for “weak” layers in the earth’s upper crust (e.g. Klinkmüller et al., 2016; Ritter et al., 2016; Lohrmann et al., 2003) or as “seismogenic” crust (Rudolf et al., 2022). The glass beads are characterized by means of internal friction coefficients µ and cohesion C. According to our analysis the materials show a Mohr-Coulomb behaviour characterized by a linear failure envelope. Peak, dynamic and reactivation friction coefficients of the glass beads are µP = 0.50 , µD = 0.39, and µR = 0.46, respectively (Table 5). Cohesion of the material is close to zero Pa. The material shows a minor rate-weakening of ~1% per ten-fold change in shear velocity v and a stick-slip behaviour at low shear velocities and at high loads.

Ring-shear test data of glass beads <50 µm used for analogue experiments in the tectonic modelling labs at GFZ Potsdam and the Institute of Geophysics of the Czech Academy of Sciences, Prague

This dataset provides friction data from ring-shear tests on glass beads with a diameter of less than 50 µm used in analogue modelling of tectonic processes as a rock analogue for “weak” layers in the earth’s upper crust (e.g. Klinkmüller et al., 2016; Ritter et al., 2016; Lohrmann et al., 2003) or as “seismogenic” crust (Rudolf et al., 2022). The glass beads are characterized by means of internal friction coefficients µ and cohesion C. According to our analysis the materials show a Mohr-Coulomb behaviour characterized by a linear failure envelope. Peak, dynamic and reactivation friction coefficients of the glass beads are µP = 0.47 , µD = 0.44, and µR = 0.47, respectively (Table 5). Cohesion of the material ranges between 50 Pa and 70 Pa. The material shows a neglectable rate-weakening of <1% per ten-fold change in shear velocity v.

1