API src

Found 303 results.

Teil ARP

Das Projekt "Teil ARP" wird vom Umweltbundesamt gefördert und von ARP-Asphaltmischwerke Rheinhessen-Pfalz GmbH & Co.KG durchgeführt. Ziel des Vorhabens ist die Optimierung des Ressourcenverbrauchs bei der Herstellung und Anwendung von Asphaltprodukten. Dazu soll ein möglichst hoher Anteil an RC-Produkten wie Gleisschotter, RC-Sande, Asphaltfräsgut und Mischkunststoffabfällen verwendet werden. Dies schont die mineralischen Baustoffreserven und minimiert den Bedarf an frischem Bitumen. Altkunststoff als Bindemittel wird zudem nicht gesondert modifiziert, sondern direkt in einem Arbeitsschritt im Mischer zusammengeführt. Die Altkunststoffe senken die Mischtemperatur. Diese Vorgehensweise führt zu einer Prozessverkürzung, einem geringeren Energiebedarf, einer Verringerung der Luftemission und zu längeren Standzeiten der Mischaggregate und auch der Asphaltflächen. In Laborversuchen wird die Zusammensetzung des Asphalts optimiert und anhand von genormten Prüfmethoden getestet. Für die Asphaltmischanlage werden die Parameter Mischtemperatur, Mischdauer und Mischergeometrie optimiert. Recycling-Asphalt wird auf einer Musterfläche eingebaut und unter realen Bedingungen getestet. Die Ergebnisse des Projektes sollen eine Baustoffzulassung für einen RC-Asphalt ermöglichen.

Teil ICT

Das Projekt "Teil ICT" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Chemische Technologie durchgeführt. Ziel des Vorhabens ist die Optimierung des Ressourcenverbrauchs bei der Herstellung und Anwendung von Asphaltprodukten. Dazu soll ein möglichst hoher Anteil an RC-Produkten wie Gleisschotter, RC-Sande, Asphaltfräsgut und Mischkunststoffabfällen verwendet werden. Dies schont die mineralischen Baustoffreserven und minimiert den Bedarf an frischem Bitumen. Altkunststoff als Bindemittel wird zudem nicht gesondert modifiziert, sondern direkt in einem Arbeitsschritt im Mischer zusammengeführt. Die Altkunststoffe senken die Mischtemperatur. Diese Vorgehensweise führt zu einer Prozessverkürzung, einem geringeren Energiebedarf, einer Verringerung der Luftemission und zu längeren Standzeiten der Mischaggregate und auch der Asphaltflächen. In Laborversuchen wird die Zusammensetzung des Asphalts optimiert und anhand von genormten Prüfmethoden getestet. Für die Asphaltmischanlage werden die Parameter Mischtemperatur, Mischdauer und Mischergeometrie optimiert. Recycling-Asphalt wird auf einer Musterfläche eingebaut und unter realen Bedingungen getestet. Die Ergebnisse des Projektes sollen eine Baustoffzulassung für einen RC-Asphalt ermöglichen.

Reduction of NOx emissions from coal fired boilers using low temperature catalysts - Demonstration Phase -

Das Projekt "Reduction of NOx emissions from coal fired boilers using low temperature catalysts - Demonstration Phase -" wird vom Umweltbundesamt gefördert und von Energie-Versorgung Schwaben AG durchgeführt. Objective: The use of an innovative, catalytically operative process to reduce NOx in exhaust gases from coal-fired steam boilers. The advantage of the DENOX unit is that it may be built on to existing plants, without major modification, thus saving time, money and avoiding shutdowns. General Information: This constract relates only to the fifth phase of the project (completion of the plant, commissioning and demonstration). The demonstration plant is constructed at the Heilbronn Power Station and removes the nitrogen from exhaust gases in the units 3 -6. Rather than use the DENOX unit as it is used in Japan, between the boiler outflow and air preheater (prior to the electric precipitator and the desulphurisation unit) it is installed after the desulphyrisation unit. Dust is filtered out by electric as the end product. The nitrogen in exhaust gases is selectively reduced by catalysts, with the addition of ammonia to break down the NOx into nitrogen and water vapour. The exhaust gases emerging from desulphyurisation, at about 50 deg. C, are heated to required reaction temperature prior to passing into the DENOX-reactor. Since the process causes no major heat loss in the reactor, the heat content of the clean exhaust gases can largely be recovered before the gases are passed into the chimney, by using the gas preheater. In constant operation, the gases only have to be heated by the temperature difference corresponding to the hot side temperature approach of the heat exchanger system. For this task a natural gas burner is used. Before entry into the DENOX reactor, ammonia, in the firm of an air/ammonia mixture, is added to the exhaust gas in proportion to the quantity on NOx contained. In the reactor, nitrogen oxide is reduced, producing water vapour and N2 as end products. After passing through the DENOX reactor, the exhaust gases are passed through the heat recovery system and cooled to the chimney temperature before being passed through and removed. Achievements: The plant has operated in at load conditions according to the legal requirements and the suppliers quaranteed data. The NOx-emission is smaller than 200 mg/m3, the NH3-slip smaller than 0. 1 mg/m3. The pressure drop of the reactor is 9 mbar, of the total plant 24 mbar. The hot side temperature approach of the GAVO is lower than 30 deg. C. To compensate this temperature approach the consumption of natural gas is about 1400 m3/h at 100 per cent load. It takes around 7 hours to heat up the DENOX plant after a longer stoppage (cold start up). After a week-end shut down it lasts around 2. 5 - 3 hours and after a night-shut down 1 hour to set the plant into operation. First tests of the catalysts in a laboratory after a operation time of 3700 h showed no activity loss.

Cullet preheating

Das Projekt "Cullet preheating" wird vom Umweltbundesamt gefördert und von Sorg durchgeführt. Objective: To achieve considerable energy savings through use of preheated cullet in the glass melt. The waste gases, which up until now have been lost to the atmosphere, are taken as heating medium from the waste gas channel of the melting end. The procedure requires a considerably lower use of combustibles. For a 200 t/day production rate, an energy saving of 67 TOE/year is expected at project level (12 per cent of the total energy consumption). Payback time is estimated at 4 years. General Information: Principally glass is melted out of a composition of different raw materials, e.g. silica sand, lime, soda and glass cullet. Oil, gas or electrical energy can be used as heating media. The individual raw materials are mixed in the processing installation and are fed to a storage silo situated in front of the melting process by means of batch chargers. The initial temperature of the batch is 20 deg. C, whereas the melting temperature ranges between 1400-1500 deg. C. The waste gases are primarily fed again into the melting process by means of heat exchangers (regenerators) or recuperator, thus reducing the waste gas temperature to approx. 500 deg. C by preheating the combustion air. The novelty of this project consists in preheating the glass cullet prior to the mixing with other raw materials, by covering the waste gases energy at a level of approx. 500 deg. C. The glass cullet is firstly led to a preheating aggregate. The humidity of the cullet can be reduced by this preheating, which results in improved conditions for the melting process. The main characteristic of this system is the direct contact between cullet and waste gases. Up until now the gases from the melting durnace have been cooled down to approx. 400-500 deg. C in recuperators or regenerator heat exchangers, and then released into the atmosphere, in most cases without any further waste gas treatment. With the new system the residual heat content of the waste gas is used to pre-heat the cullet. If the system is correctly designed, then not only is the cullet heated, but the dust content of the waste gas is reduced by approximately 30-40 per cent. The cullet is contained by louvred segments. The openings for the waste gases are designed so that the gas velocities are very low, which helps to reduce the dust emission. The waste gases, which must have a maximum temperature of no more than 550 deg. C, move in cross counter flow up through the cullet. In this way a large amount of the heat content of the waste gases is transferred to the cullet as it flows slowly from the top to the bottom. The cullet stream moves continuously, so the contact area is continuously renewed, which guarantees a very good heat exchange. The cullet is heated to a maximum of 450 deg. C, whilst the waste gas leaves the system with a temperature of 250-300 deg. C. In addition to the energy savings, the project will also achieve improved glass qualitites, and reduced reject rates due to the better furnace...

Polymeric meat exchangers for heat recovery of sour coal refuse combustion gases and hot water utilization at 80-120 deg. C

Das Projekt "Polymeric meat exchangers for heat recovery of sour coal refuse combustion gases and hot water utilization at 80-120 deg. C" wird vom Umweltbundesamt gefördert und von GEA Luftkühlergesellschaft Happel, Hauptabteilung Forschung und Entwicklung durchgeführt. Objective: - Recovery of waste energy, presently destroyed in a FGD or in the atmosphere, shall be demonstrated with the use of modern heat exchangers. - With the selected combination of cost-optimized polymeric materials, the region of widely encountered heat exchanger wall temperatures of less than abt. 150 deg. C shall be utilized economically to produce hot water up to abt. 120 deg. C and to allow heating of gas using zero-leckage recuperative systems. - Acid condensation on the heat exchangers shall be provoked (low pollution) and withstood over a long service life. Disadvantages of the materials PFA and PTFE shall be avoided. Service life is compared with different materials by applications made in parallel and purposely performed secondary tests. General Information: - Suitability of novel polymeric material combinations compared with single-wall polymeric materials will be demonstrated. - Waste hot flue gases from coal fired stations/refuse incinerators are cooled down to a region where acids would condense for the purpose of energy recovery and reduction of environmental pollution. The recovered energy is introduced operationally safe into a cleaned gas flow. - In a Munich power station the flue gas that was cleaned to a low SO2/m3 level before is heated up with flue gas energy without the use of operation steam and without transferring acid-containing ashes. - Individual operation parameters of the heat exchangers and of each cycle can be seen from Flow Sheet 33 99 0528 01 Rev.1. For the purposely performed secondary tests two recuperative heat exchangers of an adjacent plant operating purely as refuse incinerator are used. - The flow sheet 'GEA DAGAVO for FGD', is an example for a conventional clean gas heating system with steam at 10 bar. - In order to achieve a global market introduction of energy saving heat exchanger systems with tubes made of polymeric materials, the following properties of the various tube materials shall be successfully demonstrated. 1. FLUE GAS - Price/performance ratio/service life of, for instance, a PVDF/FEP tube wall = 150 C wall temperature was to be inferior to that of solid-wall PTFE tubes. While both the tested combinations/the pure PTFE tubes do not exhibit a sufficiently safe operation, the PFA tube with advanced QA parameters are complying with the requirements. - The problems of frequent failures on PTFE tubes shall be reduced towards zero by applying novel fabrication, quality assurance procedures of the compound material tubes. Characteristic data for e.g. 160 C PFA/PTFE tube wall temperature should be superior to the solid-wall PFA tubes exposed to similar stress. However, it emerged that optimized PFA tubes used in this programme performed best. Inappropriate behaviour of unsuitable PFA tubes was demonstrated. And by way of the improved QA programme used, this malfunction could be detected at a very early stage before the tubes were actually installed in the heat exchangers. This required...

Entwicklung von Kryotechniken für die Zucht von Honigbienen

Das Projekt "Entwicklung von Kryotechniken für die Zucht von Honigbienen" wird vom Umweltbundesamt gefördert und von AMP - Lab. Labor für Angewandte Molekulare Physiologie GmbH durchgeführt. Ziel ist die Schaffung von Methoden zur Dauerlagerung von Honigbienen-Sperma. Eine solche Methode wäre ein wertvolles Instrument, um die Krise der Bienenwirtschaft durch Zucht krankheitsresistenter Linien zu lindern. Natürliche Ressourcen würden mittelbar durch die Stützung der Bestäubung durch Bienen geschützt. Da zur Konservierung des Spermas neuartige Ansätze getestet werden, sind außerdem bedeutende Innovationen im Bereich der Lagerung auch anderer Zelltypen zu erhoffen. Das Projekt ist auf drei Jahre angelegt. Arbeitsplanung: Zunächst sollen Verfahren zur schnellen und zuverlässigen Bestimmung der Qualität von Drohnensperma entwickelt und validiert werden. Diese werden dann verwendet, um drei Ansätze zur Lagerung des Spermas zu erproben. Dabei handelt es sich um herkömmliches 'slow freezing' (Ausfrieren von Zellwasser durch kontrollierte Abkühlung), Kryoprotektiva-arme Vitrifikation (Überführung in einen glasähnlichen Zustand durch sehr rasche Abkühlung) und Lagerung unter anhydrobiotischen Verhältnissen (Unterbrechung der Lebensvorgänge durch Ersatz von Wasser durch zellstabilisierende Stoffe, die später wieder entfernt werden können). Speziell der letzte Ansatz ist völlig neuartig. Zur Ergebnisverwertung im Bienensektor ist mittelfristig die Erarbeitung eines Kits zur Spermalagerung für den Gebrauch durch Züchter geplant, längerfristig auch die Einrichtung einer Kryo-Bank für Zuchtzwecke und zum Erhalt der gefährdeten Biodiversität von Hautflüglern. Neben der Vermarktung des Kits für die Konservierung von Bienensperma besteht der größte Nutzen für den Industriepartner AMP-Lab in der möglichen Übertragung der Ergebnisse auf die Konservierung von Sperma anderer Nutztiere (Schwein und Geflügel) oder auf Stammzellen von Insekten (wichtig in der Grundlagenforschung) oder auch des Menschen (wichtig für autologe Stammzelltherapien).

Entwicklung von Kryotechniken für die Zucht von Honigbienen

Das Projekt "Entwicklung von Kryotechniken für die Zucht von Honigbienen" wird vom Umweltbundesamt gefördert und von Länderinstitut für Bienenkunde Hohen Neuendorf e.V. durchgeführt. Ziel ist die Schaffung von Methoden zur Dauerlagerung von Honigbienen-Sperma. Eine solche Methode wäre ein wertvolles Instrument, um die Krise der Bienenwirtschaft durch Zucht krankheitsresistenter Linien zu lindern. Natürliche Ressourcen würden mittelbar durch die Stützung der Bestäubung durch Bienen geschützt. Da zur Konservierung des Spermas neuartige Ansätze getestet werden, sind außerdem bedeutende Innovationen im Bereich der Lagerung auch anderer Zelltypen zu erhoffen. Das Projekt ist auf drei Jahre angelegt. Zunächst sollen Verfahren zur schnellen und zuverlässigen Bestimmung der Qualität von Drohnensperma entwickelt und validiert werden. Diese werden dann verwendet, um drei Ansätze zur Lagerung des Spermas zu erproben. Dabei handelt es sich um herkömmliches 'slow freezing' (Ausfrieren von Zellwasser durch kontrollierte Abkühlung), Kryoprotektiva-arme Vitrifikation (Überführung in einen glasähnlichen Zustand durch sehr rasche Abkühlung) und Lagerung unter anhydrobiotischen Verhältnissen (Unterbrechung der Lebensvorgänge durch Ersatz von Wasser durch zellstabilisierende Stoffe, die später wieder entfernt werden können). Speziell der letzte Ansatz ist völlig neuartig. Zur Ergebnisverwertung im Bienensektor ist mittelfristig die Erarbeitung eines Kits zur Spermalagerung für den Gebrauch durch Züchter geplant, längerfristig auch die Einrichtung einer Kryo-Bank für Zuchtzwecke und zum Erhalt der gefährdeten Biodiversität von Hautflüglern. Neben der Vermarktung des Kits für die Konservierung von Bienensperma besteht der größte Nutzen für den Industriepartner AMP-Lab in der möglichen Übertragung der Ergebnisse auf die Konservierung von Sperma anderer Nutztiere (Schwein und Geflügel) oder auf Stammzellen von Insekten (wichtig in der Grundlagenforschung) oder auch des Menschen (wichtig für autologe Stammzelltherapien).

D 6.1: Improving fruit set and quality standards of mango in the mountainous area of Vietnam

Das Projekt "D 6.1: Improving fruit set and quality standards of mango in the mountainous area of Vietnam" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Kulturpflanzenwissenschaften, Fachgebiet Ertragsphysiologie der Sonderkulturen (340f) durchgeführt. A major problem in mango production in Northern Vietnam is a premature fruit drop. However, the underlying plant processes in response to environmental and/or crop management factors are not understood. There is a general belief that this phenomenon is caused by different combinations of stressing factors which may vary between different regions and sites. In the mountainous area of northern Vietnam (Son La Province), fruit drop in mango may be caused by relatively hot, dry prevailing winds which typically occur in February/March. Consequently, it has to be determined which plant process responds sensitively to specific environmental conditions and subsequently causes, through its alteration, premature fruit drop. The identification of the physiological basis of premature fruit drop not only is of scientific interest but also of commercial significance, allowing the development of effective, fruit drop reducing crop management strategies and thus ensuring a economically sustainable cultivation of mango in this region. The research project has two main parts; environmental crop physiology and fruit quality. The environmental crop physiology part investigates whether premature fruit drop is caused by high temperature/vapour pressure deficit (VPD) conditions and related to: 1. temperature dependence of pollen tube growth and flower quality; 2. altered carbon fixation and carbon partitioning between sources (leaves) and sinks (fruit), thus possible limitations of carbon supply to developing mango fruit; 3. altered basipetal auxin export from fruit and fruit ethylene concentration. The fruit quality part will primarily carry out sensory fruit analyses and establish harvest quality criteria with the aim to improve the economic returns and thereby the economic situation of the fruit growers in the long-term.

Bogie hearth Annealing Furnace

Das Projekt "Bogie hearth Annealing Furnace" wird vom Umweltbundesamt gefördert und von STAMA Hahne Stahl- und Maschinenbaugesellschaft GmbH durchgeführt. Objective: The steel processing industry necessitates a thermical treatment of constructions in form of welded constructions, cast steel constructions or a combination of both. The applied heat treatments are stress relieving, tempering, solution heat treatment and normalizing just to mention the most important ones. All procedures have in common the annealing of the construction to a certain temperature, holding the temperature for a certain amount of time and the subsequent cooling to room temperature. The energy hereby used is mostly natural gas or mineral oil transformed into heat which in a later stage is lost to the atmosphere. This is where the following project comes in: Our aim was to considerably reduce the amount of energy used by the help of novel isolation material, optimized gas burners and a precise temperature regulating system. The theoretical reflections had shown that energy could be saved up to an amount of 50 per cent compared with conventional installations. General Information: The furnace designed by STAMA is a boogie furnace. This means that the load to be annealed is placed on a trolley which is then pushed into the interior of the furnace. A door in the front shuts the furnace completely. The heating up is supplied by burners which are installed inside the furnace. The switching on/off of the burners initiated by the computerized control system guarantees a regular flow of the temperature. The necessary information for the control system is supplied by thermo elements arranged in the interior of the furnace. The carrier of the furnace consists of a steel construction with profiles. Rolled steel plates cover the construction at the surface of the furnace. Moving now to the inside of the furnace: Along both sides of the steel construction starting at the height of the edge of the trolley up to approx. half of the height of the construction recesses from the chambers for the burners. In the ceiling of these chambers the burners are vertically arranged. The door of the furnace is fitted at the front and consists of two parts, namely two frames formed by hot rolled channels with rounded edges and covered by rolled steel plates on the front. The inside walls, the ceiling/the inside of the door is isolated by multi-layer ceramic fibres. The trolley forms the ground of the furnace. It consists of a frame construction with seven axels with two wheels each. The axels are the same as the ones used by the railway. The top of the trolley consists of fire-proof cement resistent to high pressure. Opposite the interior of the furnace the lower side of the trolley is isolated by a labyrinth filled with sand. In the ceiling of the furnace there are six chimneys. They serve as a valve during the process of firing and remain open during the process of cooling. With the help of pneumatic positioning the control system regulates the opening/closure of the chimney flaps. The control system consists of eight regulators...

Erweiterung Wärmenetz Weil am Rhein

Das Projekt "Erweiterung Wärmenetz Weil am Rhein" wird vom Umweltbundesamt gefördert und von Stadt Weil am Rhein, Stadtwerke durchgeführt. Reduzierung der C02 Emissionen, Reduktion des Einsatzes von fossilen Energieträgern und Erhöhungder lokalen Wertschöpfung. Durch die Erschließung des benachbarten Baugebietes 'Hohe Straße', der Bebauung des Bereichs 'Messeplatz' und der geplanten Erweiterung des Wärmenetzes in den Westteil der Stadt Weil am Rhein können in erheblichem Maße neue Wärmekunden erschlossen werden. Parallel zum Ausbau der Wärmeleitungen, welche in den Jahren 2017 und 2018 erfolgen sollen, ist in den Folgejahren mit einem erheblichen Zuwachs an Wärmekunden zu rechnen. Für die Heizperiode 2017/18 kann der zu erwartende Zubau an Wärmekunden durch das erneuerte, leistungsstärkere BHKW und den zusätzlichen Pufferspeicher abgedeckt werden. Zur Heizperiode 2018/19 ist der Bau und die Inbetriebnahme einer zusätzlichen Heizzentrale auf der Basis von Biomasse geplant. Diese Biomassezentrale wird verkehrsgünstig an der Zufahrtstraße von Westen errichtet. Die Anlage ist als Rostfeuerung konzipiert, um auch qualitativ schlechteres Material (Landschaftspflegeholz, holziges Material Grünschnittsammelplätze) zu verwerten. Die Anlage wird neben einem qualitativ hochwertigen Elektrofilter mit einer Abgaskondensation und einer Entschwadungsanlage ausgestattet. Wesentliches Ziel ist es, die Rücklauftemperaturen des Wärmenetzes auf ein absolut technisches Minimalniveau abzusenken. Mit dieser Vorgehensweise kann die Spreizung zwischen Vor- und Rücklauf optimiert werden und damit die Rohrdimensionen minimiert werden. In der Folge sind die Netzverluste durch die geringen Rohroberflächen sehr tief werden und die Ausbeute der Abgaskondensation kann maximiert werden.

1 2 3 4 529 30 31