To overcome the limitation in spatial and temporal resolution of methane oceanic measurements, sensors are needed that can autonomously detect CH4-concentrations over longer periods of time. The proposed project is aimed at:- Designing molecular receptors for methane recognition (cryptophane-A and -111) and synthesizing new compounds allowing their introduction in polymeric structure (Task 1; LC, France); - Adapting, calibrating and validating the 2 available optical technologies, one of which serves as the reference sensor, for the in-situ detection and measurements of CH4 in the marine environments (Task 2 and 3; GET, LAAS-OSE, IOW) Boulart et al. (2008) showed that a polymeric filmchanges its bulk refractive index when methane docks on to cryptophane-A supra-molecules that are mixed in to the polymeric film. It is the occurrence of methane in solution, which changes either the refractive index measured with high resolution Surface Plasmon Resonance (SPR; Chinowsky et al., 2003; Boulart et al, 2012b) or the transmitted power measured with differential fiber-optic refractometer (Boulart et al., 2012a; Aouba et al., 2012).- Using the developed sensors for the study of the CH4 cycle in relevant oceanic environment (the GODESS station in the Baltic Sea, Task 4 and 5; IOW, GET); GODESS registers a number of parameters with high temporal and vertical resolution by conducting up to 200 vertical profiles over 3 months deployment with a profiling platform hosting the sensor suite. - Quantifying methane fluxes to the atmosphere (Task 6); clearly, the current project, which aims at developing in-situ aqueous gas sensors, provides the technological tool to achieve the implementation of ocean observatories for CH4. The aim is to bring the fiber-optic methane sensor on the TRL (Technology Readiness Level) from their current Level 3 (Analytical and laboratory studies to validate analytical predictions) - to the Levels 5 and 6 (Component and/or basic sub-system technology validation in relevant sensing environments) and compare it to the SPR methane sensor, taken as the reference sensor (current TRL 5). This would lead to potential patent applications before further tests and commercialization. This will be achieved by the ensemble competences and contributions from the proposed consortium in this project.
Deviant behaviour on various levels of the food supply chain may cause food risks. It entails irregular technological procedures which cause (increased probabilities of) adverse outcomes for buyers and consumers. Besides technological hazards and hitherto unknown health threats, moral hazard and malpractice in food businesses represent an additional source of risk which can be termed 'behavioural food risk'. From a regulatory perspective, adverse outcomes associated with deviance represent negative externalities that are caused by the breaking of rules designed to prevent them. From a rational choice perspective, the probability of malpractice increases with the benefits for its authors. It decreases with the probability of detection and resulting losses. It also decreases with bonds to social norms that protect producers from yielding to economic temptations. The design of mechanisms that reduce behavioural risks and prevent malpractice requires an understanding of why food businesses obey or do not obey the rules. This project aims to contribute to a better understanding of malpractice on the restaurant/retail level through comparative case studies and statistical analyses of food inspection and survey data. Accounting for the complexity of economic behaviour, we will not only look at economic incentives but consider all relevant behavioural determinants, including social context factors.
Farm structures are often characterized by regional heterogeneity, agglomeration effects, sub-optimal farm sizes and income disparities. The main objective of this study is to analyze whether this is a result of path dependent structural change, what the determinants of path dependence are, and how it may be overcome. The focus is on the German dairy sector which has been highly regulated and subsidized in the past and faces severe structural deficits. The future of this sector in the process of an ongoing liberalization will be analyzed by applying theoretical concepts of path dependence and path breaking. In these regards, key issues are the actual situation, technological and market trends as well as agricultural policies. The methodology will be based on a participative use of the agent-based model AgriPoliS and participatory laboratory experiments. On the one hand, AgriPoliS will be tested as a tool for stakeholder oriented analysis of mechanisms, trends and policy effects. This part aims to analyze whether and how path dependence of structural change can be overcome on a sector level. In a second part, AgriPoliS will be extended such that human players (farmers, students) can take over the role of agents in the model. This part aims to compare human agents with computer agents in order to overcome single farm path dependence.
Dairy farming across Germany displays diverse production systems. Factor endowment, management, technology adoption as well as competitive dynamics in the local or regional land, agribusiness and dairy processing sectors contribute to this differentiation on farm level. These differences impact on the ability of dairy farms and regional dairy production systems to successfully respond to pressures arising from future market and policy changes. The overall objective of the research activities of which this project is a part of, is to develop a thorough understanding of the processes that govern the spatial dynamics of dairy farm development in different regions in Germany. The central hypothesis of this research project is that management system and technological choices differ systematically across local production and market conditions. The empirical approach will focus on the estimation of farm specific nonparametric cost functions for dairy farms located in across Germany differentiated by time and location. A spatially differentiated data base with information on input use, resource availability, as well as local market conditions for land and output markets will be compiled. The nonparametric approach is specifically suited to disclose a more accurate representation of dairy production system heterogeneity across locations and time compared to parametric concepts as it provides the necessary flexibility to accommodate non-linearities relevant for a wide domain of explanatory variables. The methodology employed goes beyond the state of the art of the literature as it combines kernel density estimation with a Bayesian sampling approach to provide theory consistent parameters for each farm in the data sample.The specific methodological hypothesis is that the nonparametric approach is superior to current parametric techniques and this hypothesis is tested using statistical model evaluation. Regarding the farm management and technological choices, we hypothesize that land suitability for feed production determines the farm intensity of dairy production and thus management and technological choices. With respect to the ability of farms to successfully respond to market pressures we hypothesize that farms at the upper and lower tail of the intensity distribution both can generate positive returns from dairy production. These last two hypotheses will be tested using the estimated spatially differentiated farm specific costs and marginal costs.The expected outcomes are of relevance for the agricultural sector and the food supply chain economy as a whole as fundamental market structure changes in the dairy sector are ongoing due to the abolition of the quota regulation in the years 2014/2015. Thus, exact knowledge about differences and development of dairy cost heterogeneity of farms within and between regions are an important factor for the actors involved in the market as well as the political support of this process.
Wood2CHem: A computer-aided platform for developing bio-refinery concepts The bio-refinery concept offers the timber industry numerous development opportunities by integrating the production of value-added products made from biomass. The computer-aided platform Wood2CHem, developed within the scope of this project, will help to devise innovative means for promoting wood as a resource using a holistic and integrated approach. Background Due to its composition and complex chemical structure, wood can be used to make a large number of value-added products. The bio-refinery concept proposes to widen the range of products derived from wood while adopting a systemic approach aimed at promoting synergies in the production of various products by integrating different processes. It therefore offers an enormous development potential for the wood sector and opens up many new markets. The development of bio-refinery concepts poses a significant challenge. A large number of processes that integrate studies and technologies of innovative transformation need to be evaluated, integrated and optimised using a holistic approach before the most promising concepts can be identified. Aim By applying techniques from process engineering, energy integration and multi-objective optimisation, the consortium of the Wood2CHem project proposes to develop a computer-aided platform for systematically generating the most promising bio-refinery models and evaluating their thermodynamic, economic and environmental performance. This integrated platform will be developed by combining expertise in chemical engineering and process engineering. It is aimed at integrating technological developments of wood transformation and will be validated in industrial case studies. Significance The Wood2CHem project concerns the development of industrial concepts and will therefore primarily interest experts and engineers in the field who wish to develop integrated and innovative concepts for a rational promotion of wood. It will allow them to envisage and compare inegrated process chains. The platform will integrate all the actors wishing to assume the perspective of industrial ecology.
ARROWS proposes to adapt and develop low cost autonomous underwater vehicle technologies to significantly reduce the cost of archaeological operations, covering the full extent of archaeological campaign. Benefiting from the significant investments already made for military security and offshore oil and gas applications, the project aims to demonstrate an illustrative portfolio of mapping, diagnosis and excavation tasks. ARROWS approach is to identify the archaeologists requirements in all phases of the campaign, identify problems and propose technological solutions with the technological readiness levels that predict their maturation for exploitation within 3-5 years. The individual technologies are then developed during the course of the project using agile development method comprising rapid cycles of testing and comparison against the end user requirements. To ensure the wide exploitability of the results the requirements are defined and the solutions are tested in two historically significant but environmentally very different contexts, in The Mediterranean Sea and in The Baltic Sea. Both immediate, low risk and long term, high risk developments will be pursued. In particular: - Fast a low cost horizontal surveys of large areas using customised AUVs with multimodal sensing. - Fast and low cost semi-automated data analysing tools for site and object relocation - High quality maps from better image reconstruction methods and better localization abilities of AUVs. - Shipwreck penetration and internal mapping using small low cost vehicles localising using fixed pingers. - Soft excavation tool for diagnosis and excavation of fragile objects. - Mixed reality environments for virtual exploration of archaeological sites. - Monitoring of changes via back-to-the-site missions. The ARROWS consortium comprises expertise from underwater archaeology, underwater engineering, robotics, image processing and recognition from academia and industry.
Context: With increasing global change pressures, and due to existing limitations, and un-sustainability factors and risks of conventional urban water management (UWM), cities experience difficulties in efficiently managing the ever scarcer water resources, their uses/services, and their after-use disposal, without creating environmental, social and/or economic damage. In order to meet these challenges, SWITCH calls for a paradigm shift in UWM. There is a need to convert adhoc actions (problem/incident driven) into a coherent and consolidated approach (sustainability driven). This calls for an IP Approach. Research conceptSWITCH therefore proposes an action research project which has as a main objective: The development, application and demonstration of a range of tested scientific, technological and socio-economic solutions and approaches that contribute to the achievement of sustainable and effective UWM schemes in 'The City of the future'.The project will be implemented by different combinations of consortium partners, along the lines of seven complementary and interactive themes. The research approach is innovative for the combination of: action research: address problems through innovation based upon involvement of users.learning alliances: to link up stakeholders to interact productively and to create win-win solutions along the water chain; multiple-way learning: European cities learn from each other and from developing countries, and vice versa.multiple-level or integrated approach: to consider the urban water system and its components (city level) in relation to its impacts on, and dependency of, the natural environment in the river basin (river basin level), and in relation to Global Change pressures (global level).Instruments and scopeAn IP with 30 partners, their resources, and a total budget of 25,191,396 EURO including budget for demonstration activities in 9 Cities in Europe and developing countries. Prime Contractor: UNESCO - Institute for Water Education, Delf, Netherlands.
Origin | Count |
---|---|
Bund | 62 |
Type | Count |
---|---|
Förderprogramm | 62 |
License | Count |
---|---|
offen | 62 |
Language | Count |
---|---|
Deutsch | 12 |
Englisch | 55 |
Resource type | Count |
---|---|
Keine | 44 |
Webseite | 18 |
Topic | Count |
---|---|
Boden | 48 |
Lebewesen und Lebensräume | 56 |
Luft | 39 |
Mensch und Umwelt | 62 |
Wasser | 41 |
Weitere | 62 |