API src

Found 36 results.

Similar terms

s/tdx/TDI/gi

In-situ soil moisture and -temperature time series measurements during SwabianMOSES campaign 2023

As part of the hydro-meteorological measurement campaign SwabianMOSES 2023 time-domain transmission soil moisture sensors and temperature sensors with custom-made logger systems were used to measure time series of these soil state variables. The aim of these investigations was to provide data on physical soil properties used in a cross-disciplinary approach for a better understanding of hydro-meteorological extremes (such as high precipitation events and droughts). Each measurement site consisted of sensors at three depths with two sensors each. Logger systems were installed at six different observation sites which were distributed across the whole campaign target area in the vicinity of the Swabian Jura in Germany. Decisions on the specific installation depths were made during the installation at the respective sites based on the constitution of the local soil profiles. Installation protocols with a brief soil profile description and photos are part of this dataset. The dataset contains the values of location and time (UTC), soil temperature (in °C), relative permittivity and soil moisture (in % vol) derived from permittivity. Determination of soil moisture was done using the formula of Topp et al. (1980). As sensors, the SMT100 soil moisture sensor with integrated temperature measurement were used. All sensors were installed within the upper 50cm below ground. The exact depths for each sensor are listed in the comments.

In-situ soil moisture and -temperature time series, point measurements and cosmic-ray neutron rover surveys during SwabianMOSES campaign 2023

As part of the hydro-meteorological measurement campaign SwabianMOSES 2023 time-domain transmission (TDT) soil moisture sensors and temperature sensors with custom-made logger systems were used to measure time series of these soil state variables. In addition, a stationary cosmic-ray neutron sensor was deployed at the KITcube site near Villingen-Schwenningen to provide continuous soil moisture data for an area of between 10 and 20 hectares. For mapping the spatial distribution of soil moisture, several mobile CRNS campaigns have been conducted with a car across the Lindach catchment and beyond before and after prospective rain events. During these mobile CRNS measurements, in-situ soil moisture measurements were conducted, using a handheld time-domain reflectometry soil moisture sensor. The aim of these investigations was to provide data on physical soil properties used in a cross-disciplinary approach for a better understanding of hydro-meteorological extremes (such as high precipitation events and droughts). Regarding the TDT-sensors, each measurement site consisted of sensors at three depths with two sensors each. Logger systems were installed at six different observation sites which were distributed across the whole campaign target area in the vicinity of the Swabian Jura in Germany. Decisions on the specific installation depths were made during the installation at the respective sites based on the constitution of the local soil profiles. Installation protocols with a brief soil profile description and photos are part of this dataset. The dataset contains the values of location and time (UTC), soil temperature (in °C), relative permittivity and soil moisture (in % vol) derived from permittivity. Determination of soil moisture was done using the formula of Topp et al. (1980). As sensors, the SMT100 soil moisture sensor with integrated temperature measurement were used. All sensors were installed within the upper 50cm below ground. The exact depths for each sensor are listed in the comments.

Dissolved munition compounds in the water column of southwestern Baltic Sea during ALKOR cruise AL567

Cruise AL567 (R/V Alkor) sampled the water column in German territorial waters of the southwest Baltic Sea during 18-30 October 2021. This dataset contains concentrations of dissolved munition compounds from 88 Niskin bottle rosette casts between sea surface and seafloor. Samples were collected at the sea surface (1-2 m depth), approximately 2 m above the seafloor, and immediately below the pycnocline. Dissolved explosives in the samples were measured following Gledhill et al. (2019). Briefly, discrete samples (1 L) were preconcentrated onboard using solid-phase extraction. Target compounds were eluted with acetonitrile, further concentrated by evaporation, and measured by ultra-high performance liquid chromatography and high resolution heated electrospray ionization mass spectrometry.

GFZ Rapid Science Orbits

Orbital products describe positions and velocities of satellites, be it the Global Navigation Satellite System (GNSS) satellites or Low Earth Orbiter (LEO) satellites. These orbital products can be divided into the fastest available ones, the Near Realtime Orbits (NRT), which are mostly available within 15 to 60 minutes delay, followed by Rapid Science Orbit (RSO) products with a latency of two days and finally the Precise Science Orbit (PSO) which, with a latency of up to a few weeks, are the most delayed. The absolute positional accuracy increases with the time delay. This dataset compiles the RSO products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of this compilation. GNSS Constellation: • GNSS 24h (v01) • GNSS 30h (v02) LEO Satellites: • CHAMP • GRACE • GRACE-FO • SAC-C • TanDEM-X/ TerraSAR-X Each solution is given in the Conventional Terrestrial Reference System (CTS). • The GNSS RSOs are 30-hour long arcs starting at 21:00 the day before the actual day and ending at 03:00 the day after. The accuracy of the GPS RSO sizes at the 3-cm level in terms of RMS values of residuals after Helmert transformation onto IGS combined orbit solutions (Version 1 GNSS RSOs are 24-hour long arcs starting at 00:00 and ending at 24:00 the actual day). • The LEO RSOs are generated based on these 30-hour GNSS RSOs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. The accuracy of the LEO RSOs is at the level of 1-2 cm in terms of SLR validation. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename. This dataset compiles RSO products for various LEO missions and the corresponding GNSS constellation in sp3 format in a revised processing version 2. The switch from previous version 1 to 2 was performed on 18-Feb-2019. Major changes from version 1 to 2 are the change from IERS 2003 to IERS 2010 conventions and ITRF 2008 to ITRF-2014, as well as the temporal extension of the GNSS constellation from previous 24 hours (version 1) to 30 hours (version 2) arcs. This temporal expansion eliminates the chaining of two consecutive 24-hour GNSS constellation solutions previously used to process day-overlapping LEO arcs in Version 1. This 24h GNSS constellation (Version 1) will continue to operate and be stored on the ISDC ftp server, as discussed in more detail in Section 8.1. All RSO LEO arcs will no longer be continued in version 1 after the changeover date and will only be available in version 2 since then.

GFZ TanDEM-X Rapid Science Orbits (version 1)

This dataset provides Rapid Science Orbits (RSO) from the Low Earth Orbiter (LEO) satellite TanDEM-X. It is part of the compilation of GFZ RSO products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of the compilation (Schreiner et al., 2022). • The TanDEM-X RSO cover the period: o from 2010 173 to up-to-date The LEO RSOs in version 1 are generated based on the 24-hour GPS RSOs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. For day overlapping arcs two 24h GNSS constellations are concatenated. The accuracy of the LEO RSOs is at the level of 1-2 cm in terms of SLR validation. Each solution in version 1 is given in the Conventional Terrestrial Reference System (CTS) based on the IERS 2003 conventions and related to the ITRF-2008 reference frame. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename.

GFZ TanDEM-X Rapid Science Orbits (version 2)

This dataset provides Rapid Science Orbits (RSO) from the Low Earth Orbiter (LEO) satellite TanDEM-X. It is part of the compilation of GFZ RSO products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of the compilation (Schreiner et al., 2022). • The TanDEM-X RSO cover the period: from 2010 173 to up-to-date The LEO RSOs in version 2 are generated based on the 30-hour GPS RSOs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. Due to the extended length of the constellation, there is no need to concatenate several constellations for day-overlapping arcs. The accuracy of the LEO RSOs is at the level of 1-2 cm in terms of SLR validation. Each solution in version 2 is given in the Conventional Terrestrial Reference System (CTS) based on the IERS 2010 conventions and related to the ITRF-2014 reference frame. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename.

GFZ TerraSAR-X Rapid Science Orbits (version 1)

This dataset provides Rapid Science Orbits (RSO) from the Low Earth Orbiter (LEO) satellite TerraSAR-X. It is part of the compilation of GFZ RSO products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of the compilation (Schreiner et al., 2022). • The TerraSAR-X RSO cover the period - from 2007 264 to up-to-date The LEO RSOs in version 1 are generated based on the 24-hour GPS RSOs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. For day overlapping arcs two 24h GNSS constellations are concatenated. The accuracy of the LEO RSOs is at the level of 1-2 cm in terms of SLR validation. Each solution in version 1 is given in the Conventional Terrestrial Reference System (CTS) based on the IERS 2003 conventions and related to the ITRF-2008 reference frame. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename.

GFZ TerraSAR-X Near Realtime Orbits (version 2)

This dataset provides Near Realtime Orbits (NRT) from the Low Earth Orbiter (LEO) satellite TerraSAR-X. It is part of the compilation of GFZ NRT products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of the compilation (Schreiner et al., 2022). The TerraSAR-X NRT cover the period - from 2007 264 to up-to-date The LEO NRTs in version 2 are generated based on the 30-hour GPS NRTs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. Due to the extended length of the constellation, there is no need to concatenate several constellations for day-overlapping arcs. The accuracy of the LEO NRTs is at the level of 1-2 cm in terms of SLR validation. Each solution in version 2 is given in the Conventional Terrestrial Reference System (CTS) based on the IERS 2010 conventions and related to the ITRF-2014 reference frame. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename.

GFZ Precise Science Orbit Products for satellites equipped with DORIS receiver (version 2)

Orbital products describe positions and velocities of satellites, be it the Global Navigation Satellite System (GNSS) satellites or Low Earth Orbiter (LEO) satellites. These orbital products can be divided into the fastest available ones, the Near Realtime Orbits (NRT, Zitat), which are mostly available within 15 to 60 minutes delay, followed by Rapid Science Orbit (RSO, Zitat) products with a latency of two days and finally the Precise Science Orbit (PSO) which, with a latency of up to a few weeks or longer in the case of reprocessing campaigns, are the most delayed. The absolute positional accuracy increases from NRT to PSO. This dataset compiles the PSO products for various LEO missions and GNSS constellation in sp3 format. GNSS Constellation: - GPS LEO Satellites: - ENVISAT - Jason-1 - Jason-2 - Jason-3 - Sentinel-3A - Sentinel-3B - Sentinel-6A - TOPEX Each solution follows specific requirements and parametrizations which are named in the respective processing metric table.

In-situ soil moisture and -temperature time series measurements during SwabianMOSES campaign 2021

As part of the hydro-meteorological measurement campaign SwabianMOSES 2021 time-domain transmission soil moisture sensors and temperature sensors with custom-made logger systems were used to measure time series of these soil state variables. The aim of these investigations was to provide data on physical soil properties used in a cross-disciplinary approach for a better understanding of hydro-meteorological extremes (such as high precipitation events and droughts). Each measurement site consisted of sensors at three depths with two sensors each. Logger systems were installed at six different observation sites which were distributed across the whole campaign target area in the vicinity of the Swabian Jura in Germany. Decisions on the specific installation depths were made during the installation at the respective sites based on the constitution of the local soil profiles. Installation protocols with a brief soil profile description and photos are part of this dataset. The dataset contains the values of location and time (UTC), soil temperature (in °C), relative permittivity and soil moisture (in % vol) derived from permittivity. Determination of soil moisture was done using the formula of Topp et al. (1980). As sensors, the SMT100 soil moisture sensor with integrated temperature measurement were used. All sensors were installed within the upper 50cm below ground. The exact depths for each sensor are listed in the comments.

1 2 3 4