API src

Found 924 results.

GEMAS – Geochemische Kartierung der Acker- und Grünlandböden Europas, Einzelelementkarten, Tb - Terbium

GEMAS (Geochemical Mapping of Agricultural and Grazing Land Soil in Europe) ist ein Kooperationsprojekt zwischen der Expertengruppe „Geochemie“ der europäischen geologischen Dienste (EuroGeoSurveys) und Eurometeaux (Verbund der europäischen Metallindustrie). Insgesamt waren an der Durchführung des Projektes weltweit über 60 internationale Organisationen und Institutionen beteiligt. In den Jahren 2008 und 2009 wurden in 33 europäischen Ländern auf einer Fläche von 5 600 000 km² insgesamt 2219 Ackerproben (Ackerlandböden, 0 – 20 cm, Ap-Proben) und 2127 Grünlandproben (Weidelandböden, 0 – 10 cm, Gr-Proben) entnommen. In den Proben wurden 52 Elemente im Königswasseraufschluss, 41 Elemente als Gesamtgehalte sowie TC und TOC bestimmt. Ergänzend wurde in den Ap-Proben zusätzlich 57 Elemente in der mobilen Metallionenfraktion (MMI®) sowie die Bleiisotopenverhältnisse untersucht. Alle analytischen Untersuchungen unterlagen einer strengen externen Qualitätssicherung. Damit liegt erstmals ein qualitätsgesicherter und harmonisierter geochemischer Datensatz für die europäischen Landwirtschaftsböden mit einer Belegungsdichte von einer Probe pro 2 500 km² vor, der eine Darstellung der Elementgehalte und deren Bioverfügbarkeit im kontinentalen (europäischen) Maßstab ermöglicht. Die Downloaddateien zeigen die flächenhafte Verteilung der mit verschiedenen Analysenmetoden bestimmten Elementgehalte in Form von farbigen Isoflächenkarten mit jeweils 7 und 72 Klassen.

GEMAS – Geochemische Kartierung der Acker- und Grünlandböden Europas, Einzelelementkarten, Er - Erbium

GEMAS (Geochemical Mapping of Agricultural and Grazing Land Soil in Europe) ist ein Kooperationsprojekt zwischen der Expertengruppe „Geochemie“ der europäischen geologischen Dienste (EuroGeoSurveys) und Eurometeaux (Verbund der europäischen Metallindustrie). Insgesamt waren an der Durchführung des Projektes weltweit über 60 internationale Organisationen und Institutionen beteiligt. In den Jahren 2008 und 2009 wurden in 33 europäischen Ländern auf einer Fläche von 5 600 000 km² insgesamt 2219 Ackerproben (Ackerlandböden, 0 – 20 cm, Ap-Proben) und 2127 Grünlandproben (Weidelandböden, 0 – 10 cm, Gr-Proben) entnommen. In den Proben wurden 52 Elemente im Königswasseraufschluss, 41 Elemente als Gesamtgehalte sowie TC und TOC bestimmt. Ergänzend wurde in den Ap-Proben zusätzlich 57 Elemente in der mobilen Metallionenfraktion (MMI®) sowie die Bleiisotopenverhältnisse untersucht. Alle analytischen Untersuchungen unterlagen einer strengen externen Qualitätssicherung. Damit liegt erstmals ein qualitätsgesicherter und harmonisierter geochemischer Datensatz für die europäischen Landwirtschaftsböden mit einer Belegungsdichte von einer Probe pro 2 500 km² vor, der eine Darstellung der Elementgehalte und deren Bioverfügbarkeit im kontinentalen (europäischen) Maßstab ermöglicht. Die Downloaddateien zeigen die flächenhafte Verteilung der mit verschiedenen Analysenmetoden bestimmten Elementgehalte in Form von farbigen Isoflächenkarten mit jeweils 7 und 72 Klassen.

FENABIUM: Struktur-Wirkungsbeziehungen zwischen f-Elementen und organischen Ligandsystemen mit naturstoffbasierten Bindungsfunktionen in Hinblick auf eine mögliche Mobilisierung in der Umwelt, Teilprojekt C

Teilvorhaben 5: Technische Probengewinnung^r4 - wirtschaftsstrategische Rohstoffe: SEEsand - Gewinnung schwerer Seltenerdelemente (SEE) aus Schwermineralsanden^Teilprojekt 7: Innovationsmanagement und Ergebnisübertragung^Teilvorhaben 6: Verwertung der Nebenprodukte, Teilvorhaben 4 - Ressourcencharakterisierung und Folgenabschätzung

Teilvorhaben 5: Technische Probengewinnung^r4 - wirtschaftsstrategische Rohstoffe: SEEsand - Gewinnung schwerer Seltenerdelemente (SEE) aus Schwermineralsanden^Teilprojekt 7: Innovationsmanagement und Ergebnisübertragung^Teilvorhaben 6: Verwertung der Nebenprodukte^Teilvorhaben 4 - Ressourcencharakterisierung und Folgenabschätzung, Teilvorhaben 3: Technologieentwicklung physikalische und mechanochemische Aufbereitung

NANOKON - Systematische Bewertung der Gesundheitsauswirkungen nanoskaliger Kontrastmittel^NANOKON - Systematische Bewertung der Gesundheitsauswirkungen nanoskaliger Kontrastmittel^NANOKON - Systematische Bewertung der Gesundheitsauswirkungen nanoskaliger Kontrastmittel, NANOKON - Systematische Bewertung der Gesundheitsauswirkungen nanoskaliger Kontrastmittel

Recycling von Seltenen Erden (SE) aus Leuchtstoffpulver - Phase II

Beim Recycling von Leuchtstofflampen fällt Leuchtstoffpulver an, das einen hohen Anteil an seltenen Erden (Yttrium (Y), Terbium (Tb), Europium (Eu)), fortan SE genannt, enthält. Diese gehören zu den strategischen Rohstoffen der Zukunft, weil diese in vielen neuartigen Technologiebereichen und Industriezweigen unverzichtbar geworden sind. Bisher wurden die anfallenden Leuchtstoffpulver in der Regel unterirdisch deponiert, mit entsprechenden Kostenfolgen. Die Ziele des UTF Projektes 484.14.14 Recycling von SE aus Leuchtstoffpulver Phase 1 wurden erreicht. Allerdings kann aus finanziellen Gründen das Recycling aller drei SE nicht gleichzeitig weiterverfolgt werden. Deshalb werden vorerst die Arbeiten auf Y beschränkt. Als Ergebnis aus der Phase 1 resultiert nun ein Konzept zur Erstellung einer Pilotanlage mittels Flüssig-Flüssig-Extraktion zur Rückgewinnung von SE mit einer Reinheit von 99,9%. Das Konzept sieht vor eine automatisierte Semi Mixer-Settler-Anlage im Labormassstab zur Rückgewinnung von Y mit einer Reinheit von 99,9%, mittels Flüssig-Flüssig-Extraktion zu entwickeln und zu testen. Das Projekt wurde an der Sitzung der Koko UT vom 20.06.2017 mit Auflagen grundsätzlich als förderungswürdig eingestuft. Das überarbeitete Beitragsgesuch vom 29.09.2017 konnte danach genehmigt werden. Projektziele: In diesem Projekt soll das Detail-Engineering, die Inbetriebnahme sowie ein Versuchsbetrieb einer automatisierten Semi-Mixer-Settler-Anlage im Labormassstab zur Rückgewinnung von Y mit einer Reinheit 99,9%, mittels Flüssig-Flüssig-Extraktion und den Komplexbildnern getestet werden. Weiter soll sichergestellt sein, dass eine genügend grosse Menge von Leuchtstoffpulver für die Weiterverarbeitung in diesem Projekt nach geltenden Vorschriften gelagert und bereitgestellt werden kann.

Innovative Hydrometallurgical Processes to recover Metals from WEEE including lamps and batteries - Demonstration (HYDROWEEE DEMO)

Objective: The recycling business is traditionally dominated by SMEs. In the last 5 years a general trend in the electronics recycling sector to bigger companies is very visible. Multinational, multi-sector companies are buying several smaller recyclers every year. Hence the previous project HydroWEEE (03/200902/2012) dealt with the recovery of rare and precious metals from WEEE. The idea has been to develop a mobile plant using hydrometallurgical processes to extract metals like yttrium, indium, lithium, cobalt, zinc, copper, gold, silver, nickel, lead, tin in a high purity. By making this plant mobile several SMEs can benefit from the same plant. By making the processes universal several fractions (lamps, CRTs, LCDs, printed circuit boards and Li-batteries) can be treated in the same mobile plant in batches. This reduces the minimum quantities and necessary investments. In addition these innovative HydroWEEE processes produce pure enough materials that can be directly used for electroplating and other applications. The objective of HydroWEEE Demo is to build 2 industrial, real-life demonstration plants (1 stationary and 1 mobile) in order to test the performance and prove the viability of the processes from an integrated point of view (technical, economical, operational, social) including the assessment of its risks (incl. health) and benefits to the society and the environment as well as remove the barriers for a wide market uptake. Finally the previously developed processes of extracting yttrium, indium, lithium, cobalt, zinc, copper, gold, silver, nickel, lead, tin will be improved and new processes to recover additional metals which are still in this fractions (Cerium, Platinum, Palladium, Europium, Lanthanum, Terbium, ) as well as the integrated treatment of solid and liquid wastes will be developed. Summarized HydroWEEE Demo will boost European competitiveness by applying novel processes for improved resource efficiency by extracting rare and precious metals.

Recovery of Rare Earth Elements from magnetic waste in the WEEE recycling industry and tailings from the iron ore industry (REECOVER)

REEcover aims to: A) Improve European supply of the critical Rare Earth Elements Y, Nd, Tb and Dy. B) Strengthen SME positions in REE production and recovery value chain. C) Innovate and research two different routes for hydro/pyro metallurgical recovery of REEs: as Rare Earth Oxides (REO) or Rare Earth Oxy-Carbides (REOC) in electrolytic reduction. D) Demonstrate and compare viability and potential for these routes on two different types of deposited industrial wastes: 1. tailings from the iron ore industry (high volume but low concentration of REE) - 2. magnetic waste material from the WEEE recycling industry (low volume but high concentration REE). REE's in WEEE-products end up in magnetic waste and subsequently in slag or dust from steelmaking or base metal smelters. During iron ore production of magnetite concentrates tailings are removed and deposited. Both waste streams have potential of becoming valuable feedstock. In WP1, LKAB, WEEE-Recyling & Indumetal, providing input streams, will collaborate with LTU& NTNU to increase the REE concentration by physical separation, leading to low-grade REE-bearing input streams for WP2&3. In WP2, Bredox & Deka supported by TUD &TECNALIA aim to hydrometallurgically extract REEs from WP1-input as individual REOs or their mixtures. This is input for LCM in WP4, that with SINTEF &TUD will optimise an industrial fluoride based electrolytic process for production of RE metals and alloys. Metsol will, supported by TECNALIA, SINTEF &NTNU develop, demonstrate and test a pyro-metallurgical approach for up-concentration of REO and/or conversion to REOC for suitability for electrochemical reduction in WP5, where NTiT, Simtec, SINTEF and NTNU will develop RE metals production based on electrolysis from a molten salt using a consumable RE oxycarbide anode. WP6 will characterise and analyse REE containing materials - from ores to alloys. WP7 will assess and develop the integral value chain, WP8 carries out dissemination and exploitation.

Informationen zur chemischen Verbindung: Antimon Verb. mit Erbium (1:1)

Die verlinkte Webseite enthält Informationen der Website chemikalieninfo.de des Umweltbundesamtes zur chemischen Verbindung Antimon Verb. mit Erbium (1:1). Stoffart: Einzelinhaltsstoff. Inhalt des Regelwerks: Das Globally Harmonised System of Classification and Labelling of Chemicals (GHS) wurde auf UN-Ebene erarbeitet, mit dem Ziel, weltweit einen sicheren Transport zu gewährleisten, die menschliche Gesundheit und Umwelt besser zu schützen. Die Verordnung (EG) Nr. 1272/ 2008 (CLP) legt orientierend an GHS einheitliche Regeln für die Bewertung der Gefährlichkeit von chemischen Stoffen und Gemischen fest (Einstufung). Für physikalische Gefahren, Gesundheits- und Umweltgefahren definiert sie Gefahrenklassen. Eine Gefahrenklasse ist unterteilt in Gefahrenkategorien je nach Schwere der Gefahr. Jeder Gefahrenkategorie sind ein Gefahrensatz, ein Piktogramm sowie ein Signalwort zugeordnet. Aufgrund dieser Einstufungen werden in der CLP-Verordnung verbindliche Kennzeichnungen auf Verpackungen wie Piktogramme und Gefahrenhinweise vorgeschrieben. Die Abverkaufsfrist für Gemische, die bereits vor dem 1.06.2015 verpackt wurden und noch nach alter Einstufung (R-Sätze) gekennzeichnet sind, lief als letzte Übergangsfrist am 01.06.2017 ab. Hersteller/ Importeure von Stoffen sind verpflichtet, innerhalb eines Monats nach Inverkehrbringen, ihre Angaben der Europäischen Chemikalienagentur (ECHA) zur Hinterlegung im öffentlich zugänglichen europäischen Einstufungs- und Kennzeichnungsverzeichnis (CL Inventory) zu melden. Die von der ECHA gepflegte Datenbank enthält Informationen zur Einstufung und Kennzeichnung (C&L) von angemeldeten und registrierten Stoffen, die Hersteller und Importeure übermittelt haben, einschließlich einer Liste harmonisierter Einstufungen. Um eine gesundheitliche Notversorgung und vorbeugende Maßnahmen künftig besser abzusichern, gelten ab dem 01.06.2020 für Gemische, die aufgrund ihrer Wirkungen als gefährlich eingestuft sind, einheitliche Informationspflichten in allen Mitgliedsstaaten. Importeure und nachgeschaltete Anwender sind verpflichtet, diese Informationen den dafür autorisierten nationalen Stellen, in Deutschland dem BfR vorzulegen.. Es gelten folgende Umweltgefahren: Sonstige Umweltgefahren: Umweltgefährlich gemäß EU-Verordnung.

1 2 3 4 591 92 93