technologyComment of gold mine operation and refining (SE): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. ORE AND WASTE HAULAGE: The haul trucks transport the ore to various areas for processing. The grade and type of ore determine the processing method used. Higher-grade ores are taken to a mill. Lower grade ores are taken to leach pads. Some ores may be stockpiled for later processing. HEAP LEACHING: The ore is crushed or placed directly on lined leach pads where a dilute cyanide solution is applied to the surface of the heap. The solution percolates down through the ore, where it leaches the gold and flows to a central collection location. The solution is recovered in this closed system. The pregnant leach solution is fed to electrowinning cells and undergoes the same steps as described below from Electro-winning. ORE PROCESSING: Milling: The ore is fed into a series of grinding mills where steel balls grind the ore to a fine slurry or powder. Oxidization and leaching: Some types of ore require further processing before gold is recovered. In this case, the slurry is pressure-oxidized in an autoclave before going to the leaching tanks or a dry powder is fed through a roaster in which it is oxidized using heat before being sent to the leaching tanks as a slurry. The slurry is thickened and runs through a series of leaching tanks. The gold in the slurry adheres to carbon in the tanks. Stripping: The carbon is then moved into a stripping vessel where the gold is removed from the carbon by pumping a hot caustic solution through the carbon. The carbon is later recycled. Electro-winning: The gold-bearing solution is pumped through electro-winning cells or through a zinc precipitation circuit where the gold is recovered from the solution. Smelting: The gold is then melted in a furnace at about 1’064°C and poured into moulds, creating doré bars. Doré bars are unrefined gold bullion bars containing between 60% and 95% gold. References: Newmont (2004) How gold is mined. Newmont. Retrieved from http://www.newmont.com/en/gold/howmined/index.asp technologyComment of primary lead production from concentrate (GLO): There are two basic pyrometallurgical processes available for the production of lead from lead or mixed lead-zinc-sulphide concentrates: sinter oxidation / blast furnace reduction route or Direct Smelting Reduction Processes. Both processes are followed by a refining step to produce the final product with the required purity, and may also be used for concentrates mixed with secondary raw materials. SINTER OXIDATION / BLAST FURNACE REDUCTION: The sinter oxidation / blast furnace reduction involves two steps: 1) A sintering oxidative roast to remove sulphur with production of PbO; and 2) Blast furnace reduction of the sinter product. The objective of sintering lead concentrates is to remove as much sulphur as possible from the galena and the accompanying iron, zinc, and copper sulphides, while producing lump agglomerate with appropriate properties for subsequent reduction in the blast furnace (a type of a shaft furnace). As raw material feed, lead concentrates are blended with recycled sinter fines, secondary material and other process materials and pelletised in rotating drums. Pellets are fed onto sinter machine and ignited. The burning pellets are conveyed over a series of wind-boxes through which air is blown. Sulphur is oxidised to sulphur dioxide and the reaction generates enough heat to fuse and agglomerate the pellets. Sinter is charged to the blast furnace with metallurgical coke. Air and/or oxygen enriched air is injected and reacts with the coke to produce carbon monoxide. This generates sufficient heat to melt the charge. The gangue content of the furnace charge combines with the added fluxes or reagents to form a slag. For smelting bulk lead-zinc-concentrates and secondary material, frequently the Imperial Smelting Furnace is used. Here, hot sinter and pre-heated coke as well as hot briquettes are charged. Hot air is injected. The reduction of the metal oxides not only produces lead and slag but also zinc, which is volatile at the furnace operating temperature and passes out of the ISF with the furnace off-gases. The gases also contain some cadmium and lead. The furnace gases pass through a splash condenser in which a shower of molten lead quenches them and the metals are absorbed into the liquid lead, the zinc is refined by distillation. DIRECT SMELTING REDUCTION: The Direct Smelting Reduction Process does not carry out the sintering stage separately. Lead sulphide concentrates and secondary materials are charged directly to a furnace and are then melted and oxidised. Sulphur dioxide is formed and is collected, cleaned and converted to sulphuric acid. Carbon (coke or gas) and fluxing agents are added to the molten charge and lead oxide is reduced to lead, a slag is formed. Some zinc and cadmium are “fumed” off in the furnace, their oxides are captured in the abatement plant and recovered. Several processes are used for direct smelting of lead concentrates and some secondary material to produce crude lead and slag. Bath smelting processes are used: the ISA Smelt/Ausmelt furnaces (sometimes in combination with blast furnaces), Kaldo (TBRC) and QSL integrated processes are used in EU and Worldwide. The Kivcet integrated process is also used and is a flash smelting process. The ISA Smelt/Ausmelt furnaces and the QSL take moist, pelletised feed and the Kaldo and Kivcet use dried feed. REFINING: Lead bullion may contain varying amounts of copper, silver, bismuth, antimony, arsenic and tin. Lead recovered from secondary sources may contain similar impurities, but generally antimony and calcium dominate. There are two methods of refining crude lead: electrolytic refining and pyrometallurgical refining. Electrolytic refining uses anodes of de-copperised lead bullion and starter cathodes of pure lead. This is a high-cost process and is used infrequently. A pyrometallurgical refinery consists of a series of kettles, which are indirectly heated by oil or gas. Over a series of separation processes impurities and metal values are separated from the lead bouillon. Overall waste: The production of metals is related to the generation of several by-products, residues and wastes, which are also listed in the European Waste Catalogue (Council Decision 94/3/EEC). The ISF or direct smelting furnaces also are significant sources of solid slag. This slag has been subjected to high temperatures and generally contains low levels of leachable metals, consequently it may be used in construction. Solid residues also arise as the result of the treatment of liquid effluents. The main waste stream is gypsum waste (CaSO4) and metal hydroxides that are produced at the wastewater neutralisation plant. These wastes are considered to be a cross-media effect of these treatment techniques but many are recycled to pyrometallurgical process to recover the metals. Dust or sludge from the treatment of gases are used as raw materials for the production of other metals such as Ge, Ga, In and As, etc or can be returned to the smelter or into the leach circuit for the recovery of lead and zinc. Hg/Se residues arise at the pre-treatment of mercury or selenium streams from the gas cleaning stage. This solid waste stream amounts to approximately 40 - 120 t/y in a typical plant. Hg and Se can be recovered from these residues depending on the market for these metals. Overall emissions: The main emissions to air from zinc and lead production are sulphur dioxide, other sulphur compounds and acid mists; nitrogen oxides and other nitrogen compounds, metals and their compounds; dust; VOC and dioxins. Other pollutants are considered to be of negligible importance for the industry, partly because they are not present in the production process and partly because they are immediately neutralised (e.g. chlorine) or occur in very low concentrations. Emissions are to a large extent bound to dust (except cadmium, arsenic and mercury that can be present in the vapour phase). Metals and their compounds and materials in suspension are the main pollutants emitted to water. The metals concerned are Zn, Cd, Pb, Hg, Se, Cu, Ni, As, Co and Cr. Other significant substances are fluorides, chlorides and sulphates. Wastewater from the gas cleaning of the smelter and fluid-bed roasting stages are the most important sources. References: Sutherland C. A., Milner E. F., Kerby R. C., Teindl H. and Melin A. (1997) Lead. In: Ullmann's encyclopedia of industrial chemistry (ed. Anonymous). 5th edition on CD-ROM Edition. Wiley & Sons, London. IPPC (2001) Integrated Pollution Prevention and Control (IPPC); Reference Document on Best Available Techniques in the Non Ferrous Metals Industries. European Commission. Retrieved from http://www.jrc.es/pub/english.cgi/ 0/733169 technologyComment of primary zinc production from concentrate (RoW): The technological representativeness of this dataset is considered to be high as smelting methods for zinc are consistent in all regions. Refined zinc produced pyro-metallurgically represents less than 5% of global zinc production and less than 2% of this dataset. Electrometallurgical Smelting The main unit processes for electrometallurgical zinc smelting are roasting, leaching, purification, electrolysis, and melting. In both electrometallurgical and pyro-metallurgical zinc production routes, the first step is to remove the sulfur from the concentrate. Roasting or sintering achieves this. The concentrate is heated in a furnace with operating temperature above 900 °C (exothermic, autogenous process) to convert the zinc sulfide to calcine (zinc oxide). Simultaneously, sulfur reacts with oxygen to produce sulfur dioxide, which is subsequently converted to sulfuric acid in acid plants, usually located with zinc-smelting facilities. During the leaching process, the calcine is dissolved in dilute sulfuric acid solution (re-circulated back from the electrolysis cells) to produce aqueous zinc sulfate solution. The iron impurities dissolve as well and are precipitated out as jarosite or goethite in the presence of calcine and possibly ammonia. Jarosite and goethite are usually disposed of in tailing ponds. Adding zinc dust to the zinc sulfate solution facilitates purification. The purification of leachate leads to precipitation of cadmium, copper, and cobalt as metals. In electrolysis, the purified solution is electrolyzed between lead alloy anodes and aluminum cathodes. The high-purity zinc deposited on aluminum cathodes is stripped off, dried, melted, and cast into SHG zinc ingots (99.99 % zinc). Pyro-metallurgical Smelting The pyro-metallurgical smelting process is based on the reduction of zinc and lead oxides into metal with carbon in an imperial smelting furnace. The sinter, along with pre-heated coke, is charged from the top of the furnace and injected from below with pre-heated air. This ensures that temperature in the center of the furnace remains in the range of 1000-1500 °C. The coke is converted to carbon monoxide, and zinc and lead oxides are reduced to metallic zinc and lead. The liquid lead bullion is collected at the bottom of the furnace along with other metal impurities (copper, silver, and gold). Zinc in vapor form is collected from the top of the furnace along with other gases. Zinc vapor is then condensed into liquid zinc. The lead and cadmium impurities in zinc bullion are removed through a distillation process. The imperial smelting process is an energy-intensive process and produces zinc of lower purity than the electrometallurgical process. technologyComment of treatment of electronics scrap, metals recovery in copper smelter (SE, RoW): Conversion of Copper in a Kaldo Converter and treatment in converter aisle. technologyComment of treatment of scrap lead acid battery, remelting (RoW): The referred operation uses a shaft furnace with post combustion, which is the usual technology for secondary smelters. technologyComment of treatment of scrap lead acid battery, remelting (RER): The referred operation uses a shaft furnace with post combustion, which is the usual technology for secondary smelters. Typically this technology produces 5000 t / a sulphuric acid (15% concentration), 25’000 t lead bullion (98% Pb), 1200 t / a slags (1% Pb) and 3000 t / a raw lead matte (10% Pb) to be shipped to primary smelters. Overall Pb yield is typically 98.8% at the plant level and 99.8% after reworking the matte. The operation treats junk batteries and plates but also lead cable sheathing, drosses and sludges, leaded glass and balancing weights. From this feed it manufactures mainly antimonial lead up to 10% Sb, calcium-aluminium lead alloys with or without tin and soft lead with low and high copper content. All these products are the result of a refining and alloying step to meet the compliance with the designations desired. The following by products are reused in the process: fine dust, slag, and sulfuric acid. References: Quirijnen L. (1999) How to implement efficient local lead-acid battery recycling. In: Journal of Power Sources, 78(1-2), pp. 267-269.
Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Ripac-Labor GmbH durchgeführt. In der Fischzucht und der Fischproduktion stellen neben viralen Infektionskrankheiten vor allem die Rotmaulseuche sowie die Furunkulose verlustreiche Infektionskrankheiten für Salmoniden dar. Im Rahmen dieses Verbundprojektes sollen innovative bestandsspezifische Impfstoffe gegen die genannten bakteriellen Erkrankungen entwickelt und hergestellt werden, um eine Verbesserung der Fischinfektions-Prophylaxe zu erzielen. Dadurch sollen die Erkrankungen und somit auch die Tierverluste in der Fischproduktion reduziert und gleichzeitig der Einsatz von Antibiotika in der Aquakultur minimiert werden, was letztlich die Voraussetzung für die Erzeugung gesunder Lebensmittel ist. Der Fokus des Projektes liegt zum einen auf eine möglichst einfache Applikationsform (Tauchbäder, orale Gabe) und zum anderen auf eine optimale Zusammensetzung der Impfstoffe (langanhaltender Impfschutz, Erfassen aller relevanten pathogenen Bio- / Serotypen). Damit soll bei den Fischhaltern eine möglichst hohe Akzeptanz bzgl. des Einsatzes des neuen Impfstoffes erreicht werden.
Das Projekt "AURORa - Investigation of the Radar Backscatter of Rain Impinging on the Ocean Surface" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Zentrum für Meeres- und Klimaforschung, Institut für Meereskunde (IfM) durchgeführt. Over land, observations of rain rates are more or less operational. To obtain information about precipitation at the coastal zones, weather radars are used. However, over the oceans, especially away from the main shipping routes, no direct precipitation measurements are performed. In these regions, satellite data can provide information about precipitation events. Satellites deploying passive and active microwave sensors can operate independently of cloud cover and time of day. Passive microwave sensors give crude estimates of rain rates over large areas but cannot resolve small-scale rain events of short duration as are often observed in the tropics, for example. Active microwave sensors with high resolutions, such as synthetic aperture radars can provide more reliable information. Though the effect of rain on the atmosphere is a very topical area of research, the radar backscattering mechanisms at the water surface during rain events combined with wind are still not well understood. The purpose of this project is to investigate the radar backscattering from the water surface in the presence of rain and wind in order to interpret satellite radar data produced by active microwave sensors. Furthermore, the results should be embedded into models of the radar backscattering from the water surface to allow for estimating rain rates by using satellite data. Research topics: Rain impinging on a water surfaces generates splash products including crowns, cavities, stalks and secondary drops, which do not propagate, and ring waves and subsurface turbulence. We are investigating this phenomena at the wind-wave tank of the University of Hamburg. The tank is fitted with an artificial rain simulator of 2.3 m2 area mounted 4.5 m over the water surface. Rain drops of 2.1 and 2.9 mm in diameter with rain rates up to 100 mm/h have been produced. Wind with speeds 10 m/s and monomolecular slicks act on the water surface. The influence of the rain on the water surface is measured with a resistance type wire gauge, a two dimensional laser slope gauge and an coherent 9.8 GHz (x band) continuous wave scatterometer operating at VV-, HH- and HV-polarization. The influence of rain below the water surface is measured with colored raindrops which are observed with a video camera to investigate the turbulent motion and the depth of the mixed layer. At the North Sea Port of Buesum in Germany, a scatterometer operating at all polarizations and five frequencies will be mounted during summer of this year. The radar backscatter of the sea surface during rain events will be measured in combination with meteorological observations. With help of these measurements, existing radar backscatter models of the water surface will be improved for the presence of rain events. To validate the improved models, ERS-2 SAR-images will be compared with weather radar data.
Das Projekt "Direkteinblasung von Kohle in das Schlackebad von Elektroreduktionsoefen" wird vom Umweltbundesamt gefördert und von Krupp Industrietechnik Duisburg durchgeführt. Objective: The objective of the project is to reduce the energy requirements for the processing of non-ferrous heavy-metal slags by the combined use of a submerged arc furnace and the submerged injection of coal. General information: in terms of quantity, copper and lead are among the most important non-ferrous metals. Most such metals are produced today from sulphide ores/ore concentrates. For a variety of reasons, modern methods of processing these raw materials have a high oxygen requirement at the primary melting stage. As a result of this high oxygen requirement, the primary slags produced have an unacceptably high content of valuable metal, making subsequent metal removal imperative. The use of arc furnaces for slag requires more energy than normal processing but offers the advantage of a higher overall yield in usable metals. Although it is the state of the art, the use of arc furnaces is generally held to be unsatisfactory from a metallurgical point of view, since the speed of the chemical reaction is comparatively low and there are few possibilities of exerting an influence on the metallurgical process. The aim of the proposed work is to reduce the electricity and electrode consumption of the process by injecting coal and oxygen directly into the slag bath.
Das Projekt "Aufbereiten von Ziehoelen" wird vom Umweltbundesamt gefördert und von Universität-Gesamthochschule Paderborn, Fachbereich 10 Maschinentechnik, Fachgruppe Verfahrenstechnik, Institut für Energie- und Verfahrenstechnik, Fachgebiet Mechanische Verfahrenstechnik und Umweltverfahrenstechnik durchgeführt. Zur Unterstuetzung des Tiefziehvorgangs von Blechen ist der Einsatz spezieller Ziehoele notwendig. Fuer nachfolgende Verarbeitungsvorgaenge werden die Werkstuecke in einem Tauchbad unter Einsatz eines Reinigers entfettet. Das im waessrigen Tauchbad anfallende Ziehoel wird durch einen Separator abgesondert und anschliessend der Entsorgung zugefuehrt. Es faellt so eine erhoehte Menge an Abfallstoff an. Im Rahmen dieses Projektes sollen geeignete Aufbereitungsverfahren gefunden werden, die eine Wiedereinsetzbarkeit der Oele auf moeglichst hoher Qualitaetsstufe gewaehrleisten. Mit dem Recycling des Oels ist gleichermassen eine Einsparung an Neuware sowie eine Vermeidung der Entsorgung gegeben.
Das Projekt "Bodenkennwerte und Bodenerosion - Mechanismen der Bodenerosion in Abhängigkeit der Artenvielfalt und -zusammensetzung in subtropischen Wäldern (DFG-Forschergruppe 891 - Teilprojekt 6)" wird vom Umweltbundesamt gefördert und von Eberhard Karls Universität Tübingen, Fachbereich Geowissenschaften, Abteilung Bodenkunde und Geomorphologie durchgeführt. This project seeks to investigate the relationship between biodiversity and soil erosion. Two process systems will be analysed, (a) modification of kinetic energy of precipitation by its pass through the tree canopy and the shrub layer, and (b) connection between surface runoff, sediment transport and changing intrinsic soil properties as a function of biodiversity gradients. Main factors controlling mechanisms of soil erosion under forest are vegetation, soil cover by litter, intrinsic soil resistance against erosion and the given micro-relief of the soil surface. Main experimental components are (a) measurements of the kinetic energy of rainfall with disdrometers and splash cups under different tree species varying in height and architecture, (b) measurements of surface water flow and sediment on runoff plots at different levels of species richness and species composition, and (c) geomorphometric measurement of changes of soil surface micro-elevation and -form in relation to runoff routing. In addition, this project will also be responsible for spatial and pedological aspects of soil genesis, substrate characteristics, landscape development, and land use history. Soil properties analysed at the plot level like soil texture will serve as baseline data for the whole experiment. Finally, the soil erosion project will contribute substantially to the interpretation of soil-related data sets and the synthesis of results on soil-plant interactions, and will help with the high-resolution DEM from laser scanning and photogrammetry. The Chinese partner project concentrates on detection of dynamics in aggregate stability and organic matter composition in soils related to changes in stand canopy, functional traits and species composition, and on the effect of LAI of forests on soil erosion in relation to biodiversity.
Das Projekt "Adaption and stress defence in intertidal and subtidal Antarctic limpets (Nacella concinna): A Study of the plasticity of molecular and biochemical stress response in Antarctic invertebrates" wird vom Umweltbundesamt gefördert und von Stiftung Alfred-Wegener-Institut für Polar- und Meeresforschung e.V. in der Helmholtz-Gemeinschaft (AWI) durchgeführt. The Antarctic limpet Nacella concinna is the most conspicuous macro-benthic species in the intertidal and splash zone of the maritime Antarctic. Larval recruitment in this non-homing limpet takes place in the subtidal, and part of the population then migrates to the intertidal in the beginning of spring. The migratory limpets belong to an ecomorph with a higher and heavier shell (left picture, limpets at the intertidal zone), whereas shells of permanently subtidal limpets are lighter and flatter (right picture, taken at the subtidal). The two ecomorphs can be found in every location along the peninsulas of the South Shetlands. We are interested in the functional biodiversity of the two Nacella ecomorphs at Jubany station/Dallmann laboratory on King George Island, and investigate the behavioural and ecophysiological differences in-situ, and following exposure to air/emersion and to hypoxia. A special interest is on the expression and function of hypoxia inducible factor 1 (HIF-1) in the limpet model. This transcription factor is a universal master regulator of hypoxic metabolism and centrally involved in the metabolic regulation of cells and tissues under oxygen shortage. In the frames of the project we have obtained a first molluscan HIF-1-alpha sequence which, if compared to C. elegans and crustacean genes indicates rather high sequence variability to exist between invertebrates, in contrast to low variability among vertebrate genes.
Das Projekt "Teilvorhaben: Abscheidung metallischer Schichten" wird vom Umweltbundesamt gefördert und von Hochschule Zittau/Görlitz, Fakultät Natur- und Umweltwissenschaften, Professur für Physikalische Chemie durchgeführt. Metallschichten auf Kunststoffen erweitern deren Anwendungsmöglichkeiten und tragen zum Schutz vor Umwelteinflüssen bei. Die erste Schicht muss chemisch abgeschieden werden. Zuvor muss die Kunststoffoberfläche mit Cr(VI)-Verbindungen gebeizt werden. Trotzdem ist diese Beize nur bei ABS wirksam. Andere Kunststoffe können daher nicht wirtschaftlich sinnvoll galvanisiert werden. Das zur Kunststoffvorbehandlung notwendige Cr(VI) unterliegt ab 2017 EU-weit strengen Auflagen. Unternehmen benötigen für eine zeitlich befristete Weiterverwendung eine Autorisierung. An alternativen Verfahren wird daher weltweit geforscht. Bis jetzt ist jedoch keine gleichwertige Alternative bekannt. Unser Lösungsweg sieht die Bildung von Mikrokavitäten mit chemisch modifizierten inneren Oberflächen vor. Diese werden direkt beim Spritzgießen erzeugt durch Einbettung von Kern-Schale-Partikeln. Die Schale koppelt dabei reaktiv an den Kunststoff. Der Kern wird nachfolgend in einem wässrigen Tauchbad aufgelöst. Der Lösungsweg wird unter technischen Bedingungen bei wirtschaftlicher und ökologischer Kontrolle unter ausschließlicher Verwendung REACH-konformer Stoffe validiert. Die Teilziele sind: a) Realisierbarkeit der Technologie (Modifikatorapplizierung im Spritzgießprozess, Anpassung der chemischen Prozesse an die andersartige Oberflächenchemie) b) Schichteigenschaften (Metallschichten mit hoher Oberflächenqualität, Haftung auf dem Kunststoff, Stabilität gegenüber Medien) c) Potential (beliebige Thermoplaste, strukturierte Metallisierung mit hoher Kantenschärfe) d) Standardisierung der Oberfläche (Spritzgießer muss Parameter für Metallisierung beim Galvaniker garantieren).
Das Projekt "Entwicklung einer Technologie zur kontrollierten Aufzucht von Frühbrut-Zandersetzlingen auf Trockenfutterbasis in Karpfenteichen" wird vom Umweltbundesamt gefördert und von Institut für Binnenfischerei e.V., Potsdam-Sacrow durchgeführt. Zielsetzung: Im Rahmen des Vorhabens sollen die Möglichkeiten und Grenzen der Bereitstellung und der Aufzucht trockenfutteradaptierter Zander der verschiedenen Altersklassen in Karpfenteichen bzw. mit Wasser aus Karpfenteichen ermittelt werden. Zudem soll die Eignung trockenfutteradaptierter Zander für den Besatz natürlicher Gewässer untersucht werden. Zur problemarmen Lieferung trockenfutteradaptierter Zander vom Setzlingserzeuger zum teichwirtschaftlichen Betrieb sollen Protokolle für das Handling und den Transport von Zandern unterschiedlicher Altersklassen optimiert werden. Die in den Untersuchungen am IfB modellhaft und bei Praxispartnern exemplarisch gewonnenen Erkenntnisse sollen der brandenburgischen Teichwirtschaft für die Umsetzung in der Praxis zur Verfügung gestellt werden. Material und Methoden: Im Rahmen der Ei-, Brut- und Setzlingserzeugung wurden Handlingprozeduren für Aufzucht, Desinfektion und Transport getestet. Zwei Standorte zur extensiven Teichaufzucht von trockenfutteradaptierten Zandern auf Naturfutterbasis wurden vorbereitet, bei Bedarf mit Futterfischen und den auf Trockenfutterbasis aufgezogenen Satzzandern im Stückmassebereich von 400 g besetzt. Ergebnisse: Die während der Brutaufzucht zum Einsatz kommenden, neu entwickelten selbstreinigenden Räumerbecken eröffneten neue Managementoptionen und führten zu Zeitersparnis und Möglichkeiten der Arbeitsgestaltung im Einschichtbetrieb. Untersuchungen zur regelmäßigen Eidesinfektion mit Jodoporen (täglich einmaliges Tauchbad belaichter Nester in Desamar K30, 0,5 % für 15 Minuten) hatten zwar die Reduzierung der Verpilzungsneigung zur Folge, bewirkten jedoch auch Einschränkungen bei der Eientwicklung und der Schlupfrate. Transportuntersuchungen mit Satzzandern zeigten bereits bei einer Transportdauer von lediglich 2,5 Stunden eine Absenkung des pH-Wertes aufgrund der CO2-Abgabe durch die Fische von 8,0 auf 6,6 (Durchschnittsstückmasse 450 g, Transportbesatzdichte 75 kg/m3, 21°C). Die extensive Aufzucht trockenfutteradaptierter Satzzander im Karpfenteich auf Futterfischbasis führte in der Aufzuchtsaison 2014 nicht zu den erhofften Ergebnissen. Trotz Besatz mit 600 kg maulgerechten Futterfischen wurden von 300 im Frühjahr in einen 5 ha großen K3-Teich besetzten Zandern (400g) während der Herbstabfischung lediglich Einzelexemplare zurückgefangen. Im Zuge einer Hitzeperiode mit Wassermangelsituation im Juli wurden massive Verluste unter den Zandern beobachtet. Hinzu kam ein erhöhter Prädatorendruck durch Fischotter. Die K4-Ernte aus dem Teich entsprach hingegen den Erwartungen. Die Abfischung des zweiten Standortes ist im Jahr 2015 vorgesehen.
Das Projekt "Neue Synthesewege zur Herstellung innovativer Kohlenstoffmembranen fuer den Einsatz in der Umwelttechnologie" wird vom Umweltbundesamt gefördert und von Technische Universität Bergakademie Freiberg, Institut für Anorganische Chemie durchgeführt. Ziel der Arbeiten ist es, ueber neue unkonventionelle Wege Kohlenstoffschichten zu praeparieren, welche als mikroporoese und fest haftende Trennschichten in der Membrantechnik eingesetzt werden. Dabei wird von cellulosehaltigen Materialien ausgegangen, welche in Salzhydratschmelzen sowie waessrigen Salz-Wasser-Systemen aktiviert, geloest oder suspendiert werden. Salzhydratschmelzen als neue Klasse von Celluloseloesungsmitteln sind geeignet, Eigenschaften wie Partikelgroesse und Porengroesse durch gezielte Salzkombinationen in weiten Grenzen zu beeinflussen. Das Aufbringen der Celluloseloesungen auf die Traeger erfolgt durch Dip-coating, Spruehen, Rakeln oder Infiltration sowie eine in situ-Regeneration auf dem Traeger. Neben der Auswahl und Testung der Celluloseloesungsmittel wird der Zusammenhang zwischen dem anorganischem Loesungsmittel und dem Zustand der Cellulose sowie der Haftung der praeparierten Celluloseschicht untersucht. Dabei soll die Dicke sowie deren Homogenitaet und Haftung der pyrolisierten Schichten hinsichtlich der Applikation gesteuert werden.