Enhanced Geothermal Systems (EGS) zielen darauf ab, die in der Erdkruste gespeicherte Wärme durch zirkulierende Flüssigkeiten zwischen Injektions- und Produktionsbohrlöchern zu extrahieren. Ideale Bedingungen finden sich typischerweise in Formationen in einer Tiefe von 2 bis 5 km, in denen die Durchflussrate für kommerzielle geothermische Anlagen nicht ausreicht und in denen die Temperaturen hoch sind (d. H. >> 100 ° C). Daher ist die Hochdruck-Flüssigkeitsinjektion, die als hydraulische Stimulation bekannt ist, eine allgemein angewandte Technik, um ein verbundenes Bruchnetzwerk zu erzeugen, das die Flüssigkeitszirkulation erleichtert. Die hydraulische Stimulation geht typischerweise mit einer induzierten Seismizität einher, die von der Öffentlichkeit wahrgenommen werden kann und sogar Schäden verursacht. Das Ziel dieses Projekts ist es, ein grundlegendes Verständnis der induzierten Seismizität in gebrochenen Gesteinen zu vermitteln, das die Fähigkeit verbessert, das seismische Risiko vorherzusagen und zu kontrollieren. Dieses Projekt geht von der Hypothese aus, dass die Seismizität gemeinsam durch die Bruchnetzgeometrie und die aktivierten thermo-hydromechanischen (THM) Prozesse in geologischen Systemen gesteuert wird. Wir werden Discrete Fracture Networks (DFN) anwenden, um die strukturellen Diskontinuitäten darzustellen und die THM-Prozesse mit hoher Auflösung zu modellieren. Dieses Projekt verwendet die Datensätze aus kleinen (Dekameter-) Stimulationsexperimenten am Grimsel-Teststandort in der Schweiz und modernste numerische Modelle, um Folgendes zu erreichen: 1) Testen Sie die Wirksamkeit hochauflösender Modelle zur Erfassung der seismische, hydraulische und mechanische Prozesse, die mit kleinen Experimenten beobachtet wurden; 2) Verknüpfung der geometrischen Attribute eines Bruchnetzwerks (wie Intensität, Konnektivität, Länge und räumliche Verteilung) mit der räumlichen, zeitlichen und Größenverteilung der induzierten Seismizität; 3) ein neuartiges Prognosemodell für die maximal mögliche Größe vorschlagen und testen, das die gemeinsamen Auswirkungen von Multiphysikprozessen berücksichtigt, die unter standortspezifischen geologischen Bedingungen und Betriebsbedingungen dominieren; 4) Bewertung der Hochskalierung der hochauflösenden DFN-Modelle im kleinen Maßstab (Dekameter), um die Experimente im Reservoir-Maßstab (Kilometer) zu simulieren. Dieses Forschungsprojekt ist neu in der Behandlung der durch Injektion induzierten Seismizität durch hochauflösende physikbasierte Modelle und hochwertige Datensätze, die aus einzigartigen In-situ-Experimenten abgeleitet wurden. Die vorgeschlagene Forschung hat erhebliche Auswirkungen auf die Förderung der Übergangspolitik hin zu einer Versorgung mit erneuerbaren Energien und trägt dazu bei, unser Wissen über die Auslösemechanismen induzierter Erdbeben zu erweitern.
Die Entsorgung nuklearer Abfälle in geologischen Tiefenlagern muss in Gebieten erfolgen, die vom Grundwasserstrom ausreichend isoliert bleiben. Andernfalls können Fluidströmungsprozesse bei einer gestörten Entwicklung des Endlagers die Migration von Radionukliden in die Biosphäre begünstigen. Nur wenige Studien befassen sich mit den Folgen des weiträumigen Radionuklidtransports in solchen Worst-Case-Szenarien. Die hydrogeologischen Bedingungen des Gesamtsystems in der Nachbetriebsphase werden sich jedoch letztendlich von denen zum Zeitpunkt des Endlagerbaus unterscheiden und werden sowohl von äußeren Faktoren (z.B. Klimawandel) als auch von intrinsischen Beckeneigenschaften stark beeinflusst. Dieses Vorhaben im Bereich der Umweltrisiken zielt darauf ab, die Auswirkungen von (i) Vereisung, (ii) Permafrost und (iii) tektonischen Ereignissen auf die hydrologischen und hydromechanischen Grenzen zu untersuchen, die den großräumigen Grundwasserfluss in der Nähe von hypothetischen Abfalldeponien bestimmen. Zu diesem Zweck dient der Yeniseisky-Standort (YS) in Russland, ein potenzielles geologisches Tiefenlager für radioaktive Abfälle in kristallinem Gestein, als Fallstudie, der auf einzigartige Weise alle drei oben genannten Merkmale der geologischen Umgebung umfasst. Multiphysikalische Simulationen von thermisch-hydraulisch-mechanisch-chemisch gekoppelten Prozessen (THM-C) werden angewendet, um Szenarien der Fernfeld-Radionuklidentwicklung im Extremfall eines Endlagerstörfalls zu liefern. Die Neuartigkeit der THM-C-Modelle und der Zugang zu einer einzigartigen Datenbank der YS werden das klassische Verständnis von anomaler Fluid-, Wärme- und Massentransportvorgänge innerhalb tektonisch aktiver Becken erweitern. Während sich das vorgeschlagene Vorhaben auf die Thematik der nuklearen Entsorgungsforschung bezieht, können die den entwickelten Modellen zugrunde liegenden physikalischen und numerischen Konzepte auf eine Vielzahl von Nutzungsszenarien der Geosphäre (z.B. CO2-Speicherung, Abfallentsorgung, Entstehung seismischer Ereignisse) angewendet werden. Darüber hinaus sind entsprechende Benchmarkstudien in ähnlichen kristallinen geologischen Formationen geplant.
Für eine sichere und nachhaltige Nutzung unterirdischer Geosysteme muss die Integrität von Reservoir- und Barrieregesteinen langfristig gewährleistet sein. Eine besondere Rolle spielen dabei Prozesse, welche durch Rissbildung und Risswachstum zu einer Schwächung des Gesteins führen können. Diese Schwächung kann z. B. durch Diffusions- und Transportprozesse infolge wechselnder Druck- und Spannungsbedingungen hervorgerufen werden. Dabei ist die Rissbildung und Rissausbreitung im Untergrund mit seismischen Ereignissen verbunden. Diese Mikrobeben sind zumeist nur mit entsprechend sensitiver Messtechnik registrierbar, die Seismizität kann allerdings auch spürbare Größenordnungen erreichen oder sogar zu Schädigungen an Bauwerken und Infrastruktur führen. In konventionellen Kohlenwasserstofflagerstätten wird häufig nach einem längeren Produktionszeitraum eine erhöhte seismische Aktivität festgestellt, die auf Kompaktionsprozesse des Reservoirgesteins und die Aktivierung von Bruchzonen zurückzuführen ist. Bei der hydraulischen Stimulierung unkonventioneller Kohlenwasserstofflagerstätten oder geothermischer Reservoire werden seismische Ereignisse aufgezeichnet, die je nach Belastungszyklus und Gesteinstyp stark variieren können. Auch in Gasspeichern führen Belastung und Rissbildung zu erhöhter Seismizität, welche Prozesse anzeigt, die sich ungünstig auf die Speicherstabilität auswirken.
Im Rahmen des Verbundprojekts SECURE sollen skalenübergreifende Werkzeuge zur Prognose und Charakterisierung hydromechanischer Prozesse bei der Nutzung unterirdischer Reservoirsysteme entwickelt werden. Die Forschungsarbeiten konzentrieren sich dabei auf Rissbildung und Risswachstum in Reservoiren und Deckgesteinen, welche als mikroseismische Ereignisse detektiert werden können. Hierzu sollen Modelle konzipiert werden, die erstmals bruchmechanische Prinzipien mit probabilistischen Seismizitätsmodellen kombinieren. Das Verbundprojekt gliedert sich in drei Arbeitspakete. Im Mittelpunkt des ersten Arbeitspakets steht das Monitoring. Dabei soll geprüft werden, wie schwache Mikroseismizität bestmöglich detektiert und charakterisiert werden kann. Ein Schwerpunkt der Arbeiten liegt in der Entwicklung einheitlicher Standards zur Beschreibung von Magnituden und Herdparametern. Das zweite Arbeitspaket umfasst die Entwicklung fluidmechanischer Reservoirmodelle anhand von vier Fallstudien. Hierfür werden von den Industriepartnern Daten aus konventionellen Erdgasfeldern, aus Experimenten zur hydraulischen Stimulierung, aus Gasspeichern und aus geothermischen Aquifersystemen bereitgestellt. Ziel ist es, Druck- und Spannungsfelder als Funktion der Produktions- und Feldparameter zu bestimmen. Im dritten Arbeitspaket sollen auf Basis von Spannungssimulationen Seismizitätsmodelle entwickelt werden, welche zur Kalibrierung der fluidmechanischen Reservoirmodelle dienen. (Text gekürzt)
Die Beeinflussung des oberflächennahen Grundwassers durch geotechnologische Nutzungen des Untergrundes ist ein wichtiges Kriterium bei der öffentlichen Akzeptanz und politischen Bewertung bestimmter Geotechnologien. Leider existieren dazu jedoch auch international nur wenige Geländeexperimente unter kontrollierten Randbedingungen, die die Entwicklung und Validierung von Fachdisziplinen übergreifenden Erkundungs- und Monitoringansätzen wie auch von numerischen Prognosewerkzeugen und Interventionsmethoden zur Reduktion derartiger Grundwassergefährdungen ermöglichen.
Übergeordnete Zielsetzung des Verbundprojektes ist daher der Aufbau, der Betrieb und die Etablierung eines entsprechenden Testfeldes an einem Standort in der Nähe der Stadt Wittstock zur Durchführung derartiger Experimente. Dort sollen im Rahmen einer nationalen Geo:N-Infrastrukturbildung mittelfristig auch anderen nationalen und internationalen Arbeitsgruppen die Möglichkeit für entsprechende Forschungen eröffnet werden.
Schwerpunkte der Feldexperimente im Rahmen des Verbundprojektes stellen zum einen geophysikalische, mikrobiologische und hydrogeochemische Untersuchungen sowie die Entwicklung und Validierung numerischer Modelle (THMC) bzw. von 'Invers-Modellen' zu experimentellen Gasleckagensimulationen (N2-, (CO2-), O2-Gemisch als 'Luft', CH4, H2) und den damit in Verbindung stehenden bzw. induzierten reaktiven Mehrphasentransportprozessen dar. Zum anderen sollen die Auswirkungen von Wärmeeinspeicherungen (T kleiner als 80 Grad Celsius) auf reaktive z.T. mehrphasige Transportprozesse in natürlichen Grundwasserleitern untersucht werden.
Übergeordnete Fragestellungen sind dabei Detektierbarkeit, Prognostizierbarkeit und Kontrollierbarkeit der reaktiven Mehrphasen- und Wärmetransportprozesse in natürlichen oberflächennahen Grundwasserleitern unter besonderer Berücksichtigung der Erprobung und Validierung geophysikalischer und numerischer Verfahren. Konkretisiert und fachlich untersetzt werden diese übergeordneten Fragestellungen in drei wissenschaftlichen Teilprojekten (TP 1 'Experimentelle und Numerische Modelle'; TP 2 'Geophysikalisches Monitoring und Parametrisierung' und TP 3 'Hydrogeochemische, isotopenchemische und mikrobiologische Prozesse') sowie dem TP 4 'Verbundkoordination und Standortmanagement'.
Gesamtziel des Verbundvorhabens ist die Erhöhung der Erfolgsaussichten bei der Exploration und Erschließung geothermischer Reservoire zur Wärme- und Stromerzeugung vor allem im südlichen und südwestlichen bayerischen Molassebecken. Dies soll am Sidetrack der Bohrung Geretsried GEN-1 demonstriert werden. Die Schwerpunkte der Arbeit von G.E.O.S. liegen dabei in der Verbesserung des Geschwindigkeitsmodells um die Targets auf den identifizierten Strukturen (Störungen) mit hoher Präzision zu treffen. Dies ist ganz besonders für das störungsbasierte Erschließungskonzept für den Sidetrack wichtig und soll über die Auswertung des geplanten Checkshot erfolgen. Auf dieser Grundlage und mit den Informationen aus der Bohrphase wird das geologische Modell fortlaufend angepasst. Zudem werden geothermische Simulationen mit ECLIPSE vergleichend zu FEFLOW- Simulationen des Partners GTN durchgeführt. Hauptziele sind einerseits die Verifizierung der Modelle und andererseits die Identifikation von Grenzen für die Permeabilität von Störung und Matrix für eine für die Fündigkeit ausreichende Schüttung. Dabei soll die so ermittelte Permeabilität mit den Untersuchungen der TUM abgeglichen werden. Nach Abschluss der Testarbeiten werden diese systematisch unter Nutzung des Tools G.E.O.S.I.M. ausgewertet, welches dazu verifiziert und erweitert werden soll. Um die wirtschaftlichen und wissenschaftlichen Ziele des Gesamtvorhabens zu erreichen, sollen in diesem Teilprojekt folgende Arbeiten von der G.E.O.S. Ingenieurgesellschaft mbH durchgeführt werden: ' Auswertung Checkshot und Erstellung eines Geschwindigkeitsmodells ' Präzisierung des geologischen Modells vor, während und nach der Bohrphase ' Durchführung von geothermischen Reservoirsimulationen mit ECLIPSE und Vergleich der Ergebnisse mit FEFLOW ' Auswertung der Fördertests und Validierung und Erweiterung des von G.E.O.S. entwickelten Simulationstools G.E.O.S.I.M.
1
2
3
4
5
…
16
17
18