API src

Found 30 results.

Wechselwirkungen zwischen saisonale arktische Meereisprozessen und Stabilität der Halokline – auf dem Weg zum Verständnis arktischer Gas- und Stoffflüsse

In Folge des globalen Klimawandels hat sich die Meereisdecke in der Arktis dramatisch verändert. Im derzeitigen Zustand spielt die arktische Eisdecke eine wichtige Rolle; so schirmt sie das Oberflächenwasser, die sogenannte arktische Halokline (Salzgehaltsschichtung), von der Erwärmung durch die sommerliche Sonneneinstrahlung ab. Zudem wird die Halokline durch die Salze, welches beim Gefrierprozess des Meerwassers aus der Kristallstruktur austritt, gebildet und stabilisiert. Gleichzeitig wirkt die Halokline als Barriere zwischen der Eisdecke und dem darunter liegenden warmen atlantischen Wasser und trägt so zum Erhalt der arktischen Meereisdecke bei. Dieses Gleichgewicht ist nun durch die insgesamt wesentlich dünnere arktische Meereisdecke und ihre verringerte sommerliche Ausdehnung gestört. Im Meerwasser sind zudem Gase und biogeochemisch wichtige Spurenstoffen enthalten. Diese werden durch die Gefrierprozesse eingeschlossen, beeinflusst und wieder ausgestoßen. So beeinflusst die Meereisdecke die Gas- und Stoffflüsse zwischen Atmosphäre, Eis und oberer Wasserschicht. Durch die Eisbewegung findet außerdem ein Transport statt z.B. in der sogenannten Transpolarendrift von den sibirischen Schelfgebieten, über den Nordpol, südwärts bis ins europäische Nordmeer. Nun wird mit den weitreichenden Veränderungen des globalen und arktischen Klimawandels bereits von der „neuen Arktis“ gesprochen, da angenommen wird, dass sich die Arktis bereits in einem neuen Funktionsmodus befindet. Dabei ist jedoch weitgehend unbekannt wie dieses neue System funktioniert, sich weiterentwickelt und wie sich dies auf die Eisbildungsprozesse und damit die Stabilität der Halokline und die damit verbundenen Gas- und Stoffflüsse auswirkt. Für solche Untersuchungen werden über den Jahresverlauf Proben der oberen Wassersäule und der Eisdecke benötigt. Ermöglicht wird dies durch die wissenschaftliche Initiative MOSAiC. Mithilfe der stabilen Isotope des Wassers (?18O und ?D) aus dem Eis und der Wassersäule kann Rückschlüsse auf die Herkunftswässer und den Gefrierprozess gezogen werden und diese Ergebnisse sollen in direkten Zusammenhang mit Gas- und biogeochemischen Stoffuntersuchungen (aus Partnerprojekten) gesetzt werden. Dabei können z.B. Stürme, Schmelzprozesse, Schneebedeckung, Teichbildung und Alterungseffekte des Eises eine Rolle spielen. Untersucht wird parallel die Veränderung der Wassersäule welche z.B. durch Wärmetransport, wiederum die Eisdecke beeinflussen kann.Diese prozessorientierten Untersuchungen der saisonalen Eisbildungsprozesse in Eis und Wassersäule der zentralen Arktis, werden einen wichtigen Beitrag zum Verständnis der Stabilität der arktischen Halokline und der arktischen Gas- und Stoffflüsse liefern. Da sich die Gase und Stoffe nicht-konservativ verhalten, während die Isotope im Gefrierprozess konservativ sind, erwarten wir aus der Diskrepanz wiederum wichtige Informationen z. B. über wiederholtes Einfrieren von Süßwasserbeimengungen ableiten zu können.

Über Kohlenstoff-Entnahme aus der Atmosphäre bis hin zum Erreichen des Ziels des Pariser Klimakommens: Temperature Stabilisation

Die anthropogenen Kohlendioxidemissionen (CO2) sind für den größten Teil der jüngsten globalen Oberflächenerwärmung der Erde um etwa 1°C gegenüber dem vorindustriellen Niveau verantwortlich. Das Land und die Ozeane nehmen derzeit etwa die Hälfte unserer Emissionen durch komplexe Prozesse des Kohlenstoffkreislaufs auf. Der Klimaantrieb durch anthropogene CO2-Emissionen hört erst auf, wenn ein Gleichgewicht zwischen CO2-Quellen und -Senken erreicht ist. Da es nicht realisierbar ist, alle CO2-Emissionen bis Mitte des 21. Jahrhunderts zu eliminieren, bestehen alle plausiblen zukünftigen Emissionsszenarien, die auf eine mit dem Pariser Abkommen übereinstimmende Temperaturstabilisierung anstreben, aus einem Portfolio menschlicher Aktivitäten, die Emissionssenkungen mit Maßnahmen zur so genannten Kohlendioxidentnahme (CDR) kombinieren, die die verbleibenden positiven Emissionen kompensieren sollen.Allerdings werden CDR-Maßnahmen wie die meisten anderen menschlichen Aktivitäten durch Emissionen von andere Treibhausgase als CO2 (z.B. Methan oder Distickstoffoxid), Aerosolen oder durch Landnutzungsänderungen zusätzliche Klimaveränderungen verursachen. Gegenwärtig machen diese weiteren Treibhausgase mehr als 40% der globalen Oberflächenerwärmung aus, während Aerosole einen Teil der Erwärmung ausgleichen. Darüber hinaus beeinflussen diese zusätzlichen Klimaeinflüsse den Kohlenstoffkreislauf, der wiederum Einfluss auf die atmosphärische CO2-Konzentration und damit auf die Oberflächentemperatur nimmt (Abb. 1). Diese Wechselwirkung beeinflusst die Menge der CO2-Entnahme, die durch CDR-Maßnahmen erforderlich ist, um eine Temperaturstabilisierung zu erreichen.Es ist daher wichtig, die vollständige Reaktion des Klimas auf spezifische menschliche Aktivitäten, einschließlich CDR-Maßnahmen, zu erfassen, um gut informiert Maßnahmen zur Temperaturstabilisierung ein zu leiten. Insbesondere die Untersuchung der Reaktion des Erdsystems auf realistische Portfolios künftiger anthropogener Aktivitäten erfordert die Einbeziehung aller damit verbundenen Klimafaktoren - CO2, andere Treibhausgase als CO2, Aerosole und Landnutzungsänderungen - um bestmögliche Einschätzungen der möglichen Wege zur Temperaturstabilisierung zu erhalten.

Spurenelement - Organisches Material Wechselwirkungen im Meerwasser: Erforschung der Auswirkungen der Meerwasserchemie auf die Speziation von Spurenmetallen in einem sich erwärmenden und versauernden Ozean

Spurenmetalle (TMs), definiert als weniger als 1 mg kg-1, sind entweder wichtige essentielle Nährstoffe (Fe, Mn, Co, Cu, Ni, Zn) für das mikrobielle Wachstum oder toxisch (Cu, Pb, Cd) bei erhöhten Konzentrationen im Meerwasser. Der Ozean ist derzeit von Sauerstoffmangel, Versauerung, Schichtung und Erwärmung betroffen, was zu Veränderungen in der chemischen Speziation von TMs führt, die von den physikalisch-chemischen Bedingungen (z. B. pH-Wert, Temperatur und Salzgehalt) abhängig sind. Während die Kenntnis der gelösten und partikulären Metalle Informationen über die Gesamtbestände liefert und die Identifizierung wichtiger Quellen von TM in der Meeresumwelt ermöglicht, ist die Kenntnis der chemischen Speziation für das Verständnis der Biogeochemie und der Bioverfügbarkeit oder Toxizität von TM von wesentlicher Bedeutung. So haben frühere Arbeiten gezeigt, dass anorganisches Fe in sauerstoffhaltigem Meerwasser schlecht löslich ist, die Konzentrationen von gelöstem Fe jedoch aufgrund der Komplexbildung durch organische Stoffe höher sind als erwartet. Das derzeitige Wissen über die Speziation von TMs wird jedoch für eine bestimmte Probe unter Laborbedingungen beobachtet (z. B. pH=8,0 auf der NBS-Skala), und daher fehlt eine mechanistische Verbindung zu den intrinsischen physikalisch-chemischen Eigenschaften des Meerwassers und deren Einfluss auf die Metallbindung an organisches Material. Hier entwickle ich neuartige Analyse- und Modellierungswerkzeuge und nutze die Wechselwirkungen zwischen Metallen, Resinen und organischen Stoffen, um die Speziation von TM mittels ICP-MS über einen weiten Bereich von pH-Werten genau zu bestimmen. Ich kombiniere diese Messungen mit einem Modell für Ionenpaarung und organische Stoffe (NICA-Donnan), um eine mechanistische Beschreibung der Wechselwirkungen zu entwickeln und dadurch unser Verständnis der Rolle von z. B. pH-Wert, Temperatur und Ionenstärke für den TM-Zyklus im Meer zu verbessern. Sobald diese Methodik erreicht ist, wird sie es uns ermöglichen, zum ersten Mal die TM-Speziation für mehrere Metalle gleichzeitig zu bestimmen, einschließlich der bisher häufig untersuchten Metalle und der TMs, bei denen neuere Hinweise aus der Isotopenhäufigkeit auf eine wichtige Rolle der Bindung an organisches Material hinweisen. Die abgeleiteten thermodynamischen Konstanten werden auch in regionale biogeochemische Modelle einfließen, um Vorhersagen über den biogeochemischen Kreislauf der TM auf mechanistischer Ebene unter zukünftigen Ozeanszenarien zu erhalten.

Schwerpunktprogramm (SPP) 2115: Synergie von Polarimetrischen Radarbeobachtungen und Atmosphärenmodellierung (PROM) - Verschmelzung von Radarpolarimetrie und numerischer Atmosphärenmodellierung für ein verbessertes Verständnis von Wolken- und Niederschlagsprozessen; Polarimetric Radar Observations meet Atmospheric Modelling (PROM) - Fusion of Radar Polarimetry and Numerical Atmospheric ..., Evaluierung und Verbesserung von konvektionszulassenden Simulationen des Lebenszyklus konvektiver Stürme mit Hilfe polarimetrischer Radardaten

Konvektive Stürme sind verantwortlich für Unwetter, wie z.B. großer Hagel, Sturzfluten und starke Windböen. Ein kritischer Faktor, der bestimmt, wie schädlich diese Ereignisse sind, ist die Wolkenmikrophysik innerhalb des konvektiven Systems. Die Prozesse der Wolkenmikrophysik tragen direkt zur Bildung von großem Hagel und Regen bei, verändern aber zusätzlich die Umgebung, in der sich die Konvektion durch latente Erwärmung und Abkühlung entwickelt. Diese Veränderungen in der Struktur des konvektiven Sturms wirken sich dann auch darauf aus, welche mikrophysikalischen Prozesse wo im Sturm aktiv sind . Über die Existenz dieser komplexen Wechselwirkungen wurde in zahlreichen Publikationen berichtet. Allerdings gibt es bisher keine Studien, die einen systematischen Ansatz zur Erforschung der Wechselwirkungen zwischen Wolkenmikrophysik und konvektiver Dynamik verfolgen. In diesem Projekt werden wir eine systematische Analyse der Wechselwirkungen zwischen den Prozessen der Wolkenmikrophysik, der Struktur konvektiver Systeme und dessen Lebenszyklus sowie der daraus resultierenden Unwetterlage durchführen. Modellsimulationen mit ICON (~1 km Auflösung) werden anhand der mikrophysikalischen Prozesse, der Sturmstruktur und des Lebenszyklus von Dual-Polarisations-Radardaten ausgewertet.Das Hauptziel dieses Projektes ist es, einen Rahmen für die Verbesserung der konvektionszulassenden Simulation von schweren konvektiven Wetterereignissen zu schaffen. Dies wird erreicht durch 1) Analyse der Prozesse der Wolkenmikrophysik, die für die Erzeugung von Niederschlägen, die zu einem Schadensereignis führen, am wichtigsten sind, 2) Evaluierung, wie gut der Lebenszyklus, die Sturmstruktur und die mikrophysikalischen Prozesse von konvektiven Stürmen, die von ICON simuliert werden, den polarimetrischen Radarbeobachtungen entsprechen. 3) Untersuchung der Empfindlichkeit der Sturmstruktur und des Lebenszyklus für die Darstellung mikrophysikalischer Prozesse.Daher wird das ICON-Modell modifiziert, um die mikrophysikalischen Prozessraten in 3D auszugeben. Mikrophysikalisches "Piggybacking" wird ebenfalls integriert, um rein mikrophysikalische Effekte von gekoppelten mikrophysikalisch-dynamischen Effekten zu trennen.Am Ende dieses Projektes werden wir in der Lage sein, die derzeitige Fähigkeit von ICON zusammenzufassen, konvektive Stürme und deren schädliche Niederschläge zu simulieren, zu identifizieren, welche Prozesse für die Erzeugung der schädlichen Niederschläge am wichtigsten sind, und Verbesserungen zu empfehlen, um aktuelle Mängel im Modellsystem zu beheben. Das Endergebnis wird nicht nur ein verbessertes Verständnis der realen und modellierten Konvektion sein, sondern auch spezifische Empfehlungen zur Verbesserung der Vorhersage von schädliche Niederschläge aus Konvektion geben.

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Algivore Cercozoa prägen die Zusammensetzung der Gemeinschaft von Bodenkrusten, der dominanten Vegetation in Polarregionen

Räuber-Beute-Beziehungen zwischen Bakterien und ihren eukaryotischen Räubern werden seit langem in der terrestrischen Ökologie untersucht, jedoch werden die Interkationen zwischen Mikroeukaryoten oft vernachlässigt. Mikroalgen nehmen eine Schlüsselposition als phototrophe Organismen in den marinen und Süßwasserökosystemen der Antarktis und Arktis ein; die meiste Energie und die meisten Nährstoffe werden durch diese zu höheren trophischen Ebenen kanalisiert. In diesem Kontext fehlen Studien in den terrestrischen Ökosystemen der Antarktis. Die terrestrische Vegetation der Antarktis wird dominiert durch kryptogamen Bewuchs mit einer Vielzahl und hoher Abundanz von Mikroalgen. Bis zu 55% des eisfreien Bodens der antarktischen Halbinsel und bis zu 70% im arktischen Spitzbergen werden von biologischen Bodenkrusten (Biokrusten) bedeckt. Diese Zahlen werden zukünftig auf Grund des Klimawandels und der daraus folgenden Erwärmung der Polarregionen steigen (“Arctic Greening”). Man kann daher annehmen, dass ein großer Anteil der Primärproduktion in den Polarregionen durch Mikroalgen in Biokrusten realisiert wird. Dennoch fehlt die Verbindung zu höheren trophischen Ebenen; insbesondere, wenn man bedenkt, dass in der Antarktis algenfressende Metazoen selten und artenarm sind. Cercozoa sind eine der häufigsten algenkonsumierenden einzelligen Eukaryoten (Protisten) in terrestrischen Systemen; vorläufige Ergebnisse zeigen: algenkonsumierende Cercozoa dominieren die mikrobielle Gemeinschaft in den Biokrusten der Polarregionen. Wir werden zum ersten Mal die Räuber-Beute-Beziehung in Biokrusten zwischen den Algen als Primärproduzenten und den wichtigsten Algenkonsumenten erforschen, um so ein vollständigeres Bild des terrestrischen Nahrungsnetzes in den beiden Polarregionen zu erhalten. Um das zu erreichen, kombinieren wir einen Barcode-basierten Hochdurchsatz-Illumina Ansatz mit klassischen Kulturexperimenten, welche Aufschluss über ökologische Funktionen der einzelnen Organismen liefern. Damit erhalten wir erstmalig ein umfassendes Bild der Räuber-Beute-Beziehung zwischen Mikroalgen und ihren Räubern, den Cercozoa, für das terrestrische Ökosystem in Arktis und Antarktis. Diese Daten werden zur Beantwortung der folgenden Fragen beitragen: Wie wichtig ist das terrestrische Nahrungsnetz in den Polarregionen? Und hat die Klimaerwärmung das Potential diese Interaktionen zu verändern?

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Pol zu Pol Austausch: Klima begünstigter Parasitendruck auf cyanobakterielle Matten und deren ökosystemare Antwort

Ein Vergleich der Artendiversität von antarktischen und arktischen Cyanobakterienmatten (Cyanomatten) durch unsere Arbeitsgruppe weist auf eine überraschend hohe Übereinstimmungsrate der Arten hin (Kleinteich et al. 2017). Da es höchst unwahrscheinlich ist, dass sich diese Arten unabhängig voneinander in beiden polaren Regionen entwickelten, wird vermutet, dass Vögel oder Aerosole den Transport von Cyanomatten von der Arktis in die Antarktis ermöglichen. Entsprechend untersucht dieses Projekt den Einfluss des Klimawandels auf die potentielle Etablierung von Temperatur-toleranteren, nicht-endemischen Cyanobakterien (Xeno-Cyano) und deren Parasiten (Xeno-Parasiten) in antarktischen Gebieten und welche Konsequenzen dies für das antarktische Cyanomatten-Ökosystem hat. Wir konnten durch frühere Experimente den Einfluss von erhöhter Temperatur auf die Artendiversität und Toxinproduktion in antarktischen Cyanomatten nachweisen (Kleinteich et al. 2012). Da antarktische Gebiete einem kontinuierlichen Verlust der Eisdecke ausgesetzt sind, liegt die Vermutung nahe, dass nicht-endemische Cyanobakterien bisher unbesiedelte Gebiete erschließen bzw. werden endemische Cyanobakterien aufgrund ihrer schlechteren Anpassung an nicht-endemische Parasiten aus bereits besiedelten Gebieten verdrängt. Entsprechend hat dieses Projekt vier Hauptziele: Fest zu stellen ob 1.) sich in historischen Cyanomatten (1902, Scott Expedition) und den letzten 30 Jahren (1990, 1999/2000, 2010, 2021/2022) aus Rothera, Byers Halbinsel und McMurdo diese Xeno-Cyano und -Parasiten nachweisen lassen; 2.) Cyanomatten aus Spitzbergen eine vergleichbare Speziesverteilung (Cyanobakterien, Viren und Pilze) aufweisen wie auf der antarktischen Halbinsel (vermuteter Haupteintragungsort arktischer Spezies über Aerosole oder Vögel); 3.) eine Temperaturerhöhung durch Plexiglasabdeckung in den Cyanomatten auf Rothera und Byers zu einer Veränderung der Cyanodiversität, Toxinproduktion und verstärkt Parasitierung durch Viren und Pilze führt; und 4.) die Infektion mit arktischen Cyanomatten und Temperaturerhöhung bei antarktischen Cyanomatten im Labor nachweislich zu Veränderungen der endemischen Cyanomattendiversität führt. Die Diversitätsanalyse der Cyanomatten erfolgt durch Illumina (16S, ITS, g20 Gene) und Shotgun Sequenzierung. Die Abundanz von Viren und Pilzen wird durch ddPCR bestimmt und der Nachweis der Cyanotoxine erfolgt durch PCR, ELISA und UPLC-MS/MS. Die erhobenen Daten dürften die Eroberung und hiermit profunde voranschreitende Veränderung des antarktischen Cyanomattensystems durch nicht-endemische Spezies nachweisen. Durch die SARS-Cov2 Pandemie konnte die Hypothese, dass Vögel die Vektoren von Cyanomatten-Material sind, nicht getestet werden. Dennoch werden wir Cyanomatten aus unmittelbarer Nähe zu Vogelnistplätzen in Spitzbergen untersuchen. GPS-tracking Daten sollten mögliche Zusammenhänge zwischen Vogelmigration und der Verbreitung nicht-endemischer Cyanos und ihrer Parasiten aufdecken.

Grundlagen des Klimawandels

<p>Seit der Industrialisierung steigt die durchschnittliche globale Lufttemperatur in Bodennähe. Wissenschaftliche Forschungen belegen, dass wir Menschen für den raschen Temperaturanstieg der letzten 100 Jahre verantwortlich sind. Deshalb sprechen wir von einer anthropogenen – vom Menschen verursachten – Klimaänderung.</p><p>Durch das Verbrennen fossiler Energieträger (wie zum Beispiel Kohle, Erdöl und Erdgas) und durch großflächige Entwaldung wird Kohlendioxid (CO2) in der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a>⁠ angereichert. Land- und Viehwirtschaft verursachen Emissionen von Gasen wie Methan (CH4) und Distickstoffmonoxid (Lachgas, N2O). Kohlendioxid, Methan und Lachgas gehören zu den treibhauswirksamen Gasen. Eine Ansammlung dieser Gase in der Atmosphäre führt in der Tendenz zu einer Erwärmung der unteren Luftschichten.</p><p>Informationen zu den Ursachen von Klimaänderungen, zur Zunahme von Treibhausgasen in der Atmosphäre und zum ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhauseffekt#alphabar">Treibhauseffekt</a>⁠ (natürlich und ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=anthropogen#alphabar">anthropogen</a>⁠) finden Sie auf der Seite&nbsp;<strong><a href="https://www.umweltbundesamt.de/themen/klima-energie/klimawandel/klima-treibhauseffekt">Klima und Treibhauseffekt</a></strong>.</p><p>Wir stellen auf der Seite&nbsp;<strong><a href="https://www.umweltbundesamt.de/themen/klima-energie/klimawandel/weltklimarat-ipcc">Weltklimarat</a></strong> den Zwischenstaatlichen Ausschuss für Klimaänderungen – ⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=IPCC#alphabar">IPCC</a>⁠ (Intergovernmental Panel on Climate Change) kurz vor. Zudem gibt es eine Übersicht zu den Erkenntnissen der letzten IPCC-Sachstandsberichte. Diese Berichte widmen sich den wissenschaftlichen Grundlagen der anthropogenen (durch den Menschen verursachten) ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimanderung#alphabar">Klimaänderung</a>⁠, den beobachteten Klimaänderungen und -folgen, den Projektionen künftiger Klimaänderungen, den Maßnahmen zur Minderung der Emissionen treibhauswirksamer Gase sowie den Maßnahmen zur Anpassung an projizierte (für die Zukunft berechnete) Klimaänderungen.</p><p>Seit dem vergangenen Jahrhundert erwärmt sich das Klima, wie wir aus Beobachtungs- und Messdaten wissen. Das globale Mittel der bodennahen Lufttemperatur stieg deutlich an, Gebirgsgletscher und Schneebedeckung haben im Mittel weltweit abgenommen und Extremereignisse wie Starkniederschläge und Hitzewellen werden häufiger. Mehr zu beobachteten Klimaänderungen erfahren Sie auf der Seite <strong><a href="https://www.umweltbundesamt.de/themen/klima-energie/klimawandel/beobachteter-klimawandel">Beobachteter Klimawandel</a></strong>.</p><p>Die Ausmaße und Auswirkungen der zukünftigen Klimaänderungen können nur durch Modellrechnungen nachgebildet werden, da vielfältige und komplexe Wechselwirkungen berücksichtigt werden müssen. Durch die Modellierung verschiedener denkbarer Szenarien lassen sich mögliche zu erwartende Klimaänderungen für das 21. Jahrhunderts ableiten. Auf der Seite <strong><a href="https://www.umweltbundesamt.de/themen/klima-energie/klimawandel/zu-erwartende-klimaaenderungen-bis-2100">Zu erwartende Klimaänderungen bis 2100</a></strong> können Sie sich über mögliche Entwicklungen informieren.</p><p>Die Themen Klimawandel und Klimaänderung sind sehr komplex und uns erreichen daher regelmäßig Fragen zu grundsätzlichen Hintergründen des Klimawandels. Auf der Seite&nbsp;<strong><a href="https://www.umweltbundesamt.de/themen/klima-energie/klimawandel/haeufige-fragen-klimawandel">Häufige Fragen zum Klimawandel</a></strong> haben wir unsere Antworten auf häufig gestellt Fragen (FAQs) für Sie zusammengestellt.</p><p>Obwohl ein breiter wissenschaftlicher Konsens über die anthropogene Klimaänderung besteht, werden in der öffentlichen Diskussion immer wieder Zweifel gestreut. Über Bücher, Zeitschriften, Fernsehsendungen, das Internet und die sozialen Medien werden Informationen verbreitet, die veraltet, unvollständig, aus dem Zusammenhang gegriffen und/oder falsch sind. Auf der Seite <strong><a href="https://www.umweltbundesamt.de/themen/klima-energie/klimawandel/klimawandel-skeptiker">Klimawandel-Skeptiker</a></strong> setzen wir uns zunächste grundsätzlich mit Klimawandel-Skepsis auseinander und nehmen auf der Unterseite&nbsp;<strong><a href="https://www.umweltbundesamt.de/themen/klima-energie/klimawandel/klimawandel-skeptiker/antworten-des-uba-auf-populaere-skeptische">Antworten des UBA auf populäre skeptische Argumente</a> </strong>skeptische Thesen genauer unter die Lupe.</p><p>Die meisten Menschen denken an eine allmähliche Erwärmung des Klimas, wenn sie den Begriff „anthropogene Klimaänderung” hören. Es ist jedoch auch möglich, dass besonders starke oder sogar abrupte Klimaänderungen einsetzen. Derartige Prozesse sind mit kritischen Schwellen im ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimasystem#alphabar">Klimasystem</a>⁠, sogenannten Kipp-Punkten, verbunden. Bereits geringe Änderungen im Klimasystem können bewirken, dass Kipp-Punkte erreicht werden, in deren Folge sich das Klima stark ändert. In unserem Hintergrundpapier&nbsp;<strong><a href="https://www.umweltbundesamt.de/publikationen/kipppunkte-kaskadische-kippdynamiken-im-klimasystem">Kipp-Punkte im Klimasystem</a></strong> erhalten Sie dazu ausführliche Informationen.</p>

Grundwassertemperatur für den Bezugshorizont 0m NHN 1978 bis 1998 (Umweltatlas)

Verteilung der Grundwassertemperatur für den Bezugshorizont 0 m NHN. Die Karte basiert auf Messungen an 433 Grundwassermessstellen, die zwischen den Jahren 1978 und 1998 ausgeführt wurden.

Evidenzbasierte Anbauempfehlungen im Klimawandel

Zeitliche und räumliche Dynamik der Mutationslast des Antarktischen Prädatoren Arctocephalus gazella

Die Resilienz natürlicher Populationen gegen Umweltveränderungen wird von der Menge schädlicher Mutationen in der Population, d.h. ihrer Mutationslast bestimmt. Deren Fitnesseffekt hängt vom Selektionsdruck und der Populationsgröße ab, welche beide in Raum und Zeit veränderlich sind. Auswirkungen dieser Dynamik auf die Mutationslast sind wenig erforscht, was unser Verständnis der Gefährdung von Arten durch Umweltveränderungen behindert. Drastische Reduzierungen der Populationsgröße führen zu Inzucht, was die Mutationslast stärker exponiert und selektiv wirksam macht. Dies verursacht eine Fitness-Reduktion betroffener Individuen, ermöglicht aber auch eine Entfernung schädlicher Mutationen durch Purging, was die Mutationslast langfristig verringern kann. Folglich hat Übernutzung in der Vergangenheit die Mutationslast vieler Arten beeinflusst, vor allem in der Antarktis, wo Robben- und Walfang große ökologische Auswirkungen hatten. In meinem Projekt plane ich durch Genomsequenzierung räumliche und zeitliche Dynamiken der Mutationslast in Antarktischen Pelzrobben zu erforschen. Dabei verfolge ich drei komplementäre Ziele. Erstens werde ich räumliche Dynamiken der Mutationslast durch den Vergleich von sechs Populationen mit unterschiedlicher effektiver Populationsgröße und Geschichte untersuchen. Erkenntnisse zur Mutationslast dieser Populationen liefern Aufschluss über deren Gefährdung durch Umweltveränderungen. Zweitens werde ich Langzeit-Dynamiken der Mutationslast durch eine Quantifizierung von Purging zu verschiedenen Zeitpunkten der Populationsgeschichte analysieren. Ein Vergleich von Regionen innerhalb des Genoms welche vor, während und nach dem durch Robbenjagd verursachten Flaschenhals von Inzucht betroffen waren, wird über das genetische Erbe dieses Eingriffes aufklären. Schließlich werde ich kurzfristige Dynamiken der Mutationslast untersuchen, indem ich den Umwelteinfluss auf die Mutationslast einer rückläufigen Population in Südgeorgien analysieren werde. Dort hat sich der Selektionsdruck auf die Robben durch den von Erwärmung getriebenen Rückgang des Antarktischen Krills erhöht. Eine einzigartige, vier Jahrzehnte umfassende Langzeitstudie erlaubt hier die Erforschung des Zusammenhangs der Mutationslast und dem Fitnessmerkmal „Rekrutierungs-Erfolg“. Dies kann zeigen, ob aktuelle Umweltveränderungen die Mutationslast durch Purging verringern, was für die Beständigkeit der Populationen relevant ist. Mein Projekt kombiniert hochauflösende genomische Verfahren mit einem herausragenden Untersuchungssystem und verspricht neue Erkenntnisse zur Beständigkeit eines antarktischen Prädatoren. Diese sind essentiell für das Verständnis der Resilienz des Ökosystems des Südpolarmeeres. Durch die Einführung moderner genomischer Methoden in ein polares Modellsystem werde ich zum SPP beitragen können, zudem werde ich mich durch Kollaborationen und das Ausrichten eines Workshops zu reproduzierbarem coding in die breitere SPP-Gemeinschaft integrieren.

1 2 3