API src

Found 1273 results.

Related terms

Analytik zu verfluechtigenden Komponenten mit Hilfe eines Photoionisationsdetektors

Das Projekt "Analytik zu verfluechtigenden Komponenten mit Hilfe eines Photoionisationsdetektors" wird/wurde ausgeführt durch: Universität Berlin (Humboldt-Univ.), Fachbereich Chemie, Institut für Angewandte Analytik und Umweltchemie.Im Projekt wurde ein Analysensystem aufgebaut, das die spurenanalytische Bestimmung von Arsen, Antimon, Selen, Tellur, Wismut, Zinn, Sulfid, Ammoniak und Ethanol erlaubt. Ein Photoionisationsdetektor wurde dazu weiterentwickelt, und es wurden geeignete Probenvorbereitungstechniken erarbeitet.

Der Unfall von Tschornobyl ( russ. : Tschernobyl)

Der Unfall von Tschornobyl ( russ. : Tschernobyl) Am 26. April 1986 kam es in Block 4 des Kernkraftwerks Tschornobyl in der Ukraine zu einem schweren Unfall. Dabei wurden erhebliche Mengen radioaktiver Substanzen freigesetzt, die aufgrund hoher Temperaturen des brennenden Reaktors in große Höhen gelangten und sich mit Wind und Wetter über weite Teile Europas verteilten. In der Folge wurden die in einem Umkreis von etwa 30 Kilometern um den havarierten Reaktor lebenden Menschen evakuiert oder zogen aus eigenem Antrieb fort. Messung der Ortsdosisleistung mit einem Handmessgerät am Reaktor von Tschornobyl im Rahmen einer Messübung im Jahr 2016. Zum Zeitpunkt des Unglücks waren die Messwerte weit höher. Am 26. April 1986 ereignete sich im Block 4 des Kernkraftwerks Tschornobyl ( russ. : Tschernobyl) in der Ukraine der bisher schwerste Reaktorunfall in der Geschichte. Die weitreichenden und langwierigen ökologischen, gesundheitlichen – auch psychischen – und wirtschaftlichen Folgen dieses Unfalls stellten die damalige Sowjetunion und später Russland, Belarus und insbesondere die Ukraine vor große Herausforderungen – auch heute noch. Unfallhergang Das Kernkraftwerk Tschornobyl ( russ. : Tschernobyl) gehörte zu einem Reaktortyp, der ausschließlich in der ehemaligen Sowjetunion gebaut wurde. Wesentliche Unterschiede dieses Reaktortyps zu westlichen Reaktoren liegen darin, dass sie Graphit nutzen, um die Geschwindigkeit von Neutronen in der Kernspaltungsreaktion zu reduzieren, und keine druckdichte Beton- und Stahl-Sicherheitshülle um den Reaktorkern, das so genannte Containment, besitzen. Während eines planmäßigen langsamen Abschaltens und eines gleichzeitigen Versuchsprogramms zur Überprüfung verschiedener Sicherheitseigenschaften der Anlage, kam es zu einer unkontrollierten atomaren Kettenreaktion. Dies führte zu einer Explosion des Reaktors, die das rund 1.000 Tonnen schwere Dach des Reaktorbehälters anhob. Mangels Containment lag der Reaktorkern infolge der heftigen Explosion frei, so dass radioaktive Stoffe aus dem Reaktor ungehindert in die Atmosphäre gelangten. Das im Reaktor verwendete Graphit brannte. Bei den Lösch- und Aufräumarbeiten wurden viele Beschäftigte des Reaktors, Feuerwehrleute sowie als "Liquidatoren" bekannte Rettungs- und Aufräumkräfte einer extrem hohen Strahlenbelastung ausgesetzt. Bei 134 von ihnen kam es zu akuten Strahlensyndromen . Die gesundheitlichen – auch psychischen – Folgen des Reaktorunfalls werden bis heute untersucht. Die Freisetzungen radioaktiver Stoffe konnten erst nach 10 Tagen durch den Abwurf von ca. 5.000 Tonnen Sand, Lehm, Blei und Bor aus Militärhubschraubern auf die Reaktoranlage und das Einblasen von Stickstoff zur Kühlung des geschmolzenen Kernbereichs beendet werden. In den Jahren 1986 und 1987 waren über 240.000 Personen als Liquidatoren innerhalb einer 30-Kilometer-Sperrzone rund um den havarierten Reaktor eingesetzt. Weitere Aufräumarbeiten wurden bis etwa 1990 durchgeführt. Insgesamt waren etwa 600.000 Liquidatoren für den Einsatz registriert. Über den Unfallhergang und langfristige Planungen zum Rückbau der Anlage informiert das Bundesamt für Sicherheit in der nuklearen Entsorgung ( BASE ) auf seiner Webseite. Freisetzung von Radioaktivität in die Umwelt Aufgrund des Unfalls gelangten vom 26. April bis zum 6. Mai 1986 in erheblichem Maße radioaktive Stoffe in die Umwelt . Durch den 10 Tage anhaltenden Reaktorbrand entstand eine enorme Hitze. Mit dem thermischen Auftrieb gelangten tagelang große Mengen radioaktiver Stoffe durch das zerstörte Dach der Reaktorhalle in Höhen von vielen Tausenden Metern. Verschiedene Luftströmungen (Winde) verteilten die radioaktiven Stoffe über weite Teile Europas. Sie kontaminierten mehr als 200.000 Quadratkilometer, davon rund 146.000 Quadratkilometer im europäischen Teil der ehemaligen Sowjetunion. Ein Schild warnt im Sperrgebiet vor dem "Roten Wald", einem Gebiet, das nach dem Unfall in Tschornobyl (russ.--russisch: Tschernobyl) am höchsten kontaminiert wurde. Freigesetzt wurden unter anderem radioaktive Edelgase wie etwa Xenon-133, leicht flüchtige Stoffe wie radioaktives Jod, Tellur und radioaktives Cäsium, die sich mit dem Wind weit über die Nordhalbkugel, insbesondere über Europa, verteilten und schwer flüchtige radioaktive Nuklide wie Strontium und Plutonium , die sich vor allem in einem Umkreis von etwa 100 Kilometern um den Unfallreaktor in der Ukraine und in den angrenzenden Gebieten von Belarus ablagerten. Aufgrund ihrer vergleichsweise kurzen Halbwertszeiten waren radioaktives Jod und Xenon-133 drei Monate nach dem Unfall praktisch aus der Umwelt verschwunden. Cäsium-137 und Strontium-90 haben dagegen eine Halbwertszeit von rund 30 Jahren und kontaminieren die Umwelt deutlich länger: 30 Jahre nach dem Unfall in Tschernobyl hat sich die Aktivität dieser radioaktiven Stoffe etwa halbiert. Plutonium -239 und Plutonium -240 haben mehrere Tausend Jahre Halbwertszeit – diese in der näheren Umgebung des Unfallreaktors vorzufindenden radioaktiven Stoffe sind bis heute praktisch nicht zerfallen, ihre Aktivitäten sind etwa so hoch wie 1986. Ende April/Anfang Mai 1986 trafen die radioaktiven Luftmassen des Reaktorunfalls von Tschornobyl ( russ. : Tschernobyl) in Deutschland ein. Aufgrund heftiger lokaler Niederschläge im Süden Deutschlands wurde Süddeutschland deutlich höher belastet als Norddeutschland. Die radioaktiven Stoffe lagerten sich unter anderem in Wäldern, auf Feldern und Wiesen ab – auch auf erntereifem Gemüse und Weideflächen. Über die Folgen für die Umwelt in der näheren Umgebung des Reaktors sowie in Deutschland informiert der Artikel " Umweltkontaminationen und weitere Folgen des Reaktorunfalls von Tschornobyl ". Frühe Schutzmaßnahmen Der Unfall im Kernkraftwerk Tschornobyl ( russ. : Tschernobyl) hatte nicht nur Folgen für die Umwelt , sondern auch massive Auswirkungen auf die Gesundheit und das Leben der Bevölkerung in den am stärksten betroffenen Gebieten in der nördlichen Ukraine, in Belarus und im Westen Russlands. Am 1. Mai 1986 sollte ein Vergnügungspark in Prypjat eröffnet werden. Die Stadt wurde am 27. April 1986 evakuiert; das Riesenrad steht seitdem. Evakuierungen Am Tag nach dem Unfall wurde die Stadt Prypjat evakuiert, sie ist bis heute nicht bewohnt. Das Gebiet in einem Radius von 30 Kilometern rund um das Kernkraftwerk Tschornobyl ( russ. : Tschernobyl) wurde anschließend zum Schutz der Bevölkerung vor hoher Strahlung zur Sperrzone. Die Orte innerhalb der Sperrzone wurden evakuiert und aufgegeben – betroffen davon waren 1986 neben Prypjat auch Tschornobyl, Kopatschi und weitere Ortschaften. Die Sperrzone wurde später anhand der Höhe der Kontamination räumlich angepasst. Insgesamt wurden mehrere 100.000 Personen umgesiedelt (zwangsweise oder aus eigenem Antrieb). Schutz vor radioaktivem Jod Die Zahl der Schilddrüsenkrebserkrankungen stieg nach 1986 in der Bevölkerung von Weißrussland, der Ukraine und den vier am stärksten betroffenen Regionen Russlands deutlich an. Dies ist zum größten Teil auf die Belastung mit radioaktivem Jod innerhalb der ersten Monate nach dem Unfall zurückzuführen. Das radioaktive Jod wurde vor allem durch den Verzehr von Milch von Kühen aufgenommen, die zuvor kontaminiertes Weidegras gefressen hatten. Dies gilt als Hauptursache für die hohe Rate an Schilddrüsenkrebs bei Kindern. Radioaktives Jod wurde außerdem durch weitere kontaminierte Nahrung sowie durch Inhalation mit der Luft aufgenommen. Nach Aufnahme in den Körper reichert es sich in der Schilddrüse an. Wird genau zum richtigen Zeitpunkt nicht-radioaktives Jod in Form einer hochdosierten Tablette aufgenommen, kann verhindert werden, dass sich radioaktives Jod in der Schilddrüse anreichert (sogenannte Jodblockade ). Entsprechende Informationen der zuständigen Behörden gab es in den betroffenen Staaten der ehemaligen Sowjet-Union für die Bevölkerung, insbesondere in ländlichen Gebieten, jedoch nicht – auch nicht darüber, dass potenziell betroffene Lebensmittel, insbesondere Milch, nicht oder nur eingeschränkt verzehrt werden sollte. Dazu kam, dass die betroffene Bevölkerung oft keine Alternativprodukte zur Nahrungsaufnahme zur Verfügung hatte. Schutzhülle am Reaktor Schutzhülle (New Safe Confinement) über dem havarierten Reaktor von Tschernobyl Quelle: SvedOliver/Stock.adobe.com Um die im zerstörten Reaktorblock befindlichen radioaktiven Stoffe sicher einzuschließen und weitere Freisetzungen radioaktiver Stoffe in die Umgebung zu begrenzen, wurde von Mai bis Oktober 1986 eine als "Sarkophag" bekannte Konstruktion aus Beton und Stahl um den zerstörten Reaktor errichtet. Wegen der Dringlichkeit blieb keine Zeit für eine detaillierte Planung. 2016 wurde mit internationaler Unterstützung eine etwa 110 Meter hohe Schutzhülle - das "New Safe Confinement" - über den ursprünglichen Sarkophag geschoben und 2019 betriebsbereit in die Verantwortung der Ukraine übergeben. Die Schutzhülle ist rund 165 Meter lang und besitzt eine Spannweite von ungefähr 260 Metern; ihre projektierte Lebensdauer beträgt 100 Jahre. Der Rückbau des alten Sarkophags sowie die Bergung und sichere Endlagerung des darin enthaltenen radioaktiven Materials stehen als nächste Herausforderung an. Konsequenzen für den Notfallschutz in Deutschland Über die Folgen des Reaktorunfalls von Tschornobyl ( russ. : Tschernobyl) für die Organisation und Umsetzung des radiologischen Notfallschutzes in Deutschland informiert der Artikel " Entwicklung des Notfallschutzes in Deutschland " Medien zum Thema Mehr aus der Mediathek Tschornobyl (russ. Tschernobyl) Was geschah beim Reaktorunfall 1986 in Tschornobyl? In Videos berichten Zeitzeugen. Broschüren und Bilder zeigen die weitere Entwicklung. Stand: 15.01.2025

Recycling und Langzeitstabilität von thermoelektrischen und magnetokalorischen Systemen, Teilvorhaben: Erarbeitung einer Recycling-Route von TE-Material am Beispiel von Tellur

Das Projekt "Recycling und Langzeitstabilität von thermoelektrischen und magnetokalorischen Systemen, Teilvorhaben: Erarbeitung einer Recycling-Route von TE-Material am Beispiel von Tellur" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: MaTeck Material-Technologie & Kristalle GmbH.

GEMAS – Geochemische Kartierung der Acker- und Grünlandböden Europas, Einzelelementkarten, Te - Tellur

GEMAS (Geochemical Mapping of Agricultural and Grazing Land Soil in Europe) ist ein Kooperationsprojekt zwischen der Expertengruppe „Geochemie“ der europäischen geologischen Dienste (EuroGeoSurveys) und Eurometeaux (Verbund der europäischen Metallindustrie). Insgesamt waren an der Durchführung des Projektes weltweit über 60 internationale Organisationen und Institutionen beteiligt. In den Jahren 2008 und 2009 wurden in 33 europäischen Ländern auf einer Fläche von 5 600 000 km² insgesamt 2219 Ackerproben (Ackerlandböden, 0 – 20 cm, Ap-Proben) und 2127 Grünlandproben (Weidelandböden, 0 – 10 cm, Gr-Proben) entnommen. In den Proben wurden 52 Elemente im Königswasseraufschluss, 41 Elemente als Gesamtgehalte sowie TC und TOC bestimmt. Ergänzend wurde in den Ap-Proben zusätzlich 57 Elemente in der mobilen Metallionenfraktion (MMI®) sowie die Bleiisotopenverhältnisse untersucht. Alle analytischen Untersuchungen unterlagen einer strengen externen Qualitätssicherung. Damit liegt erstmals ein qualitätsgesicherter und harmonisierter geochemischer Datensatz für die europäischen Landwirtschaftsböden mit einer Belegungsdichte von einer Probe pro 2 500 km² vor, der eine Darstellung der Elementgehalte und deren Bioverfügbarkeit im kontinentalen (europäischen) Maßstab ermöglicht. Die Downloaddateien zeigen die flächenhafte Verteilung der mit verschiedenen Analysenmetoden bestimmten Elementgehalte in Form von farbigen Isoflächenkarten mit jeweils 7 und 72 Klassen.

Entwicklung von nanoskaligen Trennmedien und Konstruktion einer kontinuierlichen Anlage für die Aufbereitung von PV-Modulen

Das Projekt "Entwicklung von nanoskaligen Trennmedien und Konstruktion einer kontinuierlichen Anlage für die Aufbereitung von PV-Modulen" wird/wurde gefördert durch: Deutsche Bundesstiftung Umwelt. Es wird/wurde ausgeführt durch: saperatec GmbH.Das Vorhaben der saperatec GmbH unterteilt sich in zwei Aufgabengebiete: Zum einen werden auf Basis vorhandener Erkenntnisse zu nanoskaligen Trennmedien herstellerspezifische Rezepturen mit wirtschaftlicher Trennwirkung im Labormaßstab entwickelt, mit denen Rohstoffe aus Dünnschichtmodulen zu über 95% zurückzugewonnen werden können. Zum anderen widmet sich das Projekt der Konzipierung einer automatisierten Anlagentechnik, durch die das entwickelte Trennverfahren industriell nutzbar gemacht werden soll. Die Notwendigkeit der Entwicklung ergibt sich aus der Tatsache, dass derzeitige kommerzielle Aufbereitungs- bzw. Verwertungsverfahren nicht in der Lage sind, den Modulverbund zu öffnen, um Rohstoffe wie Indium, Gallium, Germanium, Tellur, Selen, oder auch als gefährlich eingestufte Stoffe wie Cadmium wiederzugewinnen. Vielmehr finden umweltseitig als unbedenklich eingestufte PV-Module lediglich in geringwertigen Verwertungsstrukturen (Beispiel Schaumglasproduktion) Anwendung. Die strategischen Rohstoffe gehen verloren. Gefährlich eingestufter Abfall kommt in Sonderabfalldeponien zur Einbringung. Insgesamt betrachtet kann man davon ausgehen, dass die im Stand der Technik abgebildeten Recyclingaktivitäten zu einem Verlust wichtiger Rohstoffe für die Wirtschaft führen.

Schadstofffreisetzung aus Photovoltaik-Modulen - PV Schadstoffe

Das Projekt "Schadstofffreisetzung aus Photovoltaik-Modulen - PV Schadstoffe" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Universität Stuttgart, Institut für Photovoltaik.In einer vorangegangenen 'Worst-Case-Studie', welche ebenfalls am Institut für Photovoltaik (ipv) in Zusammenarbeit mit dem Institut für Siedlungswasserbau, Wassergüte- und Abfallwirtschaft (ISWA) durchgeführt wurde, konnte gezeigt werden, dass die in Photovoltaik-Modulen enthaltenen Schadstoffe, wie Blei, Cadmium und Tellur austreten können. Im Rahmen des gegenwärtigen Forschungsprojektes werden die Wege der Schadstofffreisetzung untersucht. Dabei sollen insbesondere Effekte wie Delamination der Module, instabile Schichten, Beeinflussung von benachbarten Schichten sowie der Mechanismus der Freisetzung selbst analysiert werden. Die Untersuchungen werden an den folgenden vier Modularten durchgeführt: c-Si, a-Si, CdTe und CIGS. Das Projektziel ist es, mögliche Schwachstellen in den Modulen aufzuzeigen und somit in Zukunft das Austreten von Schadstoffen zu verhindern.

Langlebige Organische Tandemsolarzellen-ModulE (LOTsE)^Morphologische Charakterisierung von Organischen Solarzellen: Bauteilcharakterisierung und 3D Elektronenmikroskopie^Entwicklung neuer Materialien, optimierter Device-Architekturen und Fertigungsprozesse für organische p-i-n Tandem-Solarzellen^Langlebige Organische Tandemsolarzellen-ModulE (LOTsE)^Morphologische Charakterisierung von Organischen Solarzellen: Korrelation von Funktion, Effizienz und 3D Materialnetzwerken^Synthese kurzwelliger Merocyaninfarbstoff- Absorbermaterialien^Morphologische Charakterisierung von Organischen Solarzellen: Probenpräparation für Labor- und In-line Bauelemente (LOTsE-3D-Präparation)^Langlebige Organische Tandemsolarzellen-ModulE (LOTsE)^Langlebige Organische Tandemsolarzellen-ModulE (LOTsE), Synthese und Charakterisierung von konjugierten Oligomeren mit Absorption im NIR-Bereich für langlebige und leistungsstarke Organischen Solarzellen

Das Projekt "Langlebige Organische Tandemsolarzellen-ModulE (LOTsE)^Morphologische Charakterisierung von Organischen Solarzellen: Bauteilcharakterisierung und 3D Elektronenmikroskopie^Entwicklung neuer Materialien, optimierter Device-Architekturen und Fertigungsprozesse für organische p-i-n Tandem-Solarzellen^Langlebige Organische Tandemsolarzellen-ModulE (LOTsE)^Morphologische Charakterisierung von Organischen Solarzellen: Korrelation von Funktion, Effizienz und 3D Materialnetzwerken^Synthese kurzwelliger Merocyaninfarbstoff- Absorbermaterialien^Morphologische Charakterisierung von Organischen Solarzellen: Probenpräparation für Labor- und In-line Bauelemente (LOTsE-3D-Präparation)^Langlebige Organische Tandemsolarzellen-ModulE (LOTsE)^Langlebige Organische Tandemsolarzellen-ModulE (LOTsE), Synthese und Charakterisierung von konjugierten Oligomeren mit Absorption im NIR-Bereich für langlebige und leistungsstarke Organischen Solarzellen" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Universität Ulm, Institut für Organische Chemie II und Neue Materialien.Ziel des Projektes ist die (Weiter-)Entwicklung und Herstellung von neuartigen organischen Farbstoffen, die einen größeren Teil des Sonnenlichtes vor allem im roten und nahinfraroten Spektralbereich stark absorbieren und gleichzeitig Halbleiter sind. Mit diesen Eigenschaften sind diese Materialien zum Einsatz in der Organischen Photovoltaik, einer neuen und preiswerten Zukunftstechnologie der regenerativen Energieerzeugung mit visionären Anwendungsmöglichkeiten, prädestiniert und sollen zu Organischen Solarzellen mit Wirkungsgraden über 10Prozent führen. Durch die Verwendung solcher synthetisch hergestellten molekularen Materialien wird die Organische Photovoltaik nachhaltig, weil sie unabhängig von verknappenden und teilweise hochgiftigen und deshalb ökologisch nicht vertretbaren Elementen, wie z.B. Cadmium, Tellur, Selen, Indium oder Gallium, die in anorganischen Dünnschichtsolarzellen Einsatz finden, ist. Die nur sehr geringe benötigte Materialmenge und deren energieschonende Herstellung führt zu einer sehr kurzen 'Energie-Rückzahlzeit' bei Organischen Solarzellen und im Gegensatz zu den etablierten Technologien zu einem stark verringertem Ausstoß des Treibhausgases CO2 bei der Herstellung.

Losses and environmental aspects of a byproduct metal: tellurium

Global demand for tellurium has greatly increased owing to its use in solar photovoltaics. Elevated levels of tellurium in the environment are now observed. Quantifying the losses from human usage into the environment requires a life-cycle wide examination of the anthropogenic tellurium cycle (in analogy to natural element cycles). Reviewing the current literature shows that tellurium losses to the environment might occur predominantly as mine tailings, in gas and dust and slag during processing, manufacturing losses, and in-use dissipation (situation in around 2010). Large amounts of cadmium telluride will become available by 2040 as photovoltaic modules currently in-use reach their end-of-life. This requires proper end-of-life management approaches to avoid dissipation to the environment. Because tellurium occurs together with other toxic metals, e.g. in the anode slime collected during copper production, examining the life-cycle wide environmental implication of tellurium production requires consideration of the various substances present in the feedstock as well as the energy and material requirements during production. Understanding the flows and stock dynamics of tellurium in the anthroposphere can inform environmental chemistry about current and future tellurium releases to the environment, and help to manage the element more wisely. Quelle: http://www.publish.csiro.au

Teilvorhaben 5: Schwarzwald: Modifikation und Erhaltung hydrothermaler Lagerstätten^r4 - Wirtschaftsstrategische Rohstoffe, Verbundvorhaben: ResErVar - Ressourcenpotential hydrothermaler Lagerstätten der Varisziden^Teilvorhaben 4: Erzgebirge: Metallogenese magmatisch-hydrothermaler Systeme, Teilvorhaben 3: Rheinisches Schiefergebirge: Architektur hydrothermaler Systeme, Lagerstättengenese und Explorationskriterien

Das Projekt "Teilvorhaben 5: Schwarzwald: Modifikation und Erhaltung hydrothermaler Lagerstätten^r4 - Wirtschaftsstrategische Rohstoffe, Verbundvorhaben: ResErVar - Ressourcenpotential hydrothermaler Lagerstätten der Varisziden^Teilvorhaben 4: Erzgebirge: Metallogenese magmatisch-hydrothermaler Systeme, Teilvorhaben 3: Rheinisches Schiefergebirge: Architektur hydrothermaler Systeme, Lagerstättengenese und Explorationskriterien" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: RWTH Aachen University, Fachgruppe für Geowissenschaften und Geographie, Institut für Mineralogie und Lagerstättenlehre.

r4 - Wirtschaftsstrategische Rohstoffe, Verbundvorhaben: WISTAMERZ - Prognose wirtschaftsstrategischer Hochtechnologiemetalle am Beispiel des Erzgebirges, Teilvorhaben 1: Rohstoffprognose und Ressourcen-ökonomische Bewertung

Das Projekt "r4 - Wirtschaftsstrategische Rohstoffe, Verbundvorhaben: WISTAMERZ - Prognose wirtschaftsstrategischer Hochtechnologiemetalle am Beispiel des Erzgebirges, Teilvorhaben 1: Rohstoffprognose und Ressourcen-ökonomische Bewertung" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: BEAK Consultants GmbH.Das Ziel des Vorhabens besteht in der Entwicklung und Anwendung neuer Verfahren zur Perspektivitätsprognose auf wirtschaftsstrategische Hochtechnologiemetalle (wie z.B. In, Ge, Se, Te, Sb, Ta) am Beispiel des Erzgebirges. Aufbauend auf einer Kombination von Maßnahmen zur Gewinnung von Neudaten, deren Integration mit vorhandenen geowissenschaftlichen Daten und Modellvorstellungen, und der Entwicklung von neuen Auswerteverfahren (neuronale Netze, fuzzy logic, andere daten- und wissensbasierte Verfahren) soll eine prinzipiell neue Stufe der Datenintegration und Prognosetiefe erzielt werden. Die Vorstellungen zur Metallogenie des Erzgebirges sollen hinsichtlich der stofflichen Inhalte und räumlichen Verbreitung der Mineralisationen sowie deren zeitlicher Abfolge und genetische Bindung substanziell vertieft und abschließend in einer neuen metallogenetischen Karte dargestellt werden. Aufbauend darauf sind entsprechende Prospektions- und Bewertungskriterien zu ermitteln und konkrete Höffigkeitsflächen auszuhalten, welche anschließend mit privatem Kapital weiter untersucht werden. Das Vorhaben besteht aus 7 Arbeitspaketen: AP 1: Geochemie und Mineralogie der WHTM in Bachsedimenten und Erzen AP 2: Geochronologie metallogenetischer Ereignisse AP 3: Prinzipielle Extrahierbarkeit der WHTM aus potenziellen Erzen AP 4: Datenintegration1 - Metallogenie AP 5: Datenintegration 2 - Rohstoffprognosen, Potentialkarten, Metallogenetische Karte AP 6: Ressourcen-ökonomische Bewertung AP 7: Koordination, Öffentlichkeitsarbeit, Projektinfrastruktur.

1 2 3 4 5126 127 128