As part of the hydro-meteorological measurement campaign SwabianMOSES 2023 time-domain transmission soil moisture sensors and temperature sensors with custom-made logger systems were used to measure time series of these soil state variables. The aim of these investigations was to provide data on physical soil properties used in a cross-disciplinary approach for a better understanding of hydro-meteorological extremes (such as high precipitation events and droughts). Each measurement site consisted of sensors at three depths with two sensors each. Logger systems were installed at six different observation sites which were distributed across the whole campaign target area in the vicinity of the Swabian Jura in Germany. Decisions on the specific installation depths were made during the installation at the respective sites based on the constitution of the local soil profiles. Installation protocols with a brief soil profile description and photos are part of this dataset. The dataset contains the values of location and time (UTC), soil temperature (in °C), relative permittivity and soil moisture (in % vol) derived from permittivity. Determination of soil moisture was done using the formula of Topp et al. (1980). As sensors, the SMT100 soil moisture sensor with integrated temperature measurement were used. All sensors were installed within the upper 50cm below ground. The exact depths for each sensor are listed in the comments.
As part of the hydro-meteorological measurement campaign SwabianMOSES 2023 time-domain transmission (TDT) soil moisture sensors and temperature sensors with custom-made logger systems were used to measure time series of these soil state variables. In addition, a stationary cosmic-ray neutron sensor was deployed at the KITcube site near Villingen-Schwenningen to provide continuous soil moisture data for an area of between 10 and 20 hectares. For mapping the spatial distribution of soil moisture, several mobile CRNS campaigns have been conducted with a car across the Lindach catchment and beyond before and after prospective rain events. During these mobile CRNS measurements, in-situ soil moisture measurements were conducted, using a handheld time-domain reflectometry soil moisture sensor. The aim of these investigations was to provide data on physical soil properties used in a cross-disciplinary approach for a better understanding of hydro-meteorological extremes (such as high precipitation events and droughts). Regarding the TDT-sensors, each measurement site consisted of sensors at three depths with two sensors each. Logger systems were installed at six different observation sites which were distributed across the whole campaign target area in the vicinity of the Swabian Jura in Germany. Decisions on the specific installation depths were made during the installation at the respective sites based on the constitution of the local soil profiles. Installation protocols with a brief soil profile description and photos are part of this dataset. The dataset contains the values of location and time (UTC), soil temperature (in °C), relative permittivity and soil moisture (in % vol) derived from permittivity. Determination of soil moisture was done using the formula of Topp et al. (1980). As sensors, the SMT100 soil moisture sensor with integrated temperature measurement were used. All sensors were installed within the upper 50cm below ground. The exact depths for each sensor are listed in the comments.
This dataset provides Near Realtime Orbits (NRT) from the Low Earth Orbiter (LEO) satellite TerraSAR-X. It is part of the compilation of GFZ NRT products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of the compilation (Schreiner et al., 2022). The TerraSAR-X NRT cover the period - from 2007 264 to up-to-date The LEO NRTs in version 2 are generated based on the 30-hour GPS NRTs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. Due to the extended length of the constellation, there is no need to concatenate several constellations for day-overlapping arcs. The accuracy of the LEO NRTs is at the level of 1-2 cm in terms of SLR validation. Each solution in version 2 is given in the Conventional Terrestrial Reference System (CTS) based on the IERS 2010 conventions and related to the ITRF-2014 reference frame. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename.
Tarazona, Jose V.; Gonzalez-Caballero, Maria D. C.; Alba-Gonzalez, Mercedes; Pedraza-Diaz, Susana; Canas, Ana; Dominguez-Morueco, Noelia; Esteban-Lopez, Marta; Cattaneo, Irene; Katsonouri, Andromachi; Makris, Konstantinos C.; Halldorsson, Thorhallur I.; Olafsdottir, Kristin; Zock, Jan-Paul; Dias, Jonatan; Decker, Annelies; Morrens, Bert; Berman, Tamar; Barnett-Itzhaki, Zohar; Lindh, Christian; Gilles, Liese; Govarts, Eva; Schoeters, Greet; Weber, Till; Kolossa-Gehring, Marike; Santonen, Tiina; Castano, Argelia Toxics 10 (2022); online: 9 Juni 2022 The risk assessment of pesticide residues in food is a key priority in the area of food safety. Most jurisdictions have implemented pre-marketing authorization processes, which are supported by prospective risk assessments. These prospective assessments estimate the expected residue levels in food combining results from residue trials, resembling the pesticide use patterns, with food consumption patterns, according to internationally agreed procedures. In addition, jurisdictions such as the European Union (EU) have implemented large monitoring programs, measuring actual pesticide residue levels in food, and are supporting large-scale human biomonitoring programs for confirming the actual exposure levels and potential risk for consumers. The organophosphate insecticide chlorpyrifos offers an interesting case study, as in the last decade, its acceptable daily intake (ADI) has been reduced several times following risk assessments by the European Food Safety Authority (EFSA). This process has been linked to significant reductions in the use authorized in the EU, reducing consumers' exposure progressively, until the final ban in 2020, accompanied by setting all EU maximum residue levels (MRL) in food at the default value of 0.01 mg/kg. We present a comparison of estimates of the consumer's internal exposure to chlorpyrifos based on the urinary marker 3,5,6-trichloro-2-pyridinol (TCPy), using two sources of monitoring data: monitoring of the food chain from the EU program and biomonitoring of European citizens from the HB4EU project, supported by a literature search. Both methods confirmed a drastic reduction in exposure levels from 2016 onwards. The margin of exposure approach is then used for conducting retrospective risk assessments at different time points, considering the evolution of our understanding of chlorpyrifos toxicity, as well as of exposure levels in EU consumers following the regulatory decisions. Concerns are presented using a color code, and have been identified for almost all studies, particularly for the highest exposed group, but at different levels, reaching the maximum level, red code, for children in Cyprus and Israel. The assessment uncertainties are highlighted and integrated in the identification of levels of concern. doi: 10.3390/toxics10060313
Buekers, J.; Remy, S.; Bessems, J.; Govarts, E.; Rambaud, L.; Riou, M.; Halldorsson, T. I.; Olafsdottir, K.; Probst-Hensch, N.; Ammann, P.; Weber, T.; Kolossa-Gehring, M.; Esteban-Lopez, M.; Castano, A.; Andersen, H. R.; Schoeters, G. Toxics 10 (2022); online : 21 September 2021 Within HBM4EU, human biomonitoring (HBM) studies measuring glyphosate (Gly) and aminomethylphosphonic acid (AMPA) in urine samples from the general adult population were aligned and quality-controlled/assured. Data from four studies (ESB Germany (2015-2020); Swiss HBM4EU study (2020); DIET-HBM Iceland (2019-2020); ESTEBAN France (2014-2016)) were included representing Northern and Western Europe. Overall, median values were below the reported quantification limits (LOQs) (0.05-0.1 microg/L). The 95th percentiles (P95) ranged between 0.24 and 0.37 microg/L urine for Gly and between 0.21 and 0.38 microg/L for AMPA. Lower values were observed in adults compared to children. Indications exist for autonomous sources of AMPA in the environment. As for children, reversed dosimetry calculations based on HBM data in adults did not lead to exceedances of the ADI (proposed acceptable daily intake of EFSA for Gly 0.1 mg/kg bw/day based on histopathological findings in the salivary gland of rats) indicating no human health risks in the studied populations at the moment. However, the controversy on carcinogenicity, potential endocrine effects and the absence of a group ADI for Gly and AMPA induce uncertainty to the risk assessment. Exposure determinant analysis showed few significant associations. More data on specific subgroups, such as those occupationally exposed or living close to agricultural fields or with certain consumption patterns (vegetarian, vegan, organic food, high cereal consumer), are needed to evaluate major exposure sources. doi: 10.3390/toxics10100552
As part of the hydro-meteorological measurement campaign SwabianMOSES 2021 time-domain transmission soil moisture sensors and temperature sensors with custom-made logger systems were used to measure time series of these soil state variables. The aim of these investigations was to provide data on physical soil properties used in a cross-disciplinary approach for a better understanding of hydro-meteorological extremes (such as high precipitation events and droughts). Each measurement site consisted of sensors at three depths with two sensors each. Logger systems were installed at six different observation sites which were distributed across the whole campaign target area in the vicinity of the Swabian Jura in Germany. Decisions on the specific installation depths were made during the installation at the respective sites based on the constitution of the local soil profiles. Installation protocols with a brief soil profile description and photos are part of this dataset. The dataset contains the values of location and time (UTC), soil temperature (in °C), relative permittivity and soil moisture (in % vol) derived from permittivity. Determination of soil moisture was done using the formula of Topp et al. (1980). As sensors, the SMT100 soil moisture sensor with integrated temperature measurement were used. All sensors were installed within the upper 50cm below ground. The exact depths for each sensor are listed in the comments.
Cruise AL567 (R/V Alkor) sampled the water column in German territorial waters of the southwest Baltic Sea during 18-30 October 2021. This dataset contains concentrations of dissolved munition compounds from 88 Niskin bottle rosette casts between sea surface and seafloor. Samples were collected at the sea surface (1-2 m depth), approximately 2 m above the seafloor, and immediately below the pycnocline. Dissolved explosives in the samples were measured following Gledhill et al. (2019). Briefly, discrete samples (1 L) were preconcentrated onboard using solid-phase extraction. Target compounds were eluted with acetonitrile, further concentrated by evaporation, and measured by ultra-high performance liquid chromatography and high resolution heated electrospray ionization mass spectrometry.
Orbital products describe positions and velocities of satellites, be it the Global Navigation Satellite System (GNSS) satellites or Low Earth Orbiter (LEO) satellites. These orbital products can be divided into the fastest available ones, the Near Realtime Orbits (NRT, Zitat), which are mostly available within 15 to 60 minutes delay, followed by Rapid Science Orbit (RSO, Zitat) products with a latency of two days and finally the Precise Science Orbit (PSO) which, with a latency of up to a few weeks or longer in the case of reprocessing campaigns, are the most delayed. The absolute positional accuracy increases from NRT to PSO. This dataset compiles the PSO products for various LEO missions and GNSS constellation in sp3 format. GNSS Constellation: - GPS LEO Satellites: - ENVISAT - Jason-1 - Jason-2 - Jason-3 - Sentinel-3A - Sentinel-3B - Sentinel-6A - TOPEX Each solution follows specific requirements and parametrizations which are named in the respective processing metric table.
This dataset provides Rapid Science Orbits (RSO) from the Low Earth Orbiter (LEO) satellite TanDEM-X. It is part of the compilation of GFZ RSO products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of the compilation (Schreiner et al., 2022). • The TanDEM-X RSO cover the period: o from 2010 173 to up-to-date The LEO RSOs in version 1 are generated based on the 24-hour GPS RSOs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. For day overlapping arcs two 24h GNSS constellations are concatenated. The accuracy of the LEO RSOs is at the level of 1-2 cm in terms of SLR validation. Each solution in version 1 is given in the Conventional Terrestrial Reference System (CTS) based on the IERS 2003 conventions and related to the ITRF-2008 reference frame. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename.
This dataset provides Rapid Science Orbits (RSO) from the Low Earth Orbiter (LEO) satellite TerraSAR-X. It is part of the compilation of GFZ RSO products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of the compilation (Schreiner et al., 2022). • The TerraSAR-X RSO cover the period - from 2007 264 to up-to-date The LEO RSOs in version 1 are generated based on the 24-hour GPS RSOs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. For day overlapping arcs two 24h GNSS constellations are concatenated. The accuracy of the LEO RSOs is at the level of 1-2 cm in terms of SLR validation. Each solution in version 1 is given in the Conventional Terrestrial Reference System (CTS) based on the IERS 2003 conventions and related to the ITRF-2008 reference frame. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename.
| Origin | Count |
|---|---|
| Bund | 19 |
| Land | 3 |
| Wissenschaft | 14 |
| Type | Count |
|---|---|
| Daten und Messstellen | 5 |
| Ereignis | 1 |
| Förderprogramm | 13 |
| Text | 6 |
| unbekannt | 11 |
| License | Count |
|---|---|
| geschlossen | 8 |
| offen | 27 |
| unbekannt | 1 |
| Language | Count |
|---|---|
| Deutsch | 18 |
| Englisch | 21 |
| Resource type | Count |
|---|---|
| Archiv | 1 |
| Datei | 5 |
| Dokument | 4 |
| Keine | 24 |
| Webseite | 5 |
| Topic | Count |
|---|---|
| Boden | 31 |
| Lebewesen und Lebensräume | 19 |
| Luft | 29 |
| Mensch und Umwelt | 35 |
| Wasser | 22 |
| Weitere | 35 |