API src

Found 382 results.

Forschergruppe (FOR) 1525: INUIT - Ice Nuclei research UnIT, Chemische und mineralogische Charakterisierung von Eisnuklei und Eisresiduen

Vorkommen, Häufigkeit, chemische Zusammensetzung und Mischungszustand jener Aerosolpartikel in der Erdatmosphäre, an denen sich durch heterogene Nukleation in unterkühlten Wolken Eis bilden kann (Ice Nucleating Particles = INP), werden experimentell untersucht. Diese Informationen sind wichtig für das Verständnis der Niederschlagsbildung, und finden in parametrisierter Form Eingang in meteorologische Modelle zur Vorhersage des Niederschlages. Das Projekt verwendet hierbei im Wesentlichen physikalische Methoden zur Identifikation und Isolation der Partikel aus der Atmosphäre, und nachfolgend elektronenmikroskopische Methoden zur mineralogischen Analyse einzelner Partikel. Die Identifikation jener wenigen Aerosolpartikel (ca. 1 von 10.000 bis 1 von 100.000), die Eisbildungsfähigkeit besitzen, erfolgt, indem eine Aerosolprobe einer Unterkühlung unter 0°C und Wasserdampfübersättigung ausgesetzt wird, und die an INP entstehenden Eiskristalle fotografiert und gezählt werden. Es werden sowohl Aerosolpartikel aus luftgetragenem Aerosol untersucht (aus dem Eiskeimzähler FINCH) wie auch Partikel, die aus einer Luftprobe auf einem Silizium-Probenträger niedergeschlagen und danach als INP identifiziert wurden (Eiskeimzähler FRIDGE). Eine dritte und vierte Methode (Ice-CVI und ISI) isolieren eisbildungsfähige Partikel, indem aus einer angesaugten Probe von Wolkenluft die Eiskristalle strömungstechnisch von den übrigen Luftbestandteilen getrennt werden. Alle Eiskeimproben werden im Rasterelektronenmikroskop auf Größe, Morphologie, Mischungszustand und chemische Zusammensetzung untersucht und die Ergebnisse der verschiedenen Ansätze verglichen. In Feldexperimenten werden Atmosphärenproben verschiedener geographischer Provenienz (Mitteleuropa, Forschungsstation Jungfraujoch, Wüstenstaub, Vulkanstaub) erhalten. In Laborexperimenten wird mit vorher gesammelt und charakterisierten Modellsubstanzen gearbeitet. Weiterhin wird durch tägliche Messungen der Anzahl-Konzentration und Zusammensetzung von Eiskeimen am Taunus Observatorium nahe Frankfurt über einen längeren Zeitraum untersucht, ob es Saisonalitäten, bevorzugte Quellgebiete (z.B. Wüsten, Industrie, etc.) und biologische Einflussfaktoren (z.B. Pollen, Pflanzenabrieb, Bakterien) für das Vorkommen von Eisnuklei gibt.

Geologische Übersichtskarte der Bundesrepublik Deutschland 1:200.000 (GÜK200) - CC 5518 Fulda

Blatt Fulda zeigt einen Teil der Hessischen Buntsandstein-Landschaft, die im Westen von Ausläufern des Rheinischen Schiefergebirges und im Norden durch den Einbruch der Nordhessischen Tertiärsenke begrenzt wird. Im Südteil der Karte sind die jungen Vulkanitgebiete des Vogelsberges und der Rhön erfasst. Die hessische Sandstein-Landschaft wird von meist flach lagernden Sedimentschichten des Buntsandsteins gebildet. Die Sandsteine, untergeordnet Tonsteine und Konglomerate, wurden flächenhaft in einem Festlandsbecken abgelagert, das große Teile Mitteleuropas bedeckte. Das Gebiet wird von einer Vielzahl saxonischer Gräben durchzogen, in denen jüngere Sedimente (Muschelkalk, Keuper, Lias) erhalten geblieben sind. Ein größerer Ausbiss von Muschelkalk und Keuper findet sich beispielsweise am Ostrand des Kartenblattes bei Hünfeld und in der Ringau. Über dem Sockel des Buntsandsteins erheben sich die jungen Vulkanitgebiete von Vogelsberg, Rhön und Knüllgebirge. Der Vogelsberg zählt mit rund 2500 Quadtratkilometern Fläche zu den größten geschlossenen Basaltgebieten Mitteleuropas. Er besteht aus einer Vielzahl übereinander lagernder Decken von Basalten, Tholeiiten und Trachyten, die im Miozän aufdrangen. Basalte und basaltähnliche, alkalireiche Gesteine (Phonolithe, Nephelinite) finden sich auch in der Rhön und im Knüll (südlich von Homberg). In den Senken und Niederungen der Vulkanitgebiete sind pleistozäne Überlagerungen durch Hangschutt, Fließerden und Löss weit verbreitet. Im Bereich der Nordhessischen Tertiärsenke lagern dem Buntsandstein eozäne, oligozäne und pliozäne Lockersedimente auf, die teils von pleistozänen Ablagerungen (fluviatile und äolische Sande) verhüllt sind. Verfaltete und verschieferte Gesteine des Paläozoikums (Devon und Karbon) charakterisieren auf dem Kartenblatt die Ausläufer des Rheinischen Schiefergebirges, wobei Sedimentgesteine (Sandstein, Grauwacke, Ton- und Kieselschiefer) des Unterkarbons dominieren. Im Kellerwald, zwischen Frankenau und Bad Wildungen, sind in einem größeren Gebiet Sandsteine und Tonschiefer des Mittel- und Oberdevons aufgeschlossen. Entlang von Störungszonen sind ihnen Vulkanite (Diabase) des Unterkarbons eingeschaltet. Zechstein-Sedimente umranden die Grundgebirgsaufbrüche des Rheinischen Schiefergebirges. Neben der Legende, die über Alter, Genese und Petrographie der dargestellten Einheiten informiert, gewähren zwei geologische Schnitte Einblicke in den Aufbau des Untergrundes. Profil 1 quert das Paläozoikum des Rheinischen Schiefergebirges, die Buntsandstein-Landschaft der Frankenberger Bucht und die Niederhessische Tertiärsenke. Profil 2 verläuft vom Taunus im Westen über die Wetterau, den Vogelsberg und den Hessischen Buntsandstein bis zur Rhön.

Geologische Übersichtskarte der Bundesrepublik Deutschland 1:200.000 (GÜK200) - CC 6318 Frankfurt/Main - Ost

Blatt Frankfurt/Main-Ost erfasst die geologischen Gegebenheiten zwischen Frankfurt am Main und Würzburg, wobei die tertiären Vulkanitgebiete von Rhön und Vogelsberg im Norden, die Ausläufer des Taunus im Nordwesten sowie der Odenwald im Südwesten des Kartenblattes abgebildet sind. Sedimentgesteine der Trias dominieren den Kartenausschnitt. Den Tonsteinen des unteren Keupers in der Südost-Ecke schließen sich in nordwestliche Richtung Kalk-, Mergel- und Tonsteine des Muschelkalks sowie Sand- und Schluffsteine des Buntsandsteins an. Rhön, Spessart und der östliche Odenwald zählen zu den bekannten Buntsandstein-Landschaften in Deutschland. Paläozoische Sedimentgesteine sind im nordwestlichen Teil des Kartenblattes erfasst. So wird im äußersten Nordwesten das Taunus-Antiklinorium mit variszisch überprägten Sedimentgesteinen (Tonschiefer, Quarzit) des Unterdevons angeschnitten. In der Wetterau-Senke lagern mächtige Molassesedimente des Rotliegenden, die jedoch weitflächig von jüngeren Sedimentschichten und Vulkaniten überdeckt sind. Endogene Kräfte führten im Tertiär zur Absenkung der Wetterau, zur Sedimentation teils mariner, teils festländischer Sande und Tone sowie zum Aufdringen basaltischer Magmen entlang von Störungszonen. Weit verbreitet sind auch Überlagerungen durch eiszeitliche Sedimente, z. B. Löss- und Flugsande. Kristallines Paläozoikum und Präkambrium stehen in den westlichen Teilen von Odenwald und Spessart an. Während im Ostteil des Odenwaldes Buntsandstein-Sedimente zu Tage treten, lagern im Westteil Südwest-Nordost-verlaufende Zonen metamorpher und magmatischer Gesteine im Wechsel. Bei den Metamorphiten handelt es sich um variszisch überprägte Glimmerschiefer bzw. Gneise, seltener Amphibolite und Marmore. Zu den variszischen Magmatiten zählen Biotitgranite, Granodiorite, Diorite und Gabbros. Der Flusslauf des Mains trennt den Odenwald vom Spessart. An der Mündung von Kinzig und Main, östlich von Hanau und nördlich von Aschaffenburg, lagern die kristallinen Gesteine des Vorspessarts (kambrische und präkambrische Glimmerschiefer, Gneise und Quarzite). Auch hier kam es während der variszischen Deformation zur Intrusion magmatischer Gesteine (Diorite). Diese treten jedoch nur im äußersten Südosten, z. B. östlich von Aschaffenburg, in kleinen Vorkommen zu Tage. Neben der Legende, die über Alter, Genese und Petrographie der dargestellten Einheiten informiert, gewährt ein Nordwest-Südost-Profil Einblicke in den Aufbau des Untergrundes. Die Schnittlinie quert das Devon des Taunus, die Rotliegend- und Tertiärschichten der Wetterau-Senke, das Kristallin des Vorspessarts und die Buntsandstein-Formationen des Spessarts. In der geologischen Karte geben Farbe und Stil der aufgedruckten Signaturen bei Kristallingesteinen den Grad der metamorphen Überprägung und den Verlauf der Strukturen an.

Geologische Übersichtskarte der Bundesrepublik Deutschland 1:200.000 (GÜK200) - CC 5510 Siegen

Blatt Siegen bildet die geologischen Gegebenheiten im rechtsrheinischen Schiefergebirge ab. Sauerland, Siegerland, Lahn-Dill-Mulde, Taunus, Westerwald und Neuwieder Becken werden angeschnitten. Die Sattelstruktur des Siegerlandes mit Sedimentgesteinen des Unterdevons streicht Südwest-Nordost quer über das Kartenblatt. Nördlich wird es vom Sauerland begrenzt: Während in der Sattelstruktur des Ebbegebirges neben Unterdevon auch ältere Sedimente (Ordovizium und Silur) ausbeißen, streichen in den Muldenstrukturen (wie Lüdenscheider Mulde, Gummersbach-Mulde, Attendorn-Elsper-Mulde) jüngere Schichten aus (Mitteldevon bis Unterkarbon). Auffällig sind die Vorkommen von Massenkalk in der Attendorn-Elsper-Mulde, deren Sedimentation während des Oberen Mitteldevon bzw. tiefen Oberdevons in begrenzten Riffarealen stattfand. Kleinere Vorkommen dieser Riffkalke finden sich auch im Lahn-Dill-Gebiet, welches das Siegerland nach Osten bzw. Südosten begrenzt. Das Lahn-Dill-Gebiet am Ostrand des Kartenblattes wird von vielen Störungen und Verwerfungen durchzogen. In seinem komplexen geologischen Bau lassen sich die Dill-Senke im nördlichen Bereich, die Lahn-Senke im südlichen Bereich und der dazwischen liegende Hörre-Höhenzug unterscheiden. Neben den pelagischen Sedimentgesteinen des Oberdevons und Unterkarbons (u. a. Tonschiefer, Kalkknotenschiefer, Kieselschiefer) treten im Lahn-Dill-Gebiet verstärkt vulkanische Gesteine auf, z. B. Schalsteine (Givet-Adorf) und Deckdiabas (Unterkarbon). Eine Besonderheit stellt die Giessener Decke (Kulmgrauwacke) dar, die nördlich der Taunus-Ausläufer in der Südost-Ecke des Kartenausschnitts erfasst ist. Da die Giessener Grauwacke im Hangenden gleichalter aber faziell unterschiedlicher pelagischer Gesteine lagert, wird sie als Erosionsrest einer aus südlicher Richtung überschobenen Decke interpretiert. Im Südteil des Kartenblattes ist das junge Vulkanitgebiet des Westerwaldes erfasst. Hier führte ein verstärkter Magmatismus im Oberoligozän/Untermiozän zur Eruption vulkanischer Gesteine (vorwiegend Basalte, untergeordnet Andestit, Trachyt, Phonolith). In den Niederungen finden sich häufig quartäre Überlagerungen durch Fließerden oder Löss. In der Südwest-Ecke des Kartenblattes schließen sich die jungen Vulkanitvorkommen des Neuwieder Beckens an (quartärer Bims). Neben der Legende, die über Alter, Genese und Petrographie der dargestellten Einheiten informiert, gewährt ein geologisches Profil zusätzliche Einblicke in den Aufbau des Untergrundes. Das Profil schneidet in seinem Nordwest-Südost-Verlauf das Ebbegebirges, die Attendorner-Elsper-Mulde, den Siegerland-Sattel, das Lahn-Dill-Gebiet und den Taunus.

Machen: Mit pimoo 3.0 informieren, ausprobieren, bewerten und lernen und übertragen. Plattform für integrierte Mobilität Oberursel, Teilprojekt A: Kommunale Umsetzung

Machen: Mit pimoo 3.0 informieren, ausprobieren, bewerten und lernen und übertragen. Plattform für integrierte Mobilität Oberursel, Teilprojekt B: Wissenschaftliche Begleitung

ACTRIS-D National Facilities, Phase 1, Teilprojekt 9 (GUF-NF): Ausbau des Taunusobservatoriums (TO) am Kleinen Feldberg im Hinblick auf umfassende in-situ-Messungen von Aerosolen und kurzlebigen Spurengasen im Rahmen von ACTRIS

Erzeugung von Sekundärnickel aus NiMH-Batterien

Die Saubermacher Recycling GmbH, ein Joint Venture von Saubermacher und der Meinhardt Städtereinigung GmbH & Co. KG, mit Sitz in Hofheim am Taunus ist ein Abfallwirtschaftsunternehmen, das sich mit der Sortierung, dem Recycling und der Verwertung von Altbatterien (Haushalts-, Geräte- und Industriebatterien) beschäftigt. Jährlich werden etwa 1 Milliarde Batterien behandelt. Angeliefert werden Batteriegemische, die alle gängigen Größen von Batterien in unterschiedlicher chemischer Zusammensetzung enthalten. Um die Batterien einem Recycling zuführen zu können, müssen sie möglichst sortenrein nach chemischen Batteriesystemen getrennt werden. Die Qualität der aus Altbatterien gewonnenen Sekundärrohstoffe und deren Kosten hängen direkt von der Qualität der vorangegangenen Sortierung ab. Die Saubermacher Recycling GmbH plant in Ginsheim-Gustavsburg die Errichtung einer innovativen Anlage zur energieeffizienten Sortierung und Aufbereitung von Nickelmetallhydrid (NiMH)-Batterien. Aus den NiMH-Batterien soll hochreines Sekundärnickel zurückgewonnen werden, das in der Edelstahlindustrie Einsatz finden kann. Nach aktuellem Stand der Technik kann, bedingt durch Fehlsortierung, aus NiMH-Batterien eine Nickel-Fraktion mit einer Cadmium Verunreinigung von bis zu 0,5 Prozent hergestellt werden. Für eine Verwertung in der Edelstahlproduktion und aufgrund von betriebstechnischen Vorgaben für die Stahlwerke darf die Cadmium-Verunreinigung jedoch nicht mehr als 0,2 Prozent betragen – bereits wenige falsch sortierte, cadmiumhaltige Batterien können den avisierten hochwertigen Recyclingpfad in der Edelstahlproduktion unbrauchbar machen. Nach einer Vorbereitung mit Siebtechnologien zur Abtrennung von Stör- und Füllstoffen und einer Sortierung nach Baugröße werden die gesammelten Altbatteriegemische automatisiert und mithilfe einer KI-gestützten Röntgensortierung untergliedert und nach chemischen Batteriesystemen und Baugrößen sortenrein sortiert. Cadmiumhaltige Batterien sowie andere Batterie-Systeme (Blei (Pb), Lithium-Ionen (Li-Ion), Knopfzellen, etc.) werden einem extra Verwertungsweg in externen Anlagen zugeführt. Die KI-Röntgensortierung soll sicherstellen, dass NiMH-Altbatterien (nahezu) frei von Störstoffen, insbesondere frei von Nickel-Cadmium (NiCd)- bzw. Cadmium-Altbatterien sind. Bestehende Röntgentechnologien waren bislang nur auf die Detektion von AlMn-Batterien ausgerichtet. Die Röntgentechnologie wurde weiterentwickelt, um auch NiMH-Batterien in höchster Qualität aussortieren zu können. Die zuverlässige Erkennung und Ausschleusung von Cadmium aus NiMH/NiCd-Batteriemischungen wurde erprobt und die bestehende Datenbank um spezielle Datensätze erweitert, die zur Cadmium-Detektion notwendig sind. Die Datenbank ist erweiterbar, um eine ständige Aktualisierung und Anpassung der Sortierqualität an neue Batterien und Hersteller zu ermöglichen. Die im ersten Schritt gewonnene hochreine NiMH-Batteriefraktion wird im zweiten Schritt rein mechanisch zu einem Ni-Konzentrat aufbereitet/ weiterverarbeitet. Dazu werden die Batterien in der geplanten Anlage zerkleinert und Nickeleisen (NiFe)-Schrott von der Schwarzmasse, die das Nickelkonzentrat enthält, getrennt. Die NiFe-Schrott-Fraktion wird separat dem Recyclingpfad (Stahlindustrie) zugeführt. Das Nickelkonzentrat wird anschließend kontrolliert in einem innovativen und überwachten Aggregat verarbeitet. Dieser Schritt muss präzise durchgeführt werden, da sich das Material ohne gezielte Steuerung auf mehr als 600 Grad Celsius erhitzen würde, was nicht nur das Material verkleben lässt, sondern auch ein erhebliches Brandrisiko für die Anlage darstellen würde. Das aus der NiMH-Fraktion gewonnene sehr reine Ni-Konzentrat kann als Sekundärrohstoff und Substitut für Primärnickel in der Edelstahlproduktion (sowie in der Stahlindustrie, z.B. bei hochlegierten Baustählen, Werkzeugstählen sowie im Panzer- und Schiffsbau – worin weitere potenzielle Abnehmer gesehen werden) eingesetzt werden. Gegenüber der Primärnickelproduktion weist das Gemisch mit Sekundärnickel einen deutlich niedrigeren CO 2 -Ausstoß pro Tonne erzeugtem Edelstahl auf. Bei einem maximalen jährlichen Input von 20.000 Tonnen Batterien wird mit einem Anlagen-Output von rund 2.300 Tonnen Ni-Konzentrat gerechnet. Bei der Herstellung einer Charge Edelstahl unter Verwendung von Primärnickel entsteht eine CO 2 -Belastung von 7.633 Kilogramm CO 2 -Äquivalenten. Durch den Einsatz von Nickelkonzentrat kann diese Belastung auf 1.752 Kilogramm CO 2 -Äquivalente pro Charge reduziert werden. Das Material Nickelkonzentrat weist einen durchschnittlichen Nickelgehalt von rund 45 Masseprozent (M-%) auf und enthält damit etwa das 15-Fache des Nickelgehalts herkömmlicher Ausgangsmaterialien. Im Rahmen einer Untersuchung zur Bewertung relevanter Wirkungskategorien im Hinblick auf mögliche Umweltbelastungen wurde festgestellt, dass der Aufbereitungsprozess von Nickel-Metallhydrid-Batterien mit anschließender Rückgewinnung von Sekundärnickel im Vergleich zur Herstellung von Primärnickel deutlich besser abschneidet. Besonders in den Kategorien Versauerung, Eutrophierung, Ozonbildung sowie beim Verbrauch fossiler Ressourcen liegen die Umweltwirkungen der Sekundärnickelproduktion lediglich bei rund einem Zehntel der Werte der Primärproduktion. Dies belegt den klaren ökologischen Vorteil von Sekundärnickel. Auch im Hinblick auf die Energieeffizienz zeigt sich ein deutliches Plus: Der Energieverbrauch bei der Rückgewinnung von Sekundärnickel beträgt lediglich etwa fünf Prozent des Energiebedarfs der Primärproduktion. Das neuartige Recyclingverfahren soll zudem zur Reduktion von Staubemissionen sowie Brand- und Explosionsrisiken bei der Aufbereitung von NiMH-Altbatterien, insbesondere durch Kühlung und Verhinderung der Wasserstoff-Bildung in geschlossenen Aggregaten, beitragen und eine staubdichte Verarbeitung zu gewährleisten. Mithilfe einer KI-gestützten Röntgentechnologie, die auch auf die Detektion weiterer Batterien- und Batteriegemische und ggf. neue chemische Batteriesysteme angepasst werden kann, insbesondere wenn, wie im Projekt vorgesehen, der Algorithmus hinter der KI weiter trainiert wird, wird eine hochmoderne effiziente Sortiertechnologie entwickelt und etabliert, die den Stand der Technik in der Branche verbessern kann. Die Sortiertechnologie lässt sich auf die ganze Branche übertragen. Branche: Wasser, Abwasser- und Abfallentsorgung, Beseitigung von Umweltverschmutzungen Umweltbereich: Ressourcen Fördernehmer: Saubermacher Recycling GmbH Bundesland: Hessen Laufzeit: seit 2025 Status: Laufend

Neubau der Regionaltangente West - PFA Nord - 4. Änderung vor Fertigstellung des Vorhabens

Planfeststellungsbeschluss für den Neubau der Regionaltangente West – Planfeststellungsabschnitt Nord vom Bahnhof Bad Homburg v. d. Höhe bzw. dem Haltepunkt Gewerbegebiet Frankfurt/Praunheim bis einschließlich Eisenbahnüberführung Sossenheimer Straße und der Rampenbauwerke in der Gemeinde Sulzbach (Taunus) - 4. Änderung vor Fertigstellung des Vorhabens

A100 ROW GmbH, Marcel-Breuer-Straße 12, 80807 München - Errichtung und Betrieb von 50 Notstromdieselmotoranlagen in Rechenzentren in Liederbach am Taunus

Die Firma A100 ROW GmbH, Marcel-Breuer-Straße 12, 80807 München, beabsichtigt die Errichtung und den Betrieb von 50 Notstromdieselmotoranlagen (NDMA) mit einer Feuerungswärmeleistung von maximal 360,08 Megawatt inklusive der erforderlichen dienenden Nebeneinrichtungen (50 Abgasrohre gruppiert in 13 Schornsteingruppen, 48 Abgasreinigungen (SCR (Selektive Katalytische Reduktion), Oxidationskatalysator)), ein zentraler Lagertank für Diesel, drei dezentrale Lagertanks für Diesel, zwei dezentrale Lagertanks für Harnstoff, sowie die dazugehörige Verrohrung und einen Abfüllplatz. Bei dem verwendeten Kraftstoff handelt es sich um Diesel. Die NDMA versorgen bei Ausfall der öffentlichen Stromversorgung die Rechenzentren am Standort Sindlinger Weg 1, 65835 Liederbach am Taunus, mit Strom.

1 2 3 4 537 38 39