Enhanced Geothermal Systems (EGS) zielen darauf ab, die in der Erdkruste gespeicherte Wärme durch zirkulierende Flüssigkeiten zwischen Injektions- und Produktionsbohrlöchern zu extrahieren. Ideale Bedingungen finden sich typischerweise in Formationen in einer Tiefe von 2 bis 5 km, in denen die Durchflussrate für kommerzielle geothermische Anlagen nicht ausreicht und in denen die Temperaturen hoch sind (d. H. >> 100 ° C). Daher ist die Hochdruck-Flüssigkeitsinjektion, die als hydraulische Stimulation bekannt ist, eine allgemein angewandte Technik, um ein verbundenes Bruchnetzwerk zu erzeugen, das die Flüssigkeitszirkulation erleichtert. Die hydraulische Stimulation geht typischerweise mit einer induzierten Seismizität einher, die von der Öffentlichkeit wahrgenommen werden kann und sogar Schäden verursacht. Das Ziel dieses Projekts ist es, ein grundlegendes Verständnis der induzierten Seismizität in gebrochenen Gesteinen zu vermitteln, das die Fähigkeit verbessert, das seismische Risiko vorherzusagen und zu kontrollieren. Dieses Projekt geht von der Hypothese aus, dass die Seismizität gemeinsam durch die Bruchnetzgeometrie und die aktivierten thermo-hydromechanischen (THM) Prozesse in geologischen Systemen gesteuert wird. Wir werden Discrete Fracture Networks (DFN) anwenden, um die strukturellen Diskontinuitäten darzustellen und die THM-Prozesse mit hoher Auflösung zu modellieren. Dieses Projekt verwendet die Datensätze aus kleinen (Dekameter-) Stimulationsexperimenten am Grimsel-Teststandort in der Schweiz und modernste numerische Modelle, um Folgendes zu erreichen: 1) Testen Sie die Wirksamkeit hochauflösender Modelle zur Erfassung der seismische, hydraulische und mechanische Prozesse, die mit kleinen Experimenten beobachtet wurden; 2) Verknüpfung der geometrischen Attribute eines Bruchnetzwerks (wie Intensität, Konnektivität, Länge und räumliche Verteilung) mit der räumlichen, zeitlichen und Größenverteilung der induzierten Seismizität; 3) ein neuartiges Prognosemodell für die maximal mögliche Größe vorschlagen und testen, das die gemeinsamen Auswirkungen von Multiphysikprozessen berücksichtigt, die unter standortspezifischen geologischen Bedingungen und Betriebsbedingungen dominieren; 4) Bewertung der Hochskalierung der hochauflösenden DFN-Modelle im kleinen Maßstab (Dekameter), um die Experimente im Reservoir-Maßstab (Kilometer) zu simulieren. Dieses Forschungsprojekt ist neu in der Behandlung der durch Injektion induzierten Seismizität durch hochauflösende physikbasierte Modelle und hochwertige Datensätze, die aus einzigartigen In-situ-Experimenten abgeleitet wurden. Die vorgeschlagene Forschung hat erhebliche Auswirkungen auf die Förderung der Übergangspolitik hin zu einer Versorgung mit erneuerbaren Energien und trägt dazu bei, unser Wissen über die Auslösemechanismen induzierter Erdbeben zu erweitern.
Die Entsorgung nuklearer Abfälle in geologischen Tiefenlagern muss in Gebieten erfolgen, die vom Grundwasserstrom ausreichend isoliert bleiben. Andernfalls können Fluidströmungsprozesse bei einer gestörten Entwicklung des Endlagers die Migration von Radionukliden in die Biosphäre begünstigen. Nur wenige Studien befassen sich mit den Folgen des weiträumigen Radionuklidtransports in solchen Worst-Case-Szenarien. Die hydrogeologischen Bedingungen des Gesamtsystems in der Nachbetriebsphase werden sich jedoch letztendlich von denen zum Zeitpunkt des Endlagerbaus unterscheiden und werden sowohl von äußeren Faktoren (z.B. Klimawandel) als auch von intrinsischen Beckeneigenschaften stark beeinflusst. Dieses Vorhaben im Bereich der Umweltrisiken zielt darauf ab, die Auswirkungen von (i) Vereisung, (ii) Permafrost und (iii) tektonischen Ereignissen auf die hydrologischen und hydromechanischen Grenzen zu untersuchen, die den großräumigen Grundwasserfluss in der Nähe von hypothetischen Abfalldeponien bestimmen. Zu diesem Zweck dient der Yeniseisky-Standort (YS) in Russland, ein potenzielles geologisches Tiefenlager für radioaktive Abfälle in kristallinem Gestein, als Fallstudie, der auf einzigartige Weise alle drei oben genannten Merkmale der geologischen Umgebung umfasst. Multiphysikalische Simulationen von thermisch-hydraulisch-mechanisch-chemisch gekoppelten Prozessen (THM-C) werden angewendet, um Szenarien der Fernfeld-Radionuklidentwicklung im Extremfall eines Endlagerstörfalls zu liefern. Die Neuartigkeit der THM-C-Modelle und der Zugang zu einer einzigartigen Datenbank der YS werden das klassische Verständnis von anomaler Fluid-, Wärme- und Massentransportvorgänge innerhalb tektonisch aktiver Becken erweitern. Während sich das vorgeschlagene Vorhaben auf die Thematik der nuklearen Entsorgungsforschung bezieht, können die den entwickelten Modellen zugrunde liegenden physikalischen und numerischen Konzepte auf eine Vielzahl von Nutzungsszenarien der Geosphäre (z.B. CO2-Speicherung, Abfallentsorgung, Entstehung seismischer Ereignisse) angewendet werden. Darüber hinaus sind entsprechende Benchmarkstudien in ähnlichen kristallinen geologischen Formationen geplant.
Aufgrund der Energiewende sollten Untertage Gasspeichern (UGS) für eine höhere Frequenz und z.T. auch Amplitude von Speicheroperationen ausgelegt werden. Der Einfluss dieser zyklischen Belastungen auf die geologischen und technischen Komponenten und damit auf die Funktionalität und Sicherheit von UGS steht deshalb im Fokus des Vorhabens. Zur langfristigen Sicherung der Schutzgüter müssen die zugrundeliegenden Prozesse und Mechanismen skalenübergreifend sowohl qualitativ als auch quantitativ berücksichtigt werden. Im Mittelpunkt stehen deshalb die holistische Betrachtung betriebsbedingter Eigenschaftsänderungen von Speicher, Deckgebirge und deren Anbindung an technischen Einrichtungen (z.B. Bohrungen). Eng verzahnte experimentelle und numerische Untersuchungen bilden die Basis für Modellvorhersagen, die mit Feldbeobachtungen validiert werden. Diese Modelle werden für Szenarien-Betrachtungen an realen und modellhaften Speichern genutzt um optimierte Verfahrensweisen für Betrieb und Nachbetriebsphase abzuleiten, welche die Sicherheit auch bei erhöhter zyklischer Belastung der Speicher steigern. Das von der TU Darmstadt bearbeitete Teilprojekt befasst sich mit der THM-Multiphasen-Modellierung von UGS-Porenspeichern auf der Reservoirskala. Mit den numerischen Simulationen soll insbesondere der Einfluss kurzzeitiger (z.B. wöchentlicher) Wechsel von Ein- und Ausspeisung auf die Kapazität und den sicheren Betrieb des Speichers untersucht werden. Hierzu werden zunächst generische Modelle entwickelt, die die zeitlich-räumlichen Änderungen der hydromechanischen Eigenschaften des Porenspeichers sowie die Auswirkungen der zyklischen Belastungen auf die Integrität des abdeckenden Gebirges und das Reaktivierungspotential von Störungen in verschiedenen Parameterstudien simulieren. Dafür werden die Softwarepakete Petrel-Eclipse-Visage verwandt. In der zweiten Projekthälfte werden die Modellierungen auf einen realen UGS ausgedehnt und eine Nutzung als Kurzzeitspeicher simuliert.
Ein Verfahren zur kombinierten Verfeuerung von stückiger und staubiger Biomasse (z.B. Grünschnittholz und -staub) ist bisher nicht am Markt zu finden. Übliche Verfahren von Biomasseheizwerken vergleichbarer Leistung verfeuern nur homogene und sortenreine Brennstoffe, wie z.B. Pellets oder Holzhackschnitzel. Leistungsspitzen werden durch zusätzliche Öl- oder Gasbrenner gedeckt. Ziel des Projektes ist die Entwicklung eines Feuerungsverfahrens, das sehr gut regelbar ist und dennoch undefinierte Biomassen verfeuern kann. So wird aus regionalen biogenen Reststoffen energetischer Rohstoff und es kann nachhaltig Energie erzeugt werden. Für einen Betrieb über das gesamte Jahr muss ein Modell zur Konditionierung und Konfektionierung des Grünschnitts und Rohstoff-, Energie- und Ökobilanzen für das Verfahren entwickelt werden.
Gesamtziel des Verbundvorhabens ist die Erhöhung der Erfolgsaussichten bei der Exploration und Erschließung geothermischer Reservoire zur Wärme- und Stromerzeugung vor allem in der S/SW bayerischen Molasse. Im Teilvorhaben erstellt GTN ein dynamisch-gekoppeltes numerisches Modell (Basis: 3DSeismik), welches die Charakterisierung der Störungszonen und ihres Einflusses auf das Strömungsverhalten zum Ziel hat. Die Ergebnisse von GTN (nutzt FEFLOW) werden mit denen von G.E.O.S. (nutzt ECLIPSE) verglichen. GTN unterstützt die TUM bei der Bewertung der Gesteine und Teste bzgl. der EGS-Eignung des klüftigen Malms und bei der hydraul. Bewertung der Störungen. Schwerpunkt von GTN liegt auf der Auswertung der Testdaten (FIT) in Kombination mit den Bohrlochmessungen und Daten aus anderen Projekten. Es wird ein Cutting-Log der Bohrung erstellt, wo keine Bohrkerne vorliegen. Schwerpunkt liegt auf den mikrofazielle Analyse der Cuttings, welche u.a. auch auf Dünnschliffen der Cuttings fußt und mit den petrographischen Analysen aus Bohrkernen verglichen werden. Schwerpunkt von GTN ist die Erstellung eines Konzeptes zur Stimulation und zum Test des geplanten Sidetracks, welche neue Methoden/Stimulatoren nutzt. GTN unterstützt alle weiteren Arbeiten durch ihre Fachkenntnisse. Um die wirtschaftlichen und technischen Ziele des Gesamtvorhabens zu erreichen, sollen in diesem Teilprojekt folgende Arbeiten von der GTN durchgeführt werden: a.) Präzisierung des geologischen Modells auf Basis vom Check Shot und neu gewonnenen Bohrungsdaten im Verlauf des Projektes zusammen mit G.E.O.S.; b.) Geotherm. Reservoirmodellierung mit FEFLOW und Vergleich mit Ergebnissen aus ECLIPSE; c.)Bewertung der Labordaten und des Gebirges hinsichtlich EGS-Nutzung; d.)Bewertung von Fazies und Diagenese; e.) Planung und Auswertung der Test- und Stimulationsarbeiten unter Berücksichtigung neuer Verfahren und Stimulationsmittel; f.) Bewertung der Fluiddaten.
1
2
3
4
5
…
16
17
18