As part of the hydro-meteorological measurement campaign SwabianMOSES 2023 time-domain transmission soil moisture sensors and temperature sensors with custom-made logger systems were used to measure time series of these soil state variables. The aim of these investigations was to provide data on physical soil properties used in a cross-disciplinary approach for a better understanding of hydro-meteorological extremes (such as high precipitation events and droughts). Each measurement site consisted of sensors at three depths with two sensors each. Logger systems were installed at six different observation sites which were distributed across the whole campaign target area in the vicinity of the Swabian Jura in Germany. Decisions on the specific installation depths were made during the installation at the respective sites based on the constitution of the local soil profiles. Installation protocols with a brief soil profile description and photos are part of this dataset. The dataset contains the values of location and time (UTC), soil temperature (in °C), relative permittivity and soil moisture (in % vol) derived from permittivity. Determination of soil moisture was done using the formula of Topp et al. (1980). As sensors, the SMT100 soil moisture sensor with integrated temperature measurement were used. All sensors were installed within the upper 50cm below ground. The exact depths for each sensor are listed in the comments.
As part of the hydro-meteorological measurement campaign SwabianMOSES 2023 time-domain transmission (TDT) soil moisture sensors and temperature sensors with custom-made logger systems were used to measure time series of these soil state variables. In addition, a stationary cosmic-ray neutron sensor was deployed at the KITcube site near Villingen-Schwenningen to provide continuous soil moisture data for an area of between 10 and 20 hectares. For mapping the spatial distribution of soil moisture, several mobile CRNS campaigns have been conducted with a car across the Lindach catchment and beyond before and after prospective rain events. During these mobile CRNS measurements, in-situ soil moisture measurements were conducted, using a handheld time-domain reflectometry soil moisture sensor. The aim of these investigations was to provide data on physical soil properties used in a cross-disciplinary approach for a better understanding of hydro-meteorological extremes (such as high precipitation events and droughts). Regarding the TDT-sensors, each measurement site consisted of sensors at three depths with two sensors each. Logger systems were installed at six different observation sites which were distributed across the whole campaign target area in the vicinity of the Swabian Jura in Germany. Decisions on the specific installation depths were made during the installation at the respective sites based on the constitution of the local soil profiles. Installation protocols with a brief soil profile description and photos are part of this dataset. The dataset contains the values of location and time (UTC), soil temperature (in °C), relative permittivity and soil moisture (in % vol) derived from permittivity. Determination of soil moisture was done using the formula of Topp et al. (1980). As sensors, the SMT100 soil moisture sensor with integrated temperature measurement were used. All sensors were installed within the upper 50cm below ground. The exact depths for each sensor are listed in the comments.
As part of the hydro-meteorological measurement campaign SwabianMOSES 2021 time-domain transmission soil moisture sensors and temperature sensors with custom-made logger systems were used to measure time series of these soil state variables. The aim of these investigations was to provide data on physical soil properties used in a cross-disciplinary approach for a better understanding of hydro-meteorological extremes (such as high precipitation events and droughts). Each measurement site consisted of sensors at three depths with two sensors each. Logger systems were installed at six different observation sites which were distributed across the whole campaign target area in the vicinity of the Swabian Jura in Germany. Decisions on the specific installation depths were made during the installation at the respective sites based on the constitution of the local soil profiles. Installation protocols with a brief soil profile description and photos are part of this dataset. The dataset contains the values of location and time (UTC), soil temperature (in °C), relative permittivity and soil moisture (in % vol) derived from permittivity. Determination of soil moisture was done using the formula of Topp et al. (1980). As sensors, the SMT100 soil moisture sensor with integrated temperature measurement were used. All sensors were installed within the upper 50cm below ground. The exact depths for each sensor are listed in the comments.
Cruise AL567 (R/V Alkor) sampled the water column in German territorial waters of the southwest Baltic Sea during 18-30 October 2021. This dataset contains concentrations of dissolved munition compounds from 88 Niskin bottle rosette casts between sea surface and seafloor. Samples were collected at the sea surface (1-2 m depth), approximately 2 m above the seafloor, and immediately below the pycnocline. Dissolved explosives in the samples were measured following Gledhill et al. (2019). Briefly, discrete samples (1 L) were preconcentrated onboard using solid-phase extraction. Target compounds were eluted with acetonitrile, further concentrated by evaporation, and measured by ultra-high performance liquid chromatography and high resolution heated electrospray ionization mass spectrometry.
Schmidtkunz, Christoph; Küpper, Katja; Weber, Till; Leng, Gabriele; Kolossa-Gehring, Marike International Journal of Hygiene and Environmental Health 228 (2020), Juli 2020, 113541; online 5. Mai 2020 The antioxidant 2,6-di-tert-butyl-4-methylphenol (butylated hydroxytoluene, BHT) is used ubiquitously in food, cosmetics, pharmaceuticals, fuels, plastics, rubbers and many other products. Therefore, exposure of the general population to this substance is likely. We analyzed the BHT metabolite 3,5-di-tert-butyl-4-hydroxybenzoic acid (“BHT acid”) in 24-h urine samples from the German Environmental Specimen Bank with the aim of gaining a better understanding of the internal burden of BHT in young nonspecifically exposed adults. The study population consisted of students between 20 and 29 years of age at the time of sampling, all from Halle/Saale in Central Germany. In total, 329 samples collected in the years 2000, 2004, 2008, 2012, 2015, and 2018 were measured by ultra high performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS). BHT acid was detected above the limit of quantification (0.2 μg/L) in 98% of the samples. The median of the measured concentrations was 1.06 μg/L and 1.24 μg/g creatinine respectively, the median of the daily excretion was 1.76 μg/24 h and – additionally normalized for body weight – 26.8 ng/24 h × kg bw respectively. The corresponding 90th percentiles were 3.28 μg/L, 3.91 μg/g creatinine, 5.05 μg/24 h, and 81.9 ng/24 h × kg bw. Medians of creatinine-corrected values were slightly higher in women than in men, while the opposite situation was observed for the volume concentrations and the 24-h excretion values (not corrected for body weight). Values simultaneously normalized both for 24-h excretion and body weight did not exhibit any significant differences between males and females, probably indicating a virtually identical magnitude of exposure for both genders. The background exposure of the investigated population was found to be largely constant since the year 2000, with only weak temporal trends at most. Daily intakes were estimated from excretion values and found to be largely below the acceptable daily intake (ADI) of BHT at 0.25 mg/kg bw: our worst-case estimate is a daily BHT intake of approximately 0.1 mg/kg bw at the 95th percentile level. However, these intake assessments rely on very limited quantitative data regarding human metabolism of BHT. doi: 10.1016/j.ijheh.2020.113541
This dataset provides Near Realtime Orbits (NRT) from the Low Earth Orbiter (LEO) satellite TerraSAR-X. It is part of the compilation of GFZ NRT products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of the compilation (Schreiner et al., 2022). The TerraSAR-X NRT cover the period - from 2007 264 to up-to-date The LEO NRTs in version 2 are generated based on the 30-hour GPS NRTs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. Due to the extended length of the constellation, there is no need to concatenate several constellations for day-overlapping arcs. The accuracy of the LEO NRTs is at the level of 1-2 cm in terms of SLR validation. Each solution in version 2 is given in the Conventional Terrestrial Reference System (CTS) based on the IERS 2010 conventions and related to the ITRF-2014 reference frame. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename.
Orbital products describe positions and velocities of satellites, be it the Global Navigation Satellite System (GNSS) satellites or Low Earth Orbiter (LEO) satellites. These orbital products can be divided into the fastest available ones, the Near Realtime Orbits (NRT, Zitat), which are mostly available within 15 to 60 minutes delay, followed by Rapid Science Orbit (RSO, Zitat) products with a latency of two days and finally the Precise Science Orbit (PSO) which, with a latency of up to a few weeks or longer in the case of reprocessing campaigns, are the most delayed. The absolute positional accuracy increases from NRT to PSO. This dataset compiles the PSO products for various LEO missions and GNSS constellation in sp3 format. GNSS Constellation: - GPS LEO Satellites: - ENVISAT - Jason-1 - Jason-2 - Jason-3 - Sentinel-3A - Sentinel-3B - Sentinel-6A - TOPEX Each solution follows specific requirements and parametrizations which are named in the respective processing metric table.
This dataset provides Rapid Science Orbits (RSO) from the Low Earth Orbiter (LEO) satellite TanDEM-X. It is part of the compilation of GFZ RSO products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of the compilation (Schreiner et al., 2022). • The TanDEM-X RSO cover the period: o from 2010 173 to up-to-date The LEO RSOs in version 1 are generated based on the 24-hour GPS RSOs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. For day overlapping arcs two 24h GNSS constellations are concatenated. The accuracy of the LEO RSOs is at the level of 1-2 cm in terms of SLR validation. Each solution in version 1 is given in the Conventional Terrestrial Reference System (CTS) based on the IERS 2003 conventions and related to the ITRF-2008 reference frame. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename.
This dataset provides Rapid Science Orbits (RSO) from the Low Earth Orbiter (LEO) satellite TerraSAR-X. It is part of the compilation of GFZ RSO products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of the compilation (Schreiner et al., 2022). • The TerraSAR-X RSO cover the period - from 2007 264 to up-to-date The LEO RSOs in version 1 are generated based on the 24-hour GPS RSOs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. For day overlapping arcs two 24h GNSS constellations are concatenated. The accuracy of the LEO RSOs is at the level of 1-2 cm in terms of SLR validation. Each solution in version 1 is given in the Conventional Terrestrial Reference System (CTS) based on the IERS 2003 conventions and related to the ITRF-2008 reference frame. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename.
This dataset provides Rapid Science Orbits (RSO) from the Low Earth Orbiter (LEO) satellite TanDEM-X. It is part of the compilation of GFZ RSO products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of the compilation (Schreiner et al., 2022). • The TanDEM-X RSO cover the period: from 2010 173 to up-to-date The LEO RSOs in version 2 are generated based on the 30-hour GPS RSOs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. Due to the extended length of the constellation, there is no need to concatenate several constellations for day-overlapping arcs. The accuracy of the LEO RSOs is at the level of 1-2 cm in terms of SLR validation. Each solution in version 2 is given in the Conventional Terrestrial Reference System (CTS) based on the IERS 2010 conventions and related to the ITRF-2014 reference frame. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename.
Origin | Count |
---|---|
Bund | 19 |
Land | 3 |
Wissenschaft | 14 |
Type | Count |
---|---|
Daten und Messstellen | 5 |
Ereignis | 1 |
Förderprogramm | 13 |
Text | 6 |
unbekannt | 11 |
License | Count |
---|---|
geschlossen | 8 |
offen | 27 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 18 |
Englisch | 21 |
Resource type | Count |
---|---|
Archiv | 1 |
Datei | 5 |
Dokument | 4 |
Keine | 24 |
Webseite | 5 |
Topic | Count |
---|---|
Boden | 30 |
Lebewesen und Lebensräume | 21 |
Luft | 29 |
Mensch und Umwelt | 35 |
Wasser | 22 |
Weitere | 34 |