API src

Found 1394 results.

Similar terms

s/thermische-verwertung/Thermische Verwertung/gi

Stoffliche Wiederverwertung von Elektrolyt-Leitsalzen und -Lösungsmitteln, Teilvorhaben: Recycling und Rückgewinnung des Elektrolytsalzes LiPF6 sowie dessen Zersetzungsprodukte

Das Projektvorhaben SWELL befasst sich mit der Entwicklung und Evaluierung effizienter Verfahren zur Steigerung der Recyclingeffizienz von Lithium-Ionen-Batterien. Im Fokus des Projektes stehen die Elektrolyte, bestehend aus Lithiumsalzen, Lösungsmitteln und Elektrolytadditiven. Bereits etablierte Recyclingprozesse fokussieren sich überwiegend auf die Rückgewinnung der in LIBs befindlichen Metalle, wohingegen die nichtmetallischen Komponenten zum großen Teil nicht wieder dem Verwertungskreislauf zugeführt werden. Die Elektrolyte gehen in bisherigen Prozessen größtenteils in Form von thermischer Verwertung oder Downcycling verloren. Die Elektrolytkomponenten weisen einen signifikanten Materialwert auf und enthalten zudem kritische, umweltrelevante Ressourcen, wie Lithium, Fluor und Phosphor. Ihre Rückgewinnung und effiziente Aufarbeitung mit dem Ziel einer (direkten) Wiederverwendung in LIBs, ist daher von großem Interesse und kann zur signifikanten Steigerung der Nachhaltigkeit der Batteriezellfertigung führen. Gesamtziel des Projektes ist es Verfahren zu entwickeln, in denen Elektrolytbestandteile selektiv extrahiert, getrennt und anschließend aufgearbeitet werden, um diese in den Stoffkreislauf zu reintegrieren. Hauptaugenmerk liegt hierbei auf den Elektrolytlösungsmitteln (Carbonate, wie DMC, EMC EC) und dem Lithiumsalz LiPF6 sowie dessen Zersetzungsprodukte.

Medizinische Einmalgebrauchsprodukte in der Kreislaufwirtschaft - Wege von der Beseitigung zur stofflichen Verwertung, TV: Kreislauforientierte Produktgestaltung und Ergebnistransfer

Entwicklung und Erprobung biogener Brennstoffe als Ersatz für Braunkohle in der Staubfeuerung

Eine der größten Herausforderungen im Rahmen der Energiewende ist die CO2-neutrale Versorgung von Industrie und Gewerbe mit Prozesswärme und -kälte. Eine besondere strategische Relevanz gewinnt BioBrauS dadurch, dass nicht nur biogene Reststoffe, die einen überschüssigen und in der Regel unvermeidbaren Stoffstrom darstellen, einer weitergehenden energetischen Verwertung zugänglich gemacht werden, sondern auch der Verbrauch der fossilen Primärressource Braunkohle mit hohen CO2-Aussstoß reduziert wird. Ziel ist die Entwicklung eines Brennstoffes aus aufbereiteten organischen Reststoffen, wie Gärprodukten oder Geflügelmist, mit abgestimmter Verbrennungstechnologie auf Basis der Stabfeuerung zu verwerten. Hierfür soll das Verfahren des Impulsbrenners evaluiert und an die Verbrennung diese Stoffsysteme adaptiert werden. Mit der Auswahl und Bewertung von Gärresten und Geflügelmist als Brennstoff für die Staubfeuerung soll der Grundstein für den Ersatz von Braun- und Steinkohle gelegt werden. Im Fokus stehen deshalb die experimentelle Verfahrensevaluation und Optimierung von Verbrennungseigenschaften und Prozessparameter der Staubfeuerung für den Einsatz landwirtschaftlicher Reststoffe, wie Gärrest und Geflügelmist als Ersatz des bisherigen Energieträgers Braunkohle für Bestands- und Neuanlagen. Auch die biogenen Inputsubstrate sollen für den Einsatz in der Staubfeuerung angepasst (Mahlung, Siebung) und optimiert werden. Schwerpunkt ist die Reduktion von Schad- und Störstoffen sowie die Verbesserung der Brennstoffeigenschaften. Die Entwicklungen sollen dann im technischen Maßstab getestet und bewertet werden. Außerdem soll ein Gesamtkonzept zur technischen Umsetzung und Einsatz der Technologien erarbeitet werden, welches die Logistik der Energie- und Stoffströme sowie deren Verwertung für Bestands- und Neuanlagen beinhaltet. Abschließend wird eine Wirtschaftlichkeitsbetrachtung und LCA mit Ökobilanzierung für den kommerziellen Maßstab durchgeführt.

Höhere Wertschöpfung von Betonschalungen durch internes Recycling zur Herstellung von Holzschäumen für Anwendungen bei der Betonfertigteilherstellung, Teilvorhaben 2: Einsatz in der Fertigteilherstellung und Wirtschaftlichkeit

Bei der Herstellung von Betonfertigbauteilen werden Schalungen, z.B. aus Brettschichthölzern verwendet. Diese Schalungen werden nach mehrmaligen Gebrauch kostenpflichtig entsorgt. Auf Grund von Beschichtungen besteht diese aus der thermischen Verwertung, eine höherwertige Nutzung ist bis heute nicht möglich. Zusätzlich zu den Schalungsbrettern werden bei der Herstellung der Fertigbauteile Styrolschäume (EPS) für Aussparungen in den Betonwänden eingesetzt, die ebenfalls nach einmaliger Verwendung kostenpflichtig entsorgt werden müssen. Am Fraunhofer WKI wurde ein Verfahren entwickelt, mittels denen sich Holz und andere Lignocellulosen gezielt zu Schaumstoffen verarbeiten können. Das Material kann hinsichtlich der mechanischen Stabilität, der Porenstruktur und der Dichte gezielt eingestellt werden und besteht vollständig aus Holz. Positive Eigenschaften des entwickelten Holzschaumes wie geringes Gewicht, geringe Wärmeleitfähigkeit, hohe Schallabsorption und gute mechanische Festigkeiten zeigen, dass vielfältige Einsatzmöglichkeiten, wie Dämmung oder Verpackung möglich sind. Durch den Herstellungsprozess ist der Holzschaum vollständig recyclebar und kann anschließend erneut zu Holzschäumen verarbeitet werden. Da auch Rest- und Altholz für die Herstellung von Holzschaum genutzt werden kann, bietet sich die Nutzung von Holzschaum in der Fertigbauteilherstellung an: Zum einen können die Schalungsbretter direkt verarbeitet und zum anderen kann der daraus gewonnene Holzschaum als Ersatz für EPS-Aussparungskörper genutzt werden. Die kostenintensive Entsorgung beider Materialien entfällt. Für eine Optimierung der Fertigung werden zunächst einzelne Prozessschritte betrachtet. Zusammen mit dem Projektpartner werden unterschiedliche Möglichkeiten der Faserherstellung aus den Schalungsbrettern, der Aufschäumung als auch der Nutzung als Aussparungskörper betrachtet. Die Wirtschaftlichkeit einer Pilotanlage im Unternehmen soll anhand der Prozessschritte konzipiert werden.

Steamcracking von Pyrolyseölen aus Kunststoffabfällen: Ressourcen- und energieeffiziente Ethylen- & Propylenherstellung, Steamcracking von Pyrolyseölen aus Kunststoffabfällen: Ressourcen- und energieeffiziente Ethylen- & Propylenherstellung

Das hohe Aufkommen an Polymeren auf Ethylen- und Propylen-Basis führt nach deren Lebenszyklus zu erheblichen Abfallströmen. Die weltweit erwartete jährliche Menge an Kunststoffabfällen wird bis 2030 auf voraussichtlich ca. 440 Millionen Tonnen ansteigen. In Deutschland lag der Verbrauch an Kunststoff in 2019 bei 14,2 Mio. Tonnen und es fielen 6,28 Mio. Tonnen Kunststoffabfälle an. Stand der Technik ist, außer Lagerung auf Deponien, zumeist eine rein thermische Verwertung dieser Abfallströme, die zusätzlich zu den CO2-Emissionen, die bei der Herstellung entstehen, zu einer weiteren unerwünschten CO2- Freisetzung führt. Mechanisches Recycling ist nur begrenzt sinnvoll anwendbar. Somit ist bisher eine vollständige wirtschaftliche, umweltfreundliche und energieeffiziente Verwertung der anfallenden Abfallströme nicht möglich. Folglich besteht ein hoher Bedarf, diese Abfallströme als wertvollen Rohstoff einer technischen Anwendung zuzuführen. Vor dem Hintergrund der nationalen Klimaschutzziele und der notwendigen Reduktion der CO2-Emissionen im industriellen Bereich, strebt das Forschungsprojekt PYCRA eine signifikante Minderung der klimarelevanten Prozessemissionen in der deutschen Chemieindustrie an. PYCRA erforscht die Verwertung der Abfallaufkommen als Ausgangsstoff (= Feed) in Form eines chemischen Recyclings und somit als Substitut für fossile Rohstoffe (z.B. Naphtha) in petrochemischen Prozessen wie dem Steam Cracking. Hierbei soll ein völlig neues umweltschonendes Anwendungsverfahren für Pyrolyseöle entwickelt und erstmals demonstriert werden. Linde will eine erhebliche CO2-Reduktion bei der Herstellung von Ethylen im Vergleich zum Stand der Technik (Referenz: Steam-Cracker mit Naphtha-Feed) erreichen. Bei Projekterfolg kann das Verfahren neben einem nachhaltigen Beitrag zu einer Circular Economy, einen entscheidenden Hebel zur Energieeinsparung und der Reduktion von energiebedingten CO2-Emissionen darstellen.

Entwicklung und Erprobung biogener Brennstoffe als Ersatz für Braunkohle in der Staubfeuerung, Teilvorhaben: Auswahl und Bewertung organsicher Reststoffe sowie analytische Begleitung Mahlung, Rauchgasreinigung und Verbrennung

Eine der größten Herausforderungen im Rahmen der Energiewende ist die CO2-neutrale Versorgung von Industrie und Gewerbe mit Prozesswärme und -kälte. Eine besondere strategische Relevanz gewinnt BioBrauS dadurch, dass nicht nur biogene Reststoffe, die einen überschüssigen und in der Regel unvermeidbaren Stoffstrom darstellen, einer weitergehenden energetischen Verwertung zugänglich gemacht werden, sondern auch der Verbrauch der fossilen Primärressource Braunkohle mit hohen CO2-Aussstoß reduziert wird. Ziel ist die Entwicklung eines Brennstoffes aus aufbereiteten organischen Reststoffen, wie Gärprodukten oder Geflügelmist, mit abgestimmter Verbrennungstechnologie auf Basis der Stabfeuerung zu verwerten. Hierfür soll das Verfahren des Impulsbrenners evaluiert und an die Verbrennung diese Stoffsysteme adaptiert werden. Mit der Auswahl und Bewertung von Gärresten und Geflügelmist als Brennstoff für die Staubfeuerung soll der Grundstein für den Ersatz von Braun- und Steinkohle gelegt werden. Im Fokus stehen deshalb die experimentelle Verfahrensevaluation und Optimierung von Verbrennungseigenschaften und Prozessparameter der Staubfeuerung für den Einsatz landwirtschaftlicher Reststoffe, wie Gärrest und Geflügelmist als Ersatz des bisherigen Energieträgers Braunkohle für Bestands- und Neuanlagen. Auch die biogenen Inputsubstrate sollen für den Einsatz in der Staubfeuerung angepasst (Mahlung, Siebung) und optimiert werden. Schwerpunkt ist die Reduktion von Schad- und Störstoffen sowie die Verbesserung der Brennstoffeigenschaften. Die Entwicklungen sollen dann im technischen Maßstab getestet und bewertet werden. Außerdem soll ein Gesamtkonzept zur technischen Umsetzung und Einsatz der Technologien erarbeitet werden, welches die Logistik der Energie- und Stoffströme sowie deren Verwertung für Bestands- und Neuanlagen beinhaltet. Abschließend wird eine Wirtschaftlichkeitsbetrachtung und LCA mit Ökobilanzierung für den kommerziellen Maßstab durchgeführt.

LH2-Containerlogistik, Im Projekt wird mit 40-Fuß-LH2-Tank-Container eine best. Logistik & ein neuer Energieträger genutzt, um die ges. Kette v. Erzeuger z. Verbraucher zu erproben & unter wirtschaftlich, nachhaltigen & regulatorischen Gesichtspunkten zu begleiten & zu analysieren. Teilvorhaben HHLA

Untersuchungen der energetischen Nutzungsoptionen von Hanffaserreststoffen zur exemplarischen Einbindung in das Energiekonzept eines Verarbeitungsstandorts, Teilvorhaben: Vorbehandlung von Reststoffen der Hanffaserproduktion und Prozesskettenentwicklung für die energetische Verwertung

Die Hanfindustrie hat sich in den vergangenen Jahren aufgrund neuer politischer Rahmenbedingungen und innovativer Produktfelder zu einem stark wachsenden Wirtschaftsbereich entwickelt. Hanfprodukte werden in der Lebensmittel-, Pharma-, Automobil-, Bau-, Textil und Papierindustrie eingesetzt. Das stärkste Wachstum der Hanfindustrie findet in der Produktion von Lebensmittel- und Lebensmittelzusätzen aus Hanfsamen, Hanf- und CBD-Ölen statt. Als Nebenprodukte fallen in diesen Wirtschaftsbereichen Extraktionsreste an, für die es derzeit nur bedingt Verwertungsmöglichkeiten gibt. In der industriellen Hanffaserproduktion werden aus getrocknetem Hanfstroh hochwertige Naturfasern gewonnen, die z.B. im Fahrzeugleichtbau zur Herstellung von Fahrzeugarmaturen und Verkleidungen eingesetzt werden. Hanffasern sind darüber hinaus ein etabliertes ökologisches Dämmstoffmaterial. Hanfdämmstoffe zeichnen sich durch eine bessere CO2 Bilanz gegenüber konventionellen Dämmstoffmaterialien wie Mineralwolle oder Styropor aus und bieten die Möglichkeit CO2 über mehrere Jahrzehnte im Dämmstoff zu fixieren. Im Dämmstoffherstellungsverfahren fallen neben dem Hauptprodukt Hanffasern im etwa gleichen Umfang zellulosehaltige Reststoffe an, die derzeit nur zu einem geringen Teil wirtschaftlich genutzt werden. Im Hinblick auf eine zunehmende regenerative Energieversorgung sowie knapper werdender Ressourcen bzw. der kritischen Diskussion um den Einsatz nachwachsender Rohstoffe zur Energiegewinnung kommt der Erschließung biogener Rest- und Abfallstoffe für die Erzeugung effizienter, speicherbarer, flexibler und dezentraler Bioenergieträger zunehmende Bedeutung zu. Im Vorhaben HanfNRG sollen energetischen Nutzungsoptionen von Reststoffen der Hanfverarbeitung untersucht werden zur exemplarischen Einbindung in das Energiekonzept einer Hanffaserfabrik.

Entwicklung einer flexiblen, stärkebasierten Schaumfolie für Verpackungs- und Bauanwendungen, Teilvorhaben 3: Verfahrenstechnik der Schaumfolienextrusion mit physikalischen Treibmitteln

Der Einsatz fossil basierter Materialien für Einmalanwendungen ist derzeit noch weit verbreitet. Dies gilt insbesondere für geschäumte Kunststoffe in Verpackungs- und Bauanwendungen. Speziell im Verpackungsbereich werden wertvolle Ressourcen für Anwendungen mit sehr kurzer Nutzungsphase und anschließender thermischer Verwertung eingesetzt. Durch das wachsende Bewusstsein der Allgemeinheit für die aus dem Einsatz endlicher Ressourcen resultierenden Probleme, steigt die Nachfrage nach Lösungen auf Basis nachwachsender Rohstoffe. Im Bereich stärkebasierter Schaumfolien fehlen jedoch derzeit marktfähige Lösungen. Im Rahmen des Projektes wird durch Arbeiten in den Bereichen Werkstoffrezeptur, Verarbeitbarkeit und Verarbeitung sowie Verwertung am Ende der Nutzungsdauer ein ganzheitlicher Ansatz für eine stärkebasierte Schaumfolie entwickelt, deren Eigenschaften maßgeschneidert für Verpackungs- und Bauanwendungen sind. Die theoretischen Arbeiten werden durch umfangreiche experimentelle Versuchsreihen und Parameterstudien begleitet, was im Anschluss eine schnelle Überführung der Ergebnisse in den industriellen Maßstab ermöglicht. Das IKV übernimmt hierbei im AP 3 die gezielte Anpassung der Anlagentechnik für eine schonende Verarbeitung der stärkebasierten Compounds bei gleichzeitig guter Einmischung des Treibmittels. Hierzu werden ebenfalls ideale Prozessparameter für verschiedene Materialrezepturen ermittelt und die Schaumfolienherstellung prozesstechnisch optimiert. Im AP4 charakterisiert das IKV in Kooperation mit den Partnern die hergestellten Stärkeschaumfolien hinsichtlich ihrer Schaumeigenschaften. Zusätzlich werden die Schaumfolien bezüglich ihrer Nachexpansionsneigung untersucht. Aus den gewonnenen Erkenntnissen sollen Zusammenhänge zwischen den ermittelten Schaumeigenschaften und mechanischen Kennwerten in Abhängigkeit der jeweils gewählten Schäumprozessparametern (Treibmittelrezeptur, Durchsatz, Schmelzetemperaturen und -drücke) herausgearbeitet werden.

KuRT (Umsetzungsphase): H2Cycle-II - HydroCycling, Teilvorhaben 1: Verfahren

1 2 3 4 5138 139 140