Das Projekt "Der Einfluß der Bildung von Thioarsen-Spezies auf die Arsen-Komplexierung an natürliches organisches Material" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bayreuth, Fachgruppe Geowissenschaften, Bayreuther Zentrum für Ökologie und Umweltforschung (BayCEER), Bereich Umweltgeochemie.Unter anoxischen Bedingungen wird Arsen (As) in Form von Arsenit vermeintlich vollständig über Schwefel(S)-Gruppen an natürliches organisches Material (NOM) gebunden. Laborexperimente zeigten, dass selbst unter oxischen Bedingungen die Halbwertszeit mehr als 300 Tage betrug, damit sogar größer war als die von Arsenit an Eisen(Fe)(III)-Oxyhydroxiden. Global betrachtet heißt das, dass z.B. Moore, die reich an Organik und Sulfid sind, wichtige quantitative As-Senken sind. Allerdings wurden alle mechanistischen Studien bisher so durchgeführt, dass Arsenit einem zuvor gebildeten S(-II)-NOM zugegeben wurde. In einem System, das As(III), S(-II) und NOM enthält, spielt aber auch die As(III)-S(-II)-Komplexierung in Lösung unter Bildung von Thioarseniten ((H2AsIIIS-IInO3-n)-, n=1-3) und Thioarsenaten ((HAsVS-IInO4-n)2-, n=1-4) eine Rolle. Unsere zentrale Hypothese ist, dass die Kinetik der Thioarsen-Spezies-Bildung in Lösung schneller ist als die Sorption von As(III) und S(-II) an NOM und dass daher Thioarsen-Spezies das Ausmaß und die Kinetik der As-Sorption an Organik bestimmen. Auch die kompetitive Sorption an gleichzeitig auftretenden (meta)stabilen Fe-Mineralen wird vom bekannten Verhalten von Arsenit abweichen. Aufgrund ihrer Instabilität und einem Mangel an reinen Standards, ist über das Sorptionsverhalten von Thioarseniten bislang nichts bekannt. Für Thioarsenate gibt es keine Information zum Bindungsverhalten an NOM, aber es ist bekannt, dass die Sorption an verschiedenen Fe(III)-Mineralen geringer ist als die von Arsenit. Wir postulieren, dass Thioarsenate weniger und langsamer als Arsenit an S(-II)-NOM binden, da kovalente S-Bindungen in Thioarsenaten die Affinität für S(-II)-NOM Komplexierung verringern. An Fe(III)-NOM sollte die Bindung geringer sein in Analogie zur bekannten geringeren Affinität für Fe(III)-Minerale. Wir postulieren weiter, dass die Sulfidierung eine schnellere und größere As-Mobilisierung bewirkt als die zuvor untersuchte Oxidation, da abiotische Oxidation langsam ist, die As-S-Komplexierung in Lösung aber spontan und so As-Bindungen an NOM und Fe-Minerale schwächt. Um unsere Hypothesen zu testen, werden wir Batch-Experimente durchführen mit Mono- and Trithioarsenat-Standards und einem Arsenit-Sulfid Mix (der Thioarsenite enthält) bei pH 5, 7 und 9 an zwei ausgewählten NOMs (Federseemoor Torf und Elliott Soil Huminsäure; jeweils unbehandelt, S(-II)- und Fe(III)-komplexiert). Wir werden Sorptionsaffinität und -kinetik, sowie mittels Röntgenabsorptionsspektroskopie Bindungsmechanismen bestimmen. Die Stabilität der (Thio)arsen-beladenen NOMs wird unter oxidierenden aber auch unter sulfidischen Bedingungen studiert und präferenzielle Bindung in binären Systemen (Kombinationen aus Fe-Oxyhydroxiden, Fe(III)-NOM, S(-II)-NOM und Fe-Sulfiden) untersucht. Ziel ist, As-Bindungsmechanismen in S(-II)-Fe(III)-NOM-Systemen besser zu verstehen, um vorhersagen zu können, unter welchen Bedingungen As Senken zu As Quellen werden können.
Das Projekt "Aus der Atmosphäre in den Boden - wie Druckfluktuationen den Gastransport im Boden beeinflussen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Albert-Ludwigs-Universität Freiburg, Institut für Geo- und Umweltnaturwissenschaften, Professur für Bodenökologie.Gasaustausch findet in der Atmosphäre primär durch turbulenten und laminaren Fluss statt. Im Boden dagegen spielt advektiver Gastransport eine untergeordnete Rolle, stattdessen dominiert Diffusion die Transportprozesse. Trotz der Unterschiedlichkeit und scheinbaren Unabhängigkeit dieser Prozesse wurde während Freilanduntersuchungen ein Anstieg von Gastransportraten im Boden um mehrere 10 % während Phasen starken Windes beobachtet. Dieser Anstieg ist auf wind-induzierte Druckfluktuationen zurückzuführen, die sich in das luftgefüllte Porensystem des Bodens fortpflanzen und zu einem minimal oszillierenden Luftmassenfluss führen (Pressure-pumping Effekt). Durch den oszillierenden Charakter des Luftmassenflusses ist der direkte Beitrag zum Gastransport sehr gering. Die damit einhergehende Dispersion führt jedoch zu einem Anstieg der effektiven Gastransportrate entgegen des Konzentrationsgradienten. Wird der Pressure-pumping (PP) Effekt bei der Bestimmung von Gasflüssen mit der Gradienten- und Kammermethode nicht berücksichtigt, kann dies zu großen Unsicherheiten in der Bestimmung von Bodengasflüssen führen. Insbesondere für das langfristige Monitoring von treibhausrelevanten Gasflüssen stellen diese Unsicherheiten ein zentrales Problem dar. Wir stellen vier Hypothesen auf:(H1) Der PP-Effekt ist abhängig von Bodeneigenschaften.(H2) Die Ausprägung von Luftdruckfluktuationen ist abhängig von der Rauigkeit verschiedener Landnutzungen (Wald, Grasland, landwirtschaftliche Kulturen, Stadt)(H3) Kammermessungen werden durch Luftdruckfluktuationen beeinflusst.(H4) Der Austausch und Umsatz von Methan in Böden von Mittelgebirgswäldern wird durch den PP-Effekt verstärkt. Die Hypothesen 1, 3 und 4 werden mittels Laboruntersuchungen von Proben verschiedener Böden und Bodenfeuchtebedingungen überprüft. Die Hypothese 2 wird durch Freilandmessungen an verschiedenen Standorten überprüft. Ziele des Vorhabens sind: (Z1) Modelle zu entwickeln, die die Quantifizierung des Einflusses der Bodenstruktur auf den PP-Effekt ermöglichen, (Z2) den Effekt der Oberflächenrauigkeit auf Luftdruckschwankungen zu quantifizieren, (Z3) Schwellenwerte zu definieren, die die Bestimmung von Standorten mit ausgeprägtem PP-Effekt ermöglichen, (Z4) Faktoren für die Berücksichtigung des PP-Effekts für Kammermessungen zu entwickeln, (Z5) Faktoren für die Berücksichtigung des PP-Effekts für die Gradienten Methode zu entwickeln, (Z6) den Einfluss des PP-Effekts auf die Methanaufnahme von Böden in Mittelgebirgswäldern zu bestimmen. Ein besseres Verständnis des bisher nur unzureichend untersuchten PP-Effekts wird wesentlich dazu beitragen, die Verlässlichkeit und Präzision von Messungen von Bodengasflüssen zu steigern, die die Grundlage für weitergehende Forschung darstellen.
Das Projekt "Schwerpunktprogramm (SPP) 1685: Ecosystem nutrition: forest strategies for limited phosphorus resources; Ökosystemernährung: Forststrategien zum Umgang mit limitierten Phosphor-Ressourcen, Phosphorus transport along soil pathways in forested catchments" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität Dresden, Institut für Bodenkunde und Standortslehre.Phosphorus (P) is an essential nutrient for living organisms. Whereas agriculture avoids P-limitation of primary production through continuous application of P fertilizers, forest ecosystems have developed highly efficient strategies to adapt to low P supply. A main hypothesis of the SPP 1685 is that P depletion of soils drives forest ecosystems from P acquiring system (efficient mobilization of P from the mineral phase) to P recycling systems (highly efficient cycling of P). Regarding P fluxes in soils and from soil to streamwater, this leads to the assumption that recycling systems may have developed strategies to minimize P losses. Further, not only the quantity but also the chemistry (P forms) of transported or accumulated P will differ between the ecosystems. In our project, we will therefore experimentally test the relevance of the two contrasting hypothetical nutritional strategies for P transport processes through the soil and into streamwater. As transport processes will occur especially during heavy rainfall events, when preferential flow pathways (PFPs) are connected, we will focus on identifying those subsurface transport paths. The chemical P fractionation in PFPs will be analyzed to draw conclusions on P accumulation and transport mechanism in soils differing in their availability of mineral bound P (SPP core sites). The second approach is an intensive streamwater monitoring to detect P losses from soil to water. The understanding of P transport processes and P fluxes at small catchment scale is fundamental for estimating the P exports of forest soils into streams. With a hydrological model we will simulate soil water fluxes and estimate P export fluxes for the different ecosystems based on these simulations.
Das Projekt "Schwerpunktprogramm (SPP) 1685: Ecosystem nutrition: forest strategies for limited phosphorus resources; Ökosystemernährung: Forststrategien zum Umgang mit limitierten Phosphor-Ressourcen, The importance of fungal-fungal and bacterial-fungal interactions for phosphorus dynamics in forest soils" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Hohenheim, Institut für Bodenkunde und Standortslehre, Fachgebiet Bodenbiologie.Plant uptake of phosphate (P) in complex forest ecosystems relies to a great extent on microbial mineralization of P from organic and inorganic sources but the relative contributions of the microbial communities to P cycling and allocation in forest soils is not yet very well understood. Within this project we will focus on two interactions that could elucidate key processes of microbial P dynamics in forest sites. We want to clarify the importance of both fungal-fungal and bacterial-fungal interactions for P dynamics in forest soils that are transitioning from P acquiring (efficient mobilization of P from primary and secondary minerals) into P recycling systems (highly efficient cycling of P). We want to reveal furthermore the relative contributions of saprotrophic and ectomycorrhizal fungi to P cycling and allocation. Following a hierarchical approach we want to investigate: (I) the fungal-fungal interaction between saprotrophic and ectomycorrhizal fungi at the plot scale by a systematical exclusion of ectomycorrhizal fungi in the field; (II) elucidate the P dynamics in the mycosphere at the small scale (mm to cm scale) by the use of trenching experiments. (III) investigate the regulation of bacterial as well as fungal P cycling in a microcosm experiment and evaluate the particular microbial uptake, allocation and cycling of P in the mycosphere by the use of several chemical and microbiological approaches. The trenching experiments will be performed on the study sites: Bad Brückenau, Conventwald, Vessertal, Mitterfels and Lüss in close proximity to beech trees (Fagus sylvatica L.). The microcosm experiment will be performed under controlled conditions in the lab.
Das Projekt "Schwerpunktprogramm (SPP) 1685: Ecosystem nutrition: forest strategies for limited phosphorus resources; Ökosystemernährung: Forststrategien zum Umgang mit limitierten Phosphor-Ressourcen, Spatial heterogeneity of phosphorus concentration and P speciation in German forest soils" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Lehrstuhl für Bodenkunde.In this project, we will investigate the spatial heterogeneity of soil phosphorus (concentration of total P, P speciation) in soils with different P status with modern analytical (synchrotron-based X-ray spectroscopy and spectromicroscopy) and geostatistical methods at different scales (soil aggregates: (sub)micron to mm scale; particular regions of soil profiles (e.g. root channels, surrounding of stones): mm to dm scale; entire soil profiles: dm to m scale; selected patches of the forest stand: m to 5m scale). We expect that our results will provide new insights about spatial heterogeneity patterns of soil P concentration and P speciation in forest soils and their relevance for P availability and P nutritional status of Norway spruce and European beech.
Das Projekt "Schwerpunktprogramm (SPP) 1685: Ecosystem nutrition: forest strategies for limited phosphorus resources; Ökosystemernährung: Forststrategien zum Umgang mit limitierten Phosphor-Ressourcen, Regulation of microbial activities, structure and function of microbial communities" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Abteilung für Umweltgenomik.In the frame of the project microbial turnover processes of phosphorous shall be investigated in forest soils and drivers for the corresponding populations as well as their activity pattern shall be described. Furthermore microbial transport and uptake systems for phosphorous should be characterized to understand the competition between plants and microbes for phosphorous in more detail, in relation to the availability of phosphorous and other nutrients. Therefore it is planned to investigate different soil compartments with different nutrient amounts (litter layer - rhizosphere - bulk soil). To reach the described goal molecular metagenomic methods will be used to characterize the structure and function of microbial communities as well as to describe the regulation of selected important pathways. In addition quantitative real time PCR and enzymatic measurements will be used to describe the abundance and activity of the corresponding populations and to describe their relevance for P turnover in the different soil compartments under investigation. With this we hope to reconstruct mainly the microbial phosphorous cycle and give important data to improve the model development of P dynamics in forest soils.
Das Projekt "Forschergruppe (FOR) 2337: Denitrifikation in landwirtschaftlichen Böden: Prozesssteuerung und Modellierung auf verschiedenen Skalen (DASIM), Teilprojekt: Bodeninkubationen zur Gewinnung von Modellvalidierungsdatensätzen und Experimente zur Quantifizierung des anaeroben Volumenanteils im Boden" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Lehrstuhl für Bodenkunde.Robuste Datensätze zur Validierung von N2 Flüssen aus Denitrifikationsmodellen sind rar, vor allem wegen der begrenzten Verfügbarkeit geeigneter Methoden, aber auch aufgrund der extremen raum-zeitlichen Heterogenität der Denitrifikation. Der anaerobe Volumenanteil im Boden, eine wesentliche Steuergröße der Denitrifikation, ist bekanntlich von der räumlichen Verteilung der Gasdiffusivität und der Respiration abhängig. Durch die begrenzte Messbarkeit seiner Regelfaktoren wurde der anaerobe Volumenanteil im Boden bisher kaum quantifiziert. Heute stehen jedoch besser geeignete Methoden zur Verfügung. Diese Aspekte werden wir in vier Abschnitten behandeln. 1. Neue und verbesserte Stabilisotopenmethoden sollen eingesetzt werden, um Datensätze zu erheben, die die Aktivität der Denitrifikation und ihre Regelung in hoher räumlichen und zeitlichen Genauigkeit und Auflösung abbilden. Diese Datensätze dienen der Validierung bestehender und Kalibrierung neuer Denitrifikationsmodelle, die in Teilprojekten von DASIM (P7, P8, PC) angewendet und/oder entwickelt werden sollen. 2. Durch Inkubationsversuche mit variierter Bodenmenge unter standardisierten Bedingungen werden wir das für die Denitrifikation repräsentative Elementarvolumen als Grundlage für das Hochskalieren bei der Modellierung untersuchen. 3. Zur Bestimmung des anaeroben Bodenvolumenanteils werden wir in Kooperation mit P1 und P8 die räumliche Verteilung der Gasdiffusivität sowie Denitrifikationsaktivitäten unter definierten Sauerstoffverhältnissen messen. Diese verschiedenen Ansätze werden kreuzvalidiert und der aussichtsreichste wird bei der Validierung des anaeroben Volumens in den neuen Denitrifikationsmodellen (P8) Anwendung finden. 4. Wir werden testen, ob die räumlichen Verteilungen der Denitrifikationsaktivität sowie ihrer Kontrollfaktoren mit NanoSIMS bestimmt werden können und ob NanoSIMS geeignet ist, um in Phase 2 von DASIM heterogene mikroskalige Prozesse in größerem Umfang zu untersuchen. Diese Tests beinhalten die Messung der Verteilung der organischen Substanz in ausgewählten Bodenaggregaten und eine neue 15N-Tracermethode zur Lokalisierung von Nitratabbau in Aggregaten.
Das Projekt "Forschergruppe (FOR) 2337: Denitrifikation in landwirtschaftlichen Böden: Prozesssteuerung und Modellierung auf verschiedenen Skalen (DASIM), Teilprojekt: Biogeochemie der Denitrifikation, von Pflanzen-Boden-Inkubationsstudien zur ökosystemaren biogeochemischen Modellierung" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Karlsruher Institut für Technologie (KIT), Sondervermögen Großforschung, Institut für Meteorologie und Klimaforschung - Atmosphärische Umweltforschung (IMK-IFU).Das Projekt, Biogeochemie der Denitrifikation, von Pflanzen-Boden-Inkubationsstudien zur ökosystemaren biogeochemischen Modellierung, fokussiert auf die Entwicklung und Anwendung von Pflanzen Boden Inkubationskammern, basierend auf der Helium (He)Gasflusstechnik, zur Identifizierung und Charakterisierung der Bedeutung von Pflanze-Mikroorganismen-Interaktionen in der Rhizosphäre im Zusammenhang mit denitrifikatorischen Stickstoffumsetzungen und Gasbildung (NO, N2O, N2). Unsere zentrale Hypothese ist, dass pflanzliche Photosynthese und Denitrifikation in der Rhizosphäre eng gekoppelt abläuft, mit Wurzelexudation als bestimmender Faktor. Experimente werden mit 3 DASIM-Böden und zwei Pflanzenarten (Weidelgrass und Weizen) durchgeführt, wobei eine Anzahl verschiedener Umweltbedingungen (Temperatur, Bodenfeuchte), Pflanzenentwicklungsstufen und Atmosphärenzusammensetzungen getestet werden. In enger Kooperation mit den anderen Mitgliedern der Forschergruppe werden zudem die Dynamiken von Wurzelexudation sowie zentrale mikrobielle Umsetzungsprozesse erfasst, Stickstoffbilanzen erstellt und Methodenvergleiche durchgeführt. Die Resultaten der eigenen experimentellen Arbeiten sowie der der anderen involvierten Forschungsgruppenmitglieder werden für die Weiterentwicklung des Denitrifikations-.sowie des Bodenphysikmoduls des biogeochemischen Modells LandscapeDNDC genutzt.
Das Projekt "LUCAS (Land Use and Land Cover Survey) SOIL Austria" wird/wurde gefördert durch: Amt der Niederösterreichischen Landesregierung / Amt der Oberösterreichischen Landesregierung / Amt der Salzburger Landesregierung / Amt der Tiroler Landesregierung. Es wird/wurde ausgeführt durch: Österreichische Agentur für Gesundheit und Ernährungssicherheit GmbH (AGES), Landwirtschaftliche Untersuchungen und Forschung Wien, Institut für Bodenwirtschaft.
Das Projekt "Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: BESoilS - Schwefelumsatz in Böden entlang von Landnutzungsgradienten in den Deutschen Biodiversitäts Exploratorien" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Nutzpflanzenwissenschaften und Ressourcenschutz (INRES), Bereich Bodenwissenschaften, Allgemeine Bodenkunde und Bodenökologie.Schwefel (S) ist ein essentielles Nährelement für Mikroorganismen und Pflanzen. Eine ausreichende S-Versorgung ist daher entscheidend für die Erhaltung von Ökosystemfunktionen und -produktivität. Ziel dieses Projekts ist es, zu testen, ob die Kombination aus Ökosystem (Grünland vs. Wald) und Landnutzungsintensität (d.h. Einträge und Export von S) mit unterschiedlichen Mechanismen des S-Recyclings in Böden gekoppelt ist, wodurch letztlich der Artenreichtum und die Artenzusammensetzung an den jeweiligen Standorten der Biodiversitäts-Exploratorien beeinflusst wird. Im Speziellen nehmen wir an, dass (i) die S-Vorräte und die S-Verfügbarkeit für jedes Ökosystem durch die Landnutzungsintensität und die S-Speicherkapazität innerhalb des Bodenprofils bestimmt werden; dass (ii) Ökosysteme mit geringer Landnutzungsintensität durch ein intensiveres S-Recycling und damit auch eine höhere S-Nutzungseffizienz im Vergleich zu Standorten mit intensiver Bewirtschaftung gekennzeichnet sind; und dass (iii) eine Abnahme der Landnutzungsintensität in Grünlandböden zu einem effizienteren S-Recycling führen wird. Da für die Biodiversitäts-Exploratorien bisher nur wenige Daten zu Schwefel erhoben wurden, werden in diesem Projekt zunächst die aktuellen S-Vorräte und die S-Verfügbarkeit im Bodenprofil entlang der Landnutzungsgradienten bestimmt. Anschließend werden wir das mikrobielle S-Recycling und die Enzymaktivität sowie Isotopenverhältnisse (delta 34S und delta 18O-SO4) analysieren, um standortspezifische Unterschiede in der S-Nutzungseffizienz und dem S-Recycling zu identifizieren. Über die Dauer des Projekts werden wir weiterhin beobachten, wie sich diese Indikatoren für S-Verfügbarkeit und S-Recycling nach einer Landnutzungsänderung in Grünland verändern. In Zusammenarbeit mit anderen Partnern aus diesem Schwerpunktprogramm wird das Projekt somit zu einem besseren Verständnis beitragen, welche Faktoren die Biodiverisität an den Standorten der Exploratorien beeinflussen.
Origin | Count |
---|---|
Bund | 129 |
Land | 15 |
Type | Count |
---|---|
Ereignis | 1 |
Förderprogramm | 123 |
Text | 16 |
unbekannt | 4 |
License | Count |
---|---|
geschlossen | 9 |
offen | 134 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 87 |
Englisch | 81 |
Resource type | Count |
---|---|
Datei | 1 |
Dokument | 15 |
Keine | 87 |
Webseite | 52 |
Topic | Count |
---|---|
Boden | 144 |
Lebewesen & Lebensräume | 144 |
Luft | 101 |
Mensch & Umwelt | 144 |
Wasser | 104 |
Weitere | 144 |