The North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) aims to provide the foundation for future improvements in the prediction of high impact weather events over Europe. The concept for the field experiment emerged from the WMO THORPEX program and contributes to the World Weather Research Program WWRP in general and to the High Impact Weather (HIWeather) project in particular. An international consortium from the US, UK, France, Switzerland and Germany has applied for funding of a multi-aircraft campaign supported by enhanced surface observations, over the North Atlantic and European region. The importance of accurate weather predictions to society is increasing due to increasing vulnerability to high impact weather events, and increasing economic impacts of weather, for example in renewable energy. At the same time numerical weather prediction has undergone a revolution in recent years, with the widespread use of ensemble predictions that attempt to represent forecast uncertainty. This represents a new scientific challenge because error growth and uncertainty are largest in regions influenced by latent heat release or other diabatic processes. These regions are characterized by small-scale structures that are poorly represented by the operational observing system, but are accessible to modern airborne remote-sensing instruments. HALO will play a central role in NAWDEX due to the unique capabilities provided by its long range and advanced instrumentation. With coordinated flights over a period of days, it will be possible to sample the moist inflow of subtropical air into a cyclone, the ascent and outflow of the warm conveyor belt, and the dynamic and thermodynamic properties of the downstream ridge. NAWDEX will use the proven instrument payload from the NARVAL campaign which combines water vapor lidar and cloud radar, supplemented by dropsondes, to allow these regions to be measured with unprecedented detail and precision. HALO operations will be supported by the DLR Falcon aircraft that will be instrumented with wind lidar systems, providing synergetic measurements of dynamical structures. These measurements will allow the first closely targeted evaluation of the quality of the operational observing and analysis systems in these crucial regions for forecast error growth. They will provide detailed knowledge of the physical processes acting in these regions and especially of the mechanisms responsible for rapid error growth in mid-latitude weather systems. This will provide the foundation for a better representation of uncertainty in numerical weather predictions systems, and better (probabilistic) forecasts.
Vulkanische Asche wurde vor kurzem als eines potenziellen Düngemittel für Ozeanoberfläche identifiziert worden. Jedoch werden die Prozesse, die Umwandlung von unlöslichen zu löslichen Eisen ermöglichen Fe-Verbindungen in der Asche wenig verstanden bisher. Diese Studie untersucht die vulkanische Wolke Kontrollen auf Asche Eisenlöslichkeit. Ich kombiniere Vulkanausbruch Spalte Modellierung mit hohen, mittleren und niedrigen Temperaturen chemische Reaktionen in Eruption Wolken, um besser einschränken Vulkanasche Eisen Mobilisierung unter Berücksichtigung der Wechselwirkung verschiedener Arten in einem Fest-Flüssig-Gas-System. Zuerst benutze ich ATHAM die Plum Dynamik und Mikrophysik lösen. Zweitens, entwickle ich eine Chemie und Thermodynamik Code, der die Umgebungsbedingungen (in-plume Temperatur, Druck, Feuchtigkeit usw.) bekommt von den ATHAM Ausgänge und simuliert die gas-ash/aerosol Interaktionen mit speziellem Fokus auf Eisen-Chemie. Dieses Modell basiert auf einer Reihe von gekoppelten Massenbilanzgleichungen für verschiedene Arten der Eruptionssäule. Begriffe, die in diesen Gleichungen basieren auf physikalisch-chemischen Wechselwirkungen von gasförmigen, flüssigen und festen Arten parametriert. Einige der wichtigsten Prozesse in dieser Studie nicht berücksichtigt sind: Gas-Scavenging durch Asche, Wasser und Eis, Auflösung von Asche in der flüssigen Phase und Eisen wässrigen Chemie. Eine Reihe von Laborexperimenten auf Asche wird auch als die Ergebnisse der Modellierung gegen echte Ascheproben und Beobachtung zu bewerten. Schließlich schlage ich die günstige vulkanischen Einstellung und in-plume Prozesse für Asche Eisen Mobilisierung.
Within phase 2 of the CAOS research unit we will work towards a holistic framework to explore how spatial organization alongside with spatial heterogeneity controls terrestrial water and energy cycles in intermediate scale catchments. 'Holistic' means for us to link the 'how' to the 'why' by drawing from generic understanding of landscape formation and biotic controls on processes and structures as well as to rely on exemplary experimental learning in a hypothesis and theory based manner. This also implies treatment of soil, vegetation and atmosphere as coupled system rather than a linear combination of different compartments. To jointly work towards this goal we propose 7 projects which will closely cooperate within two overarching work packages:WP1: Linking hydrological similarity with landscape structure across scalesWP2: Searching for appropriate catchment models and organizing principles. Within WP1 we will further refine the existing stratified multi-method and multi-sensor setup to search for functional entities in the Attert and, if they exist, to learn in an exemplary manner which structural features control functional characteristics. This essentially includes identification of suitable metrics to discriminate functional and structural similarity from data as well as identification of useful quantitative descriptors for the rather fuzzy term 'hydrological function'. Overall we aim to synthesize a protocol to decide 'where to assess which data for what reasons' for characterizing hydrological functioning across a scale range of four orders of magnitude.Within WP2 we will foster our distillery of parsimonious and nevertheless physically consistent model structures which rely on observable quantities and make use of symmetries in the landscape to simplify the governing model equations in a hypothesis based manner. To this end we will compare concurring model structures (among those the CAOS model) and work towards a framework for an objective model inter comparison with special emphasis on a) the added value of different data/information sources and b) on consistency of predictions with respect to distributed dynamics and integral flows. Additionally, we aim in WP2 at linking the 'how' to the 'why' by synthesizing testable hypotheses that could explain whether spatial organization has evolved in accordance with candidate organizing principles. Ecology, fluvial geomorphology and thermodynamics offer a large set of candidate organizing principles for this issue. Based on our recent work we will focus especially on thermodynamic limits and optimality principles like maximum entropy production, explore their value for uncalibrated hydrological predictions and work out the necessary requirements on data and models for testing these principles. We put special emphasis on a possible experimental falsification of these candidate principles; also in close collaboration with the B2-Landscape Evolution Observatory in Tucson, Arizona.
In diesem Projekt soll die wichtige Thematik der Entfernung von NOM (Natural Organic Matter) aus Trinkwasser im Aufbereitungsprozess aus der grundlegenden Sicht der Kolloidwissenschaften untersucht werden. Dieses Thema ist eine zentrale Frage der menschlichen Gesundheit und bei Oberflächenwasser wird meist ein Polykation (cPE) zur Bindung und Präzipitation der negativ geladenen NOM Moleküle eingesetzt. Trotz der hohen Bedeutung dieser Fragestellung gibt es nur wenige fundamentale, kolloidchemische Arbeiten zu dieser Thematik. Dieser ist Ansatz dieses Projekts, in dem wir aufgereinigte Huminsäure (HA, Hauptbestandteil von NOM) als Modellsystem nehmen und seine Komplexierung mit unterschiedlich modifiziertem kationischen (quaternisierten) Chitosan (q-Chit) untersuchen wollen. Tests mit australischen Partnern haben bereits vielversprechende Resultate bei der NOM Abtrennung mit q-Chit gezeigt. Seine Hauptvorteile sind Biokompatibilität und Variabilität des molekularen Aufbaus aufgrund einfacher chemischer Modifikation. q-Chit wird hier maßgeschneidert synthetisiert, wobei Parameter wie Ladungsdichte, Mw und Hydrophobizität systematisch variiert werden. Das Phasenverhalten soll als Funktion des Mischungsverhältnisses untersucht werden, inklusive einer quantitativen Bestimmung der im Zweiphasengleichgewicht in Lösung verbleibenden Menge an HA. Dies wird ergänzt durch umfangreiche thermodynamische Untersuchungen (ITC) und der Bestimmung der mesoskopischen Struktur der gebildeten Komplexe mit Hilfe von Licht, Röntgen- und Neutronenstreuung. Wichtig ist auch die zeitliche Entwicklung der Systeme, die durch kinetische Strukturmessungen verfolgt wird. Diese umfassende thermodynamische, strukturelle und kinetische Charakterisierung soll systematische Korrelationen zwischen den cPEs und der Stärke ihrer Wechselwirkungen mit HA liefern. Hieraus soll abgeleitet werden welche molekularen Motive wichtig sind, um die Entfernung von HA aus Wasser zu optimieren. Diese Motive werden in einer optimierten Synthese entsprechend verwendet. q-Chit ist im Fokus, aber später soll auch quaternisiertes verzweigtes Polyethylenimin (PEI) eingesetzt werden, bei dem es sich um kompaktes globuläres Polykation mit hoher Ladungsdichte handelt. Sein Einfluss auf Phasenverhalten und Struktur in Mischungen mit HA soll untersucht werden, mit dem Fokus auf Mischungen in denen auch (lineares) q-Chit enthalten ist, da man einen ausgeprägten Synergismus bei der Wechselwirkung mit den sehr unterschiedlichen anionischen Molekülen der HA erwarten kann. Auf dieser Basis einer umfassenden physiko-chemischen Charakterisierung wollen wir ein solides grundlegendes Verständnis der in Mischungen aus cPE und HA vorliegenden Wechselwirkungen generieren. Dieses soll die Grundlage sein für systematische Verbesserungen bei der Entfernung von NOM aus Trinkwasser, einer der zentralen aktuellen technologischen Herausforderungen der Menschheit.
Geochemische Fixierung von Schadstoffen in Speichermineralen. Untersuchung der Bildungsbedingungen und Struktur von Erdalkalisilikaten, die als Speichermineral geeignet sein koennen: Synthese und Strukturmodell, das die Ableitung thermodynamischer Daten erlaubt. Ermittlung der Mineralneubildungen bei Verwitterung schadstoffhaltiger Rueckstaende zur Identifikation potentieller Speicherminerale fuer Schadstoffe: Zeitrafferexperimente der Verwitterung von Hochtemperatur-Muellverbrennungsschlacken und Untersuchung der Mineralneubildungen aus schwefelhaltigen Rueckstaenden. Untersuchung der Verwendung von Natriumkarbonatsodalith als technische Base zur Inertisierung.
Der weit nach Süden vordringende Keil Südamerikas ist weltweit die einzige nennenswerte Landmasse zwischen ca. 45° und 60°Süd. Das senkrecht zur Hauptwindrichtung verlaufende Andengebirge stellt eine wirksame Barriere für die Westwinddrift dar und hat einen bestimmenden Einfluss auf die hemisphärische Zirkulation sowie das lokale Wettergeschehen. Das Gebirge zwingt die maritimen Luftmassen zum Aufsteigen, was häufig mit intensiven Steigungsregen auf der Luvseite der Anden einhergeht. Durch die Überströmung des Gebirges kommt es zur Ausbildung von speziellen Prozessgefügen in der atmosphärischen Strömung sowohl auf der Meso- als auch regionaler Skala. Der damit einhergehende Transport und Austausch von Energie und Masse beeinflusst maßgeblich die Entstehung und den Ausfall von Hydrometeoren. Trotz der starken Wechselwirkung zwischen Strömung, Topographie und Niederschlag wurde in Patagonien darüber bisher nur wenig geforscht. Das vorgeschlagene Forschungsvorhaben leistet daher einen Beitrag zum Verständnis der Wechselwirkung zwischen dynamischen Prozessen und der räumlichen und zeitlichen Variabilität von Niederschlag in dieser Region. Ziel des Projektes ist die Quantifizierung wichtiger Prozesse die neue Aufschlüsse über die relevanten Mechanismen liefern soll. Anhand von hochauflösenden numerischen Simulationen werden an Einzelfallstudien die dynamischen und thermodynamischen Eigenschaften der atmosphärischen Strömung im Detail analysiert. Begleitende Sensitivitätsstudien mit vereinfachten analytischen Modelle werden zudem Aussagen zu den Auswirkungen der atmosphärischen Variabilität auf die Niederschlagsverteilung liefern. Das aus der Studie gewonnene Prozessverständnis ist eine wichtige Grundlage für weiterführende Forschungsarbeiten im Bereich der Hydrologie, Glaziologie und Ökologie.
In der Industrie, z.B. bei der Muellvergasung oder bei GuD-Kraftwerken, entsteht unter anderem Fluorwasserstoff (HF). Da HF extrem umweltschaedlich und giftig ist, muss es aus dem Gas entfernt werden. Im Gegensatz zu den konventionellen Nassgasreinigungen kann das Gas trocken bei moeglichst hohen Temperaturen gereinigt werden. Energieverluste infolge des Abkuehlens und Wiederaufheizens koennen vermieden und so der Wirkungsgrad um einige Prozentpunkte erhoeht werden. Zudem entfaellt die Aufbereitung der anfallenden Abwaesser bei der Nassgasreinigung. Die Entwicklung derartiger Verfahren ist Gegenstand dieses Projektes.
Es sollen Techniken entwickelt werden um die Kopplung zwischen Atmosphäre und Ozean durch die Formation und das Brechen von Oberflächenwellen im Ozean zu quantifizieren. Diese Techniken beinhalten eine numerische Implementierung von diffusen Grenzflächenmethoden für eine thermodynamisch konsistente und voll gekoppelte Simulationen der Grenzfläche zwischen Luft und Wasser, sowie Feldexperimente zur gleichzeitigen Messung von Luftstrom, der Ozeanwellenkopplung, und der turbulenten Energiedissipation im oberen Ozean.
Wolken und Aerosole beeinflussen den Energiehaushalt und den Wasserkreislauf der Erde. Die Wolkenphase – ob eine Wolke aus Wassertröpfchen oder Eispartikeln besteht – beeinflusst den Strahlungseffekt der Wolken, da Wolkentröpfchen zahlreicher und kleiner sind als Eispartikel und daher mehr Sonnenstrahlung reflektieren.Durch die Erwärmung der Erde und der Atmosphäre durch den Klimawandel werden in Mischphasewolken (die aus Wassertröpfchen und Eispartikel bestehen können) Eispartikel teilweise durch Wassertröpfchen ersetzt und die Wolkenalbedo nimmt zu. Das führt zu einer negativen Rückkopplung, der sogenannten Wolkenphasenrückkopplung. Die Stärke dieser Rückkopplung hängt in Klimamodellen von der Repräsentation der Eisnukleation ab. Es wird immer deutlicher, dass die Schwankungsbreite von Klimaprojektionen (+1,8 bis +6,5 K) in der neuen Generation von Klimamodellen stark von der simulierten Wolkenphasenrückkopplung abhängt. Der gesellschaftliche Nutzen einer Verbesserung der Genauigkeit von Klimaprojektionen wird auf über 10 Millionen Millionen US-Dollar geschätzt. Eine bessere Darstellung der Eisbildung im Mischphasenregime in Klimamodellen ist deshalb dringend erforderlich.Aerosole können als Eiskeime, die das Gefrieren von Tröpfchen bewirken, die Häufigkeit von Eiswolken erhöhen und die Wolkenbedeckung und den Wassergehalt verringern. Insbesondere Mineralstaub kontrolliert häufig die Eisbildung in Wolken.In früheren Studien habe ich wichtige Diskrepanzen bezüglich der staubgetriebenen Wolkenvereisung im ECHAM-HAM Klimamodell und Satellitenbeobachtungen identifiziert, die sehr wahrscheinlich auch in anderen Klimamodellen vorhanden sind. Um diese zu beheben, werde ich in ECHAM-HAM Eisprozesse implementieren, die für das staubgetriebene Gefrieren von Wolkentröpfchen relevant sind, aber derzeit noch fehlen: Erstens werde ich eine Nachverfolgung von Eiskeimen implementieren, insbesonders deren Entfernung durch Niederschlagsbildung nach dem Gefrieren von Wolkentröpfchen. Dies sollte die Überschätzung der staubgetriebenen Wolkenvereisung über dem Südpolarmeer im Modell verringern. Zweitens werde ich eine Kategorie für Staub-Eiskeime hinzufügen, die bei Temperaturen unter -35 °C voraktiviert werden. Dies soll zu einem verstärkten Gefrieren von Wolkentröpfchen in Mischphasenwolken führen, was die im Modell gefundene generelle Unterschätzung des staubgetriebenen Gefrierens von Tröpfchen erklären und reduzieren soll. Drittens werde ich das Recycling von Staub-Eiskeimen nach der Sublimation von Eiskristallen implementieren. Dies soll ebenfalls zu einer Verbesserung des Gefrierens von Tröpfchen führen und den im Modell beobachteten Bias zusammen mit den anderen neuen Prozessen beseitigen. Diese neuen Prozesse werden anhand weltraumgestützter Beobachtungen evaluiert und ihre Auswirkungen auf die Wolkenphasenrückkopplung und die Klimasensitivität werden untersucht werden.
Origin | Count |
---|---|
Bund | 992 |
Type | Count |
---|---|
Förderprogramm | 992 |
License | Count |
---|---|
offen | 992 |
Language | Count |
---|---|
Deutsch | 898 |
Englisch | 185 |
Resource type | Count |
---|---|
Keine | 584 |
Webseite | 408 |
Topic | Count |
---|---|
Boden | 619 |
Lebewesen und Lebensräume | 564 |
Luft | 547 |
Mensch und Umwelt | 992 |
Wasser | 487 |
Weitere | 992 |