Die Entsorgung nuklearer Abfälle in geologischen Tiefenlagern muss in Gebieten erfolgen, die vom Grundwasserstrom ausreichend isoliert bleiben. Andernfalls können Fluidströmungsprozesse bei einer gestörten Entwicklung des Endlagers die Migration von Radionukliden in die Biosphäre begünstigen. Nur wenige Studien befassen sich mit den Folgen des weiträumigen Radionuklidtransports in solchen Worst-Case-Szenarien. Die hydrogeologischen Bedingungen des Gesamtsystems in der Nachbetriebsphase werden sich jedoch letztendlich von denen zum Zeitpunkt des Endlagerbaus unterscheiden und werden sowohl von äußeren Faktoren (z.B. Klimawandel) als auch von intrinsischen Beckeneigenschaften stark beeinflusst. Dieses Vorhaben im Bereich der Umweltrisiken zielt darauf ab, die Auswirkungen von (i) Vereisung, (ii) Permafrost und (iii) tektonischen Ereignissen auf die hydrologischen und hydromechanischen Grenzen zu untersuchen, die den großräumigen Grundwasserfluss in der Nähe von hypothetischen Abfalldeponien bestimmen. Zu diesem Zweck dient der Yeniseisky-Standort (YS) in Russland, ein potenzielles geologisches Tiefenlager für radioaktive Abfälle in kristallinem Gestein, als Fallstudie, der auf einzigartige Weise alle drei oben genannten Merkmale der geologischen Umgebung umfasst. Multiphysikalische Simulationen von thermisch-hydraulisch-mechanisch-chemisch gekoppelten Prozessen (THM-C) werden angewendet, um Szenarien der Fernfeld-Radionuklidentwicklung im Extremfall eines Endlagerstörfalls zu liefern. Die Neuartigkeit der THM-C-Modelle und der Zugang zu einer einzigartigen Datenbank der YS werden das klassische Verständnis von anomaler Fluid-, Wärme- und Massentransportvorgänge innerhalb tektonisch aktiver Becken erweitern. Während sich das vorgeschlagene Vorhaben auf die Thematik der nuklearen Entsorgungsforschung bezieht, können die den entwickelten Modellen zugrunde liegenden physikalischen und numerischen Konzepte auf eine Vielzahl von Nutzungsszenarien der Geosphäre (z.B. CO2-Speicherung, Abfallentsorgung, Entstehung seismischer Ereignisse) angewendet werden. Darüber hinaus sind entsprechende Benchmarkstudien in ähnlichen kristallinen geologischen Formationen geplant.
Enhanced Geothermal Systems (EGS) zielen darauf ab, die in der Erdkruste gespeicherte Wärme durch zirkulierende Flüssigkeiten zwischen Injektions- und Produktionsbohrlöchern zu extrahieren. Ideale Bedingungen finden sich typischerweise in Formationen in einer Tiefe von 2 bis 5 km, in denen die Durchflussrate für kommerzielle geothermische Anlagen nicht ausreicht und in denen die Temperaturen hoch sind (d. H. >> 100 ° C). Daher ist die Hochdruck-Flüssigkeitsinjektion, die als hydraulische Stimulation bekannt ist, eine allgemein angewandte Technik, um ein verbundenes Bruchnetzwerk zu erzeugen, das die Flüssigkeitszirkulation erleichtert. Die hydraulische Stimulation geht typischerweise mit einer induzierten Seismizität einher, die von der Öffentlichkeit wahrgenommen werden kann und sogar Schäden verursacht. Das Ziel dieses Projekts ist es, ein grundlegendes Verständnis der induzierten Seismizität in gebrochenen Gesteinen zu vermitteln, das die Fähigkeit verbessert, das seismische Risiko vorherzusagen und zu kontrollieren. Dieses Projekt geht von der Hypothese aus, dass die Seismizität gemeinsam durch die Bruchnetzgeometrie und die aktivierten thermo-hydromechanischen (THM) Prozesse in geologischen Systemen gesteuert wird. Wir werden Discrete Fracture Networks (DFN) anwenden, um die strukturellen Diskontinuitäten darzustellen und die THM-Prozesse mit hoher Auflösung zu modellieren. Dieses Projekt verwendet die Datensätze aus kleinen (Dekameter-) Stimulationsexperimenten am Grimsel-Teststandort in der Schweiz und modernste numerische Modelle, um Folgendes zu erreichen: 1) Testen Sie die Wirksamkeit hochauflösender Modelle zur Erfassung der seismische, hydraulische und mechanische Prozesse, die mit kleinen Experimenten beobachtet wurden; 2) Verknüpfung der geometrischen Attribute eines Bruchnetzwerks (wie Intensität, Konnektivität, Länge und räumliche Verteilung) mit der räumlichen, zeitlichen und Größenverteilung der induzierten Seismizität; 3) ein neuartiges Prognosemodell für die maximal mögliche Größe vorschlagen und testen, das die gemeinsamen Auswirkungen von Multiphysikprozessen berücksichtigt, die unter standortspezifischen geologischen Bedingungen und Betriebsbedingungen dominieren; 4) Bewertung der Hochskalierung der hochauflösenden DFN-Modelle im kleinen Maßstab (Dekameter), um die Experimente im Reservoir-Maßstab (Kilometer) zu simulieren. Dieses Forschungsprojekt ist neu in der Behandlung der durch Injektion induzierten Seismizität durch hochauflösende physikbasierte Modelle und hochwertige Datensätze, die aus einzigartigen In-situ-Experimenten abgeleitet wurden. Die vorgeschlagene Forschung hat erhebliche Auswirkungen auf die Förderung der Übergangspolitik hin zu einer Versorgung mit erneuerbaren Energien und trägt dazu bei, unser Wissen über die Auslösemechanismen induzierter Erdbeben zu erweitern.
Für eine sichere und nachhaltige Nutzung unterirdischer Geosysteme muss die Integrität von Reservoir- und Barrieregesteinen langfristig gewährleistet sein. Eine besondere Rolle spielen dabei Prozesse, welche durch Rissbildung und Risswachstum zu einer Schwächung des Gesteins führen können. Diese Schwächung kann z. B. durch Diffusions- und Transportprozesse infolge wechselnder Druck- und Spannungsbedingungen hervorgerufen werden. Dabei ist die Rissbildung und Rissausbreitung im Untergrund mit seismischen Ereignissen verbunden. Diese Mikrobeben sind zumeist nur mit entsprechend sensitiver Messtechnik registrierbar, die Seismizität kann allerdings auch spürbare Größenordnungen erreichen oder sogar zu Schädigungen an Bauwerken und Infrastruktur führen. In konventionellen Kohlenwasserstofflagerstätten wird häufig nach einem längeren Produktionszeitraum eine erhöhte seismische Aktivität festgestellt, die auf Kompaktionsprozesse des Reservoirgesteins und die Aktivierung von Bruchzonen zurückzuführen ist. Bei der hydraulischen Stimulierung unkonventioneller Kohlenwasserstofflagerstätten oder geothermischer Reservoire werden seismische Ereignisse aufgezeichnet, die je nach Belastungszyklus und Gesteinstyp stark variieren können. Auch in Gasspeichern führen Belastung und Rissbildung zu erhöhter Seismizität, welche Prozesse anzeigt, die sich ungünstig auf die Speicherstabilität auswirken. Im Rahmen des Verbundprojekts SECURE sollen skalenübergreifende Werkzeuge zur Prognose und Charakterisierung hydromechanischer Prozesse bei der Nutzung unterirdischer Reservoirsysteme entwickelt werden. Die Forschungsarbeiten konzentrieren sich dabei auf Rissbildung und Risswachstum in Reservoiren und Deckgesteinen, welche als mikroseismische Ereignisse detektiert werden können. Hierzu sollen Modelle konzipiert werden, die erstmals bruchmechanische Prinzipien mit probabilistischen Seismizitätsmodellen kombinieren. Das Verbundprojekt gliedert sich in drei Arbeitspakete. Im Mittelpunkt des ersten Arbeitspakets steht das Monitoring. Dabei soll geprüft werden, wie schwache Mikroseismizität bestmöglich detektiert und charakterisiert werden kann. Ein Schwerpunkt der Arbeiten liegt in der Entwicklung einheitlicher Standards zur Beschreibung von Magnituden und Herdparametern. Das zweite Arbeitspaket umfasst die Entwicklung fluidmechanischer Reservoirmodelle anhand von vier Fallstudien. Hierfür werden von den Industriepartnern Daten aus konventionellen Erdgasfeldern, aus Experimenten zur hydraulischen Stimulierung, aus Gasspeichern und aus geothermischen Aquifersystemen bereitgestellt. Ziel ist es, Druck- und Spannungsfelder als Funktion der Produktions- und Feldparameter zu bestimmen. Im dritten Arbeitspaket sollen auf Basis von Spannungssimulationen Seismizitätsmodelle entwickelt werden, welche zur Kalibrierung der fluidmechanischen Reservoirmodelle dienen. (Text gekürzt)
Eine sichere und effiziente Speicherung großer Energiemengen ist entscheidend für das Gelingen der Energiewende. Als chemischer Energieträger ist Erdgas, insbesondere Methan (aus Kohlenwasserstofflagerstätten, Power to Gas etc.) auf absehbare Zeit das Rückgrat für kurz-, mittel- und langfristige Speicherung großen Energiemengen. Wegen Bedarfsschwankungen werden v.a. in Deutschland die Untergrundspeicher (UGS) zyklischen Belastungen ausgesetzt, Kavernenspeicher ebenso wie Porenspeicher. Das Vorhaben SUBI fokussiert auf zeitliche Veränderungen der Funktionalität (z.B. Speichervolumen und Permeabilität) und Sicherheit von UGS und deren Überwachung beim Betrieb bis hin zur Speicherverwahrung. Dabei steht die langfristige Sicherung von Schutzgütern (z.B. oberflächennahes Grundwasser) im Mittelpunkt. Dazu müssen die Eigenschaftsänderungen von Speichergestein und Deckgebirge qualitativ, quantitativ und skalenübergreifend verstanden werden, um geeignete Handlungsanweisungen ableiten und den Nachweis für sicheren Speicherbetrieb bzw. Speicherverwahrung führen zu können. Betrachtet wird daher die zeitliche Veränderung der Integrität des Speichersystems mit für die Sicherheit von Speichern wesentlichen Komponenten in einem ganzheitlichen Ansatz: Technische Untertage-Infrastruktur (insbes. die Bohrungsintegrität), das Speichergestein (Salzkaverne oder Porenspeichergestein), Barrieregestein (Deckgebirge), sowie natürliche (Störungen) und anthropogene Diskontinuitäten (Ankopplung Bohrung-Gestein). Dabei müssen komplexe Wechselwirkungen zwischen den natürlichen und anthropogenen Bestand-teilen des Systems integriert betrachtet werden. Die zyklische Belastung des Untergrunds durch Ein- und Ausspeicherung führt zu zeitlich variierenden Porendrücken, daran gekoppelten Änderungen des lokalen und regionalen Spannungsfelds und damit zu Deformationen im Speicher sowie der Bohrlochumgebung. Die Kombination von Experimenten und numerischen Modellen, die z.B. mit in-situ Beobachtungen u. Fernerkundungsmethoden validiert werden, bildet die Basis für Speicherszenarien an realen und modellhaften Speichern, um optimierte Verfahrensweisen für Betrieb und Nachbetriebsphase abzuleiten, zur Steigerung der Sicherheit bei erhöhter zyklischer Belastung. Für konkrete Reservoire wird für den zurückliegenden Betrieb ein History Match durchgeführt und bewertet, um über Vergleich modellierter Deformationen mit Beobachtungen das Prozessverständnis zu verbessern. Dabei sollen zyklische Signalanteile der PSInSar-Satelliten Sentinel zur Erfassung von betriebsbedingten Subsidenz- und Hebungsraten durch neue Algorithmen extrahiert und mit aus Speicherbetriebsdaten extrahiertem Deformationen verglichen werden. Über die Kombination von Modellrechnungen und Beobachtungen auf unterschiedlichen Skalen, sollen die Beobachtungsgrößen extrahiert werden, welche besonders sensitiv für ein Frühwarnsystem für kapazitäts- und sicherheitsrelevante Alterungserscheinungen verwendet werden können.
Der Antragsteller wird im Rahmen des MERID-Verbundes verschiedene Reservoirgesteine mineralogisch, strukturell und petrophysikalisch charakterisieren und eine entsprechende Datenbank erstellen. Die Basis bilden siliziklastische Lockersedimente sowie Festgesteine als Bohrkerne aus Reservoirteufe und Analogproben an der Erdoberfläche. Im Detail betrachtet werden Bounding surfaces und Deformationsbänder. Der resultierende Datensatz kann im Folgenden von Verbundpartnern genutzt werden, um die für Simulationen signifikanten granulometrischen Parameter, die Mineralogie und Gefügemerkmale in Modelle einzupflegen. Die finalen dynamischen Modelle durchlaufen einen Reservoirlebenszyklus. Die Ergebnisse werden durch von der Industrie zur Verfügung gestellte Daten validiert. Der Verbund bearbeitet im Rahmen des MERID Projektes 7 Arbeitspakete, das dargestellte Vorhaben koordiniert drei dieser Pakete. Im ersten Schritt (AP1) wird partnerübergreifend der Stand der Forschung abgeglichen und ein geeignetes Fallbeispiel bestimmt. In AP2 werden Sand- und Sandsteinproben aus von der Industrie zur Verfügung gestellten Bohrkernen und aus Reservoir-Analogen qualitativ und quantitativ beschrieben im Hinblick auf Mineralogie, Granulometrie und Struktur. Die Verteilung eventueller Heterogenitäten wird für den gesamten Sandsteinkörper kartiert und basierend auf Polarisationsmikroskopie, SEM und myCT analysiert. Anschließend wird ein digitales Gesteinsmodell erstellt, aus dem mittels Bildverarbeitung verschiedene Kornparameter ermittelt werden können. Die Verbundpartner simulieren anhand dieser Daten computerbasierte, statistische Gesteinsmodelle, die im Rahmen dieses Vorhabens evaluiert werden. Außerdem erfolgt die Quantifizierung des Porenraums und des Durchflusses mit petrophysikalischen Methoden. Nachdem mit diesen Daten dynamische Modelle generiert wurden, werden diese mit Produktionsdatensätzen über die reale Lebensdauer eines Reservoirs hinweg verglichen (AP7).
Ziel dieses Projekts ist die Sammlung und Aufbereitung von geologischen, geophysikalischen und hydraulischen Daten, welche bei der Planung von Projekten zur direkten Nutzung geothermischer Wärme relevant sind, um sie im Geothermischen Informationssystem GeotIS darzustellen. Dafür werden nicht nur die bisher im GeotIS vorgestellten Reservoire genauer charakterisiert, sondern auch Formationen untersucht, die bei mittleren bis niedrigen Temperaturen zur Wärmegewinnung nutzbar sind, wie z.B. der Bentheimer Sandstein im Emsland. Zu den ebenfalls nur lokal geothermisch nutzbaren Horizonten gehört auch der Untere Buntsandstein, der am Rand des Norddeutschen Beckens bessere hydraulische Eigenschaften aufweist als im Beckenzentrum. Für diese und weitere Horizonte sollen in ausgewählten Gebieten 3D-Modelle zum strukturellen Aufbau, sowie eine Abschätzung der zu erwartenden Gebirgsdurchlässigkeit erstellt werden. Grenz- und Trennflächen können ebenfalls von Bedeutung für die Entstehung günstiger Reservoireigenschaften sein. Daher sollen Klüfte, Störungen und Erosionsdiskordanzen bei der Untersuchung geothermischer Ressourcen besonders berücksichtigt werden. Da nicht jede Grenz- oder Trennfläche eine Erhöhung der Permeabilität bedingt, stellen entsprechende Modelluntersuchungen ein wichtiges Werkzeug zur Beurteilung geothermischer Potentiale dar. Alle neuen Daten zur Struktur und zum Nutzungspotential des tiefen Untergrunds werden in geeigneter Weise in GeotIS dargestellt. Außerdem soll ein interaktives E-Learning-Portal aufgebaut werden, das über wissenschaftlich-technische Zusammenhänge und Nutzungsoptionen der Geothermie in Deutschland informiert. Die Fortsetzung der Arbeiten im Rahmen des Geothermal Implementing Agreement (GIA) der IEA ist ebenfalls geplant. 3D-Modellierung geologischer Strukturen Zusammenstellung hydraulischer Daten Modellierung von hydraulisch-geochemischen Prozessen im Porenraum Aktualisierung und Ausbau von GeotIS Interaktives E-Learning-Portal IEA-GIA.
| Origin | Count |
|---|---|
| Bund | 169 |
| Land | 1 |
| Type | Count |
|---|---|
| Förderprogramm | 164 |
| Text | 3 |
| unbekannt | 3 |
| License | Count |
|---|---|
| geschlossen | 6 |
| offen | 164 |
| Language | Count |
|---|---|
| Deutsch | 135 |
| Englisch | 39 |
| Resource type | Count |
|---|---|
| Dokument | 4 |
| Keine | 54 |
| Webseite | 113 |
| Topic | Count |
|---|---|
| Boden | 170 |
| Lebewesen und Lebensräume | 91 |
| Luft | 78 |
| Mensch und Umwelt | 170 |
| Wasser | 82 |
| Weitere | 165 |