API src

Found 190 results.

Related terms

Windkraftanlagen Inspektion, Teilvorhaben: 3D-Punktwolkenverarbeitung und SLAM (WISP-SLAM)

Das Projekt "Windkraftanlagen Inspektion, Teilvorhaben: 3D-Punktwolkenverarbeitung und SLAM (WISP-SLAM)" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Universität Würzburg, Institut für Informatik, Informatik VII Robotik und Telematik.Gesamtziel des Vorhabens ist die Entwicklung eines drohnenbasierten Sensorsystems für die Inspektion von Windkraftanlagen. Hierbei sollen insbesondere schwer zugängliche und kritische Stellen wie beispielsweise Rotorblätter in bislang unerreichter Genauigkeit digitalisiert und vermessen werden. Die Sensorik besteht aus Laserscannern, Kameras, Thermokameras und IMUs zum Einsatz, um ein möglichst umfassendes, multimodales Modell der Anlage zu erhalten. Durch den Einsatz von Drohnen kann die Inspektion im Vergleich zu aktuellen Methoden schnell, effizient und sicher durchgeführt werden. Die Idee des Teilprojektes ist, luftgestütztes Laserscanning so zu miniaturisieren und Drohnen, d.h. kleine UAVs, mit entsprechender Laserscan-Sensorik auszustatten, so dass die Inspektions-aufgabe kostengünstig gelöst werden kann. Dazu sollen die UAVs die erstellten 3D-Karten auch selbst nutzen. Es müssen die Verfahren und Algorithmen so angepasst werden, dass die Ergebnisse, d.h. die 3D-Karten in Echtzeit vorliegen. Das Vorhandensein einer detailreichen 3D-Karte mit Zusatzinformationen (Fotos, Thermografie, Interpretationen) bietet die Möglichkeit in kurzer Zeit, WKAs zu inspizieren und den Zustand zu dokumentieren. Die wissenschaftlichen Ziele des Vorhabens beinhalten zum einen die Lösung des Problems der simultanen Lokalisierung und Kartierung (SLAM, vgl. Abschnitt 2) eines UAVs. Ist SLAM gelöst, muss die 3D-Punktwolke in ein 3D-Modell umgewandelt, was durch Anwendung von neuronalen KI-Methoden gelingen soll. Eine weitere wissenschaftliche Herausforderung ist die Datennachverarbeitung und Datenanalyse. Hier sollen neue Methoden zur Änderungsdetektion umgesetzt werden. Auf technischer Seite ist ein Ziel des Projektes eine effiziente Lösung des Kalibrierproblems zu finden.

Ofensystem für Tailored-Organo-Sheets, Teilvorhaben: Entwicklung der Regler-Architektur und Array-Schaltung zur Einzelansteuerung der IR-Strahler

Das Projekt "Ofensystem für Tailored-Organo-Sheets, Teilvorhaben: Entwicklung der Regler-Architektur und Array-Schaltung zur Einzelansteuerung der IR-Strahler" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Elektroschmiede GmbH & Co. KG.

Ofensystem für Tailored-Organo-Sheets

Das Projekt "Ofensystem für Tailored-Organo-Sheets" wird/wurde ausgeführt durch: Centrotherm Systemtechnik GmbH.

Ofensystem für Tailored-Organo-Sheets, Teilvorhaben: Entwicklung von IR-Strahler und IR-Strahlerfeldmodul

Das Projekt "Ofensystem für Tailored-Organo-Sheets, Teilvorhaben: Entwicklung von IR-Strahler und IR-Strahlerfeldmodul" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: INFRATEC Infrarot Strahler GmbH.

Ofensystem für Tailored-Organo-Sheets, Teilvorhaben: Validierung des Ofensystems im Hybrid-Molding Verfahren

Das Projekt "Ofensystem für Tailored-Organo-Sheets, Teilvorhaben: Validierung des Ofensystems im Hybrid-Molding Verfahren" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Centrotherm Systemtechnik GmbH.

Forschergruppe (FOR) 2332: Temperature-related stresses as a unifying principle in ancient extinctions (TERSANE), Forschergruppe FOR 2332: Temperature-related stresses as a unifying principle in ancient extinctions (TERSANE)

Das Projekt "Forschergruppe (FOR) 2332: Temperature-related stresses as a unifying principle in ancient extinctions (TERSANE), Forschergruppe FOR 2332: Temperature-related stresses as a unifying principle in ancient extinctions (TERSANE)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Friedrich-Alexander-Universität Erlangen-Nürnberg, GeoZentrum Nordbayern, Lehrstuhl für Paläoumwelt.Anthropogenic global warming is regarded as a major threat to species and ecosystems worldwide. Predicting the biological impacts of future warming is thus of critical importance. The geological record provides several examples of mass extinctions and global ecosystem pertubations in which temperature-related stresses are thought to have played a substantial role. These catastrophic natural events are potential analogues for the consequences of anthropogenic warming but the Earth system processes during these times are still unexplored, especially in terms of their ultimate trigger and the extinction mechanisms. The Research Unit TERSANE aims at assessing the relative importance of warming-related stresses in ancient mass extinctions and at evaluating how these stresses emerged under non-anthropogenic conditions. An interdisciplinary set of projects will combine high-resolution geological field studies with meta-analyses and sophisticated analysis of fossil occurrence data on ancient (suspect) hyperthermal events to reveal the rate and magnitude of warming, their potential causes, their impact on marine life, and the mechanisms which led to ecologic change and extinction. Geochemistry, analytical paleobiology and physiology comprise our main toolkit, supplemented by biostratigraphy, sedimentology, and modelling.

Entwicklung eines kombinierten Verfahrens aus Akustik und Infrarotthermografie zur quantitativen Evaluation der Luftdichtheit von Gebäudefassaden

Das Projekt "Entwicklung eines kombinierten Verfahrens aus Akustik und Infrarotthermografie zur quantitativen Evaluation der Luftdichtheit von Gebäudefassaden" wird/wurde ausgeführt durch: Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Solarforschung (SF), Standort Köln.Der unbeabsichtigte Luftaustausch durch die Gebäudehülle ist eine der wesentlichen Quellen für Wärmeverluste in Gebäuden und deren Energieverbrauch. Die Quantifizierung und Identifikation einzelner Leckagen in der Gebäudehülle ist mit Stand-der-Technik Verfahren bisher anspruchsvoll, zeitaufwändig und hängt stark von der Erfahrung des jeweiligen Energieberaters ab. Das schnelle und sichere Auffinden von Leckagen spielt allerdings eine entscheidende Rolle bei einer zügigen und großflächigen Sanierung von Bestandsgebäuden. In diesem Projekt soll ein Messsystem sowie eine dafür geeignete Ultraschallquelle entwickelt werden, mit dem Ziel, Leckagen in Gebäudehüllen schnell und für Bewohner möglichst störungsfrei zu identifizieren. Das System basiert auf der Kombination von Schallquellenortung mittels Mikrofon-Array-Technologie ('Akustische Kamera') und Infrarotthermografie. Durch die kombinierte Auswertung von Akustik und Thermografie können die Vorteile beider Verfahren kombiniert und die spezifischen Nachteile der einzelnen Verfahren verringert werden. Im Labor wird untersucht, wie mit dieser Methode die energetische Relevanz (Luftaustauschrate) verschiedener Leckagen bestimmt werden kann. Entwicklungsbegleitende Tests an Sanierungsbaustellen sollen Praxisanforderungen gewährleisten und zu einer Beschleunigung der Prozesse der seriellen Gebäudesanierung führen. Abschließend ist ein Ergebnisvergleich des Systems mit einer professionellen Luftdichtheitsprüfung nach Stand der Technik geplant. Das DLR übernimmt die Koordination des Vorhabens. Neben der Durchführung von Voruntersuchungen im Feld, sowie von Praxistests und der Validierung liegt der fachliche Schwerpunkt des DLR auf den Laborarbeiten. Hier werden insbesondere die Ortung und Quantifizierbarkeit diverser Leckage-Setups im Labor bei unterschiedlichen Anregungsarten im Laborprüfstand untersucht.

Entwicklung eines kombinierten Verfahrens aus Akustik und Infrarotthermografie zur quantitativen Evaluation der Luftdichtheit von Gebäudefassaden, Teilvorhaben: Koordination, Laborarbeiten und Voruntersuchungen im Feld, sowie Praxistests und Validierung

Das Projekt "Entwicklung eines kombinierten Verfahrens aus Akustik und Infrarotthermografie zur quantitativen Evaluation der Luftdichtheit von Gebäudefassaden, Teilvorhaben: Koordination, Laborarbeiten und Voruntersuchungen im Feld, sowie Praxistests und Validierung" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Solarforschung (SF), Standort Köln.Der unbeabsichtigte Luftaustausch durch die Gebäudehülle ist eine der wesentlichen Quellen für Wärmeverluste in Gebäuden und deren Energieverbrauch. Die Quantifizierung und Identifikation einzelner Leckagen in der Gebäudehülle ist mit Stand-der-Technik Verfahren bisher anspruchsvoll, zeitaufwändig und hängt stark von der Erfahrung des jeweiligen Energieberaters ab. Das schnelle und sichere Auffinden von Leckagen spielt allerdings eine entscheidende Rolle bei einer zügigen und großflächigen Sanierung von Bestandsgebäuden. In diesem Projekt soll ein Messsystem sowie eine dafür geeignete Ultraschallquelle entwickelt werden, mit dem Ziel, Leckagen in Gebäudehüllen schnell und für Bewohner möglichst störungsfrei zu identifizieren. Das System basiert auf der Kombination von Schallquellenortung mittels Mikrofon-Array-Technologie ('Akustische Kamera') und Infrarotthermografie. Durch die kombinierte Auswertung von Akustik und Thermografie können die Vorteile beider Verfahren kombiniert und die spezifischen Nachteile der einzelnen Verfahren verringert werden. Im Labor wird untersucht, wie mit dieser Methode die energetische Relevanz (Luftaustauschrate) verschiedener Leckagen bestimmt werden kann. Entwicklungsbegleitende Tests an Sanierungsbaustellen sollen Praxisanforderungen gewährleisten und zu einer Beschleunigung der Prozesse der seriellen Gebäudesanierung führen. Abschließend ist ein Ergebnisvergleich des Systems mit einer professionellen Luftdichtheitsprüfung nach Stand der Technik geplant. Das DLR übernimmt die Koordination des Vorhabens. Neben der Durchführung von Voruntersuchungen im Feld, sowie von Praxistests und der Validierung liegt der fachliche Schwerpunkt des DLR auf den Laborarbeiten. Hier werden insbesondere die Ortung und Quantifizierbarkeit diverser Leckage-Setups im Labor bei unterschiedlichen Anregungsarten im Laborprüfstand untersucht.

Ofensystem für Tailored-Organo-Sheets, Teilvorhaben: Selbstadaptierende Prozessanpassung

Das Projekt "Ofensystem für Tailored-Organo-Sheets, Teilvorhaben: Selbstadaptierende Prozessanpassung" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: DatenBerg GmbH.

Ofensystem für Tailored-Organo-Sheets, Teilvorhaben: Selbst-adaptiver Regelkreis

Das Projekt "Ofensystem für Tailored-Organo-Sheets, Teilvorhaben: Selbst-adaptiver Regelkreis" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: KraussMaffei Technologies GmbH.

1 2 3 4 517 18 19