API src

Found 816 results.

Related terms

Kunststoffabfälle

Die Abfallwirtschaft verwertet die gesammelten Kunststoffabfälle nahezu vollständig. Im Jahr 2023 hat sie knapp 38 Prozent aller gesammelten Kunststoffabfälle werkstofflich und 0,5 Prozent rohstofflich oder chemisch verwertet. 61 Prozent der Abfälle wurden energetisch verwertet. Aus Klima- und Umweltschutzsicht ist es wichtig, mehr Kunststoffabfälle werkstofflich zu verwerten. Kunststoffe – Produktion, Verwendung und Verwertung Gegenüber dem Erhebungsjahr 2021 sind im Jahr 2023 sowohl die Produktionsmengen der deutschen Kunststoffindustrie als auch die verarbeiteten Mengen deutlich gesunken. Laut der Studie "Stoffstrombild Kunststoffe in Deutschland 2023" , die alle zwei Jahre industrieseitig durchgeführt wird, verarbeitete die Kunststoffindustrie im Jahr 2023 insgesamt 12,8 Millionen Tonnen (Mio. t) Kunststoffe zu werkstofflichen Anwendungen (sogenannte Kunststoffneuware), wie zum Beispiel Verpackungen. Gegenüber dem Jahr 2021 entspricht dies einem Rückgang von 8,5 %. Die Menge an verarbeiteten Primärkunststoffen (fossile Rohstoffbasis) lag bei knapp 10,4 Mio. t und damit 11,4 % niedriger als im Jahr 2021.  Zusätzlich wurden etwas mehr als 1,9 Mio. t ⁠ Rezyklate ⁠ und 0,5 Mio. t ⁠ Nebenprodukte ⁠ verarbeitet. Im Vergleich mit 2021 hat sich der Einsatz von Rezyklaten und Nebenprodukten demnach um 6,2 % erhöht. Der Anteil von Kunststoffrezyklaten an der insgesamt verarbeiteten Kunststoffmenge betrug dabei 15 % und der Einsatz von Nebenprodukten machte weitere 3,9 % der Verarbeitungsmenge aus. Der Kunststoffverbrauch in Deutschland lag nach Bereinigung um Im- und Exporte bei knapp 11,3 Mio. t und damit um 4,6 % niedriger als im Jahr 2021. An Kunststoffabfällen fielen 2023 insgesamt 5,9 Mio. t an. Von dieser Menge wurden 99,5 % stofflich oder energetisch verwertet (siehe Abb. „Entwicklung der Verwertung der Kunststoffabfälle“). Hinzu kommen etwas mehr als 0,4 Mio. t Nebenprodukte aus dem Produktions- und Verarbeitungsprozess, die jedoch nicht als Abfall anfielen, sondern wieder in den Herstellungsprozess zurückgeführt worden sind. Neben der Produktion von Kunststoffen zur Herstellung von Kunststoffwerkstoffen wurden auch knapp 6,1 Mio. t Polymere für Klebstoffe, Dichtstoffe, Lacke, Elastomere oder Fasern erzeugt. Diese werden im Folgenden jedoch nicht mit betrachtet. Kunststoffvielfalt 67,7 % der verarbeiteten Kunststoffe entfielen auf folgende fünf Thermoplaste (inklusive ⁠ Rezyklate ⁠): Polyethylen (PE) mit 3,47 Millionen Tonnen (Mio. t), Polypropylen (PP) mit knapp 2,21 Mio. t, Polyvinylchlorid (PVC) mit 1,55 Mio. t, Polyethylenterephthalat (PET) mit 830.000 t sowie Polystyrol und expandiertes Polystyrol (PS/PS-E) mit 625.000 t. Etwa 15,3 % der produzierten Gesamtmenge waren andere Thermoplaste wie Polykarbonat (PC), Polyamid (PA) oder Styrol-Copolymere wie Acrylnitril-Butadien-Styrol (ABS) und Styrol-Acrylnitril (SAN). Die restlichen 17 % waren sonstige Kunststoffe, u.a. Duroplaste wie Epoxid-, Phenol- und Polyesterharze sowie Polyurethane und Mischkunststoff-Rezyklate (siehe Abb. „Anteil der Kunststoffsorten an der Verarbeitungsmenge Kunststoffe 2023“). Größter Einsatzbereich für Kunststoffe bleiben die Verpackungen. 29,9 % der in Deutschland verarbeiteten Kunststoffe wurden 2023 hier eingesetzt. Der Bausektor belegte mit 23,7 % den zweiten Rang. Dahinter folgen die Segmente Fahrzeugindustrie mit 11,1 % sowie Elektro- und Elektronikgeräte mit 7,0 % (siehe Abb. „Anteil relevanter Branchen an der Verarbeitungsmenge Kunststoffe 2023“). Anteil der Kunststoffsorten an der Verarbeitungsmenge Kunststoffe 2023 Quelle: Umweltbundesamt / CONVERSIO Market & Strategy GmbH Diagramm als PDF Diagramm als Excel mit Daten Anteil relevanter Branchen an der Verarbeitungsmenge Kunststoffe 2023 Quelle: Umweltbundesamt / CONVERSIO Market & Strategy GmbH Diagramm als PDF Diagramm als Excel mit Daten Aufkommen an Kunststoffabfällen Im Jahr 2023 fielen in Deutschland 5,91 Millionen Tonnen Kunststoffabfälle an. Etwa 94 % dieser Abfälle entstanden nach dem Gebrauch der Kunststoffe (sog. Post-Consumer-Abfälle). Die restlichen 6 fielen bei der Herstellung und vor allem bei der Verarbeitung von Kunststoffen an. Ab 2021 werden im Stoffstrombild Kunststoffe erstmals ⁠ Nebenprodukte ⁠ getrennt von den Kunststoffabfällen ausgewiesen. Zuvor waren diese in den Gesamtmengen an Kunststoffabfällen inkludiert. Nebenprodukte fielen im Jahr 2023 in Höhe von 0,43 Mio. t an. Da sie gemäß § 4 Kreislaufwirtschaftsgesetz jedoch nicht unter den Abfallbegriff fallen, werden sie hier nicht weiter berücksichtigt, in der Abb. „Entwicklung der Verwertung der Kunststoffabfälle“ jedoch zusätzlich mit dargestellt. Beim Vergleich mit älteren Angaben zu den Gesamtmengen an Kunststoffabfällen ist zu beachten, dass die Nebenprodukte in den ausgewiesenen Mengen noch enthalten sind (siehe Abb. „Entwicklung der Verwertung der Kunststoffabfälle“). Hohe Verwertungsquoten Im Jahr 2023 wurden 99,5 % aller gesammelten Kunststoffabfälle verwertet: Von den 5,91 Millionen Tonnen (Mio. t) Gesamt-Kunststoffabfällen wurden 2,27 Mio. t, oder 38,4 % werk- und rohstofflich/chemisch genutzt. 3,61 Mio. t oder 61,1 % wurden energetisch verwertet – 2,25 Mio. t davon in Müllverbrennungsanlagen, 1,36 Mio. t ersetzten als Ersatzbrennstoff fossile Brennstoffe etwa in Zementwerken oder Kraftwerken. 32.000 t, etwa 0,5 %, wurden beseitigt. Diese Kunststoffabfälle wurden also deponiert oder in Anlagen ohne hinreichende Auskopplung von Energie verbrannt. (siehe Tab. „Aufkommen und Verbleib von Kunststoffabfällen in Deutschland 2023“ und Abb. „Entwicklung der Verwertung der Kunststoffabfälle“). Nachdem bis zum Berichtsjahr 2019 der Berechnungspunkt für das Recycling von Kunststoffabfällen am Eingang in die Aufbereitungsanlagen lag (Mengen, die dem Recycling zugeführt werden), wird seit dem Stoffstrombild Kunststoffe für 2021 ein neuer Berechnungspunkt zugrunde gelegt. Dieser befindet sich nun vor dem Einbringen in den letzten Schritt des Recyclingprozesses (z.B. in einen Pelletier-, Extrusions- oder Formvorgang). Verluste aus Zerkleinerung, Nachsortierung sowie Waschprozessen werden also berücksichtigt und zum Abzug gebracht. In der Praxis werden diese Verluste energetisch verwertet, weshalb sie sich nun auch in den Mengen zur energetischen Verwertung wiederfinden. Bei einem Vergleich mit älteren Angaben zu Recyclingquoten ist diese Änderung in der Methodik zu berücksichtigen (z.B. Abb. „Entwicklung der Verwertung der Kunststoffabfälle“). Die neue Vorgehensweise bei der Ermittlung der Recyclingquoten basiert auf dem EU-Durchführungsbeschluss 2019/665 . Dieser bezieht sich zwar auf Verpackungen, wurde hier jedoch auch auf die anderen Kunststoffabfallströme angewendet. Eine weitere Änderung ergibt sich aus der Differenzierung in ⁠ Nebenprodukte ⁠ und Kunststoffabfälle. Bis 2019 waren Nebenprodukte unter den recycelten Kunststoffabfällen aus der Produktion und Verarbeitung subsummiert. Da Nebenprodukte aber nicht unter den Abfallbegriff gemäß § 3 (1) Kreislaufwirtschaftsgesetz fallen und ihr Wiedereinsatz in der Produktion keinen Recyclingprozess darstellt ( § 3 (25) Kreislaufwirtschaftsgesetz ), ist ein Abzug dieser Mengen von den werkstofflich verwerteten Kunststoffabfällen aus der Produktion und Verarbeitung notwendig. Beim Vergleich mit älteren Angaben ist zu beachten, dass die Nebenprodukte in den ausgewiesenen Recyclingmengen noch enthalten sind (siehe Abb. „Entwicklung der Verwertung der Kunststoffabfälle“). Bei der Verbrennung von Abfällen wird in energetische Verwertung oder thermische Beseitigung unterschieden. Dies erfolgt anhand der Energieeffizienz der Abfallverbrennungsanlagen auf Grundlage bestimmter Kriterien, die in der EU-Abfallrahmenrichtlinie festgelegt und mit dem Kreislaufwirtschaftsgesetz in nationales Recht umgesetzt worden sind. Werden die Kunststoffabfälle in energieeffizienten Müllverbrennungsanlagen mit Energieauskopplung verbrannt, wird dies generell als energetische Verwertung eingestuft. Tab: Aufkommen und Verbleib von Kunststoffabfällen in Deutschland 2023 Quelle: CONVERSIO Market & Strategy GmbH Tabelle als PDF Tabelle als Excel Entwicklung der Verwertung der Kunststoffabfälle Quelle: Umweltbundesamt / CONVERSIO Market & Strategy GmbH Diagramm als PDF Diagramm als Excel mit Daten Unterschiede bei der stofflichen Verwertung Die Höhe der Recyclingquote lag bei Abfällen aus der Kunststofferzeugung und Kunststoffverarbeitung im Jahr 2023 bei 85 % beziehungsweise bei fast 88 %. Von Kunststoffabfällen aus privaten Haushalten wurden knapp 33 % stofflich verwertet, von den Kunststoffabfällen aus dem gewerblichen Endverbrauch etwa 39 %. Der Grund für diese unterschiedlichen Quoten ist, dass Kunststoffe in der Industrie meist sehr sauber und sortenrein anfallen, in Haushalten und bei vielen Gewerbebetrieben jedoch verschmutzt und vermischt. Aus Umweltschutzsicht ist es sinnvoll, vermehrt Altkunststoffe aus dem Restmüll „abzuschöpfen“, also getrennt vom Restmüll zu erfassen, und einer möglichst hochwertigen werkstofflichen Verwertung zuzuführen. Denn diese Verwertung ist, wie viele Ökobilanzen zeigen, vorwiegend die umweltgünstigste Entsorgungsvariante. Haupteinsatzgebiete von Kunststoffrezyklaten (1,93 Mio. t) und wieder eingesetzten Nebenprodukten (0,5 Mio. t) in Neuprodukten sind Bauprodukte und Verpackungen. Im Jahr 2023 wurden rund 67 % der in Deutschland eingesetzten ⁠ Rezyklate ⁠ und ⁠ Nebenprodukte ⁠ in diesen beiden Anwendungsbereichen verwendet (siehe Abb. „Einsatz von Kunststoffrezyklaten in Deutschland 2023“). Von den in der Kunststoffverarbeitung eingesetzten Rezyklaten stammen 1,54 Mio. t oder 79,8 % aus Abfällen nach dem privaten und gewerblichen Endgebrauch (sog. Post-Consumer-Abfälle) sowie 0,39 Mio. t bzw. 20,2 % aus Produktions- und Verarbeitungsabfällen (siehe Abb. Entwicklung des Rezyklateinsatzes bei der Kunststoffverarbeitung“). Einsatz von Kunststoffrezyklaten in Deutschland 2023 Quelle: Umweltbundesamt / CONVERSIO Market & Strategy GmbH Diagramm als PDF Diagramm als Excel mit Daten Entwicklung des Rezyklateinsatzes bei der Kunststoffverarbeitung Quelle: Umweltbundesamt / CONVERSIO Market & Strategy GmbH Diagramm als PDF Diagramm als Excel mit Daten

Multifunktionaler, nachhaltiger und robuster faserverstärkter Verbundwerkstoff auf Basis von Cellulose für in Deutschland hergestellte Gebrauchsgüter, Teilvorhaben: Entwicklung großserienfähiger Anlagentechnik

CO2-neutrale, lebensdaueroptimierte, kurzfaserverstärkte Thermoplaste für dynamische Applikationen, Teilvorhaben: Rezeptur- und Materialentwicklung des Bio-Komposits

Entwicklung eines zu 100 % auf nachwachsenden Rohstoffen basierenden Klebstoff-Kantenband-Systems

In der industriellen Möbelfertigung ist es seit Jahrzehnten üblich die Schnittkanten von Werkstoffplatten zu beschichten. Im Bereich der Schmalflächenbeschichtung hat sich der Begriff des 'Kantenbandes' etabliert. Dabei handelt es sich um schmale Streifen aus Furnier, beharztem Papier, thermoplastischen Kunststoffen oder Aluminium. Das Verfahren zur Anbringung der Kantenbänder an verschiedene Holzwerkstoffsubstrate, wird und a. als ,,Bekantung' bezeichnet. Die meisten zur Bekantung eingesetzten Kantenbänder bestehen aus petrochemischen Kunststoffen wie PVC oder ABS und werden demnach aus nicht erneuerbaren Rohstoffen hergestellt. Ein qualitativ hochwertiges Aussehen, als auch die Summe verschiedener Materialien, die während einer Bekantung aufeinandertreffen, stellen besondere Anforderungen an die Klebtechnik. Um diesen zu genügen, werden seit den 1960er Jahren Schmelzklebstoffe, sogenannte Hotmelts, für Bekantungen eingesetzt. Sowohl die marktüblichen Materialien der Kantenbänder, als auch die für die Bekantung eingesetzten Schmelzklebstoffe basieren überwiegend auf fossilen Ressourcen. Diese zeichnen sich durch ihre Endlichkeit aus. Darüber hinaus ist die Erdölfraktionierung mit starken Belastungen für die Umwelt verbunden. Im Zuge dessen fokussiert das vorliegende Projekt die Entwicklung eines möglichst zu 100 % auf nachwachsenden Rohstoffen basierenden Klebstoff-Kantenband-Systems. Dabei soll ein Schmelzkleber entwickelt werden, der im Gegensatz zu den auf dem Markt erhältlichen Schmelzklebstoffen keinerlei Inhaltsstoffe mit petrochemischem Charakter aufweist. Weiterhin wird die Entwicklung eines aus Biokunststoff bestehenden Kantenbandes ins Auge gefasst, das ebenso rein aus nachwachsenden Rohstoffen bestehen soll. TV 1 (HS HOF) Rezepturentwicklung des Kantenbandes: In dem Teilvorhaben sollen Rezepturen auf Basis von PLA und PBS und deren Blends entwickelt werden, die dem Anforderungsprofil, welches in dem Projektantrag näher beschrieben ist, entsprechen.

Entwicklung eines zu 100 % auf nachwachsenden Rohstoffen basierenden Klebstoff-Kantenband-Systems, Teilvorhaben 1: Rezepturentwicklung des Kantenbandes

In der industriellen Möbelfertigung ist es seit Jahrzehnten üblich die Schnittkanten von Werkstoffplatten zu beschichten. Im Bereich der Schmalflächenbeschichtung hat sich der Begriff des 'Kantenbandes' etabliert. Dabei handelt es sich um schmale Streifen aus Furnier, beharztem Papier, thermoplastischen Kunststoffen oder Aluminium. Das Verfahren zur Anbringung der Kantenbänder an verschiedene Holzwerkstoffsubstrate, wird und a. als ,,Bekantung' bezeichnet. Die meisten zur Bekantung eingesetzten Kantenbänder bestehen aus petrochemischen Kunststoffen wie PVC oder ABS und werden demnach aus nicht erneuerbaren Rohstoffen hergestellt. Ein qualitativ hochwertiges Aussehen, als auch die Summe verschiedener Materialien, die während einer Bekantung aufeinandertreffen, stellen besondere Anforderungen an die Klebtechnik. Um diesen zu genügen, werden seit den 1960er Jahren Schmelzklebstoffe, sogenannte Hotmelts, für Bekantungen eingesetzt. Sowohl die marktüblichen Materialien der Kantenbänder, als auch die für die Bekantung eingesetzten Schmelzklebstoffe basieren überwiegend auf fossilen Ressourcen. Diese zeichnen sich durch ihre Endlichkeit aus. Darüber hinaus ist die Erdölfraktionierung mit starken Belastungen für die Umwelt verbunden. Im Zuge dessen fokussiert das vorliegende Projekt die Entwicklung eines möglichst zu 100 % auf nachwachsenden Rohstoffen basierenden Klebstoff-Kantenband-Systems. Dabei soll ein Schmelzkleber entwickelt werden, der im Gegensatz zu den auf dem Markt erhältlichen Schmelzklebstoffen keinerlei Inhaltsstoffe mit petrochemischem Charakter aufweist. Weiterhin wird die Entwicklung eines aus Biokunststoff bestehenden Kantenbandes ins Auge gefasst, das ebenso rein aus nachwachsenden Rohstoffen bestehen soll. TV 1 (HS HOF) Rezepturentwicklung des Kantenbandes: In dem Teilvorhaben sollen Rezepturen auf Basis von PLA und PBS und deren Blends entwickelt werden, die dem Anforderungsprofil, welches in dem Projektantrag näher beschrieben ist, entsprechen.

Entwicklung eines zu 100 % auf nachwachsenden Rohstoffen basierenden Klebstoff-Kantenband-Systems, Teilvorhaben 2: Entwicklung Schmelzklebstoff

In der industriellen Möbelfertigung ist es seit Jahrzehnten üblich die Schnittkanten von Werkstoffplatten zu beschichten. Im Bereich der Schmalflächenbeschichtung hat sich der Begriff des 'Kantenbandes' etabliert. Dabei handelt es sich um schmale Streifen aus Furnier, beharztem Papier, thermoplastischen Kunststoffen oder Aluminium. Das Verfahren zur Anbringung der Kantenbänder an verschiedene Holzwerkstoffsubstrate, wird und a. als ,,Bekantung' bezeichnet. Die meisten zur Bekantung eingesetzten Kantenbänder bestehen aus petrochemischen Kunststoffen wie Polyvinylchlorid PVC oder Acrylnitril-Butadien-Styrol ABS und werden demnach aus nicht erneuerbaren Rohstoffen hergestellt. Ein qualitativ hochwertiges Aussehen, als auch die Summe verschiedener Materialien, die während einer Bekantung aufeinandertreffen, stellen besondere Anforderungen an die Klebtechnik. Um diesen zu genügen, werden seit den 1960er Jahren Schmelzklebstoffe, sogenannte Hotmelts, für Bekantungen eingesetzt. Sowohl die marktüblichen Materialien der Kantenbänder, als auch die für die Bekantung eingesetzten Schmelzklebstoffe basieren überwiegend auf fossilen Ressourcen. Diese zeichnen sich durch ihre Endlichkeit aus. Darüber hinaus ist die Erdölfraktionierung mit starken Belastungen für die Umwelt verbunden. Im Zuge dessen fokussiert das vorliegende Projekt die Entwicklung eines möglichst zu 100 % auf nachwachsenden Rohstoffen basierenden Klebstoff-Kantenband-Systems. Dabei soll ein Schmelzkleber entwickelt werden, der im Gegensatz zu den auf dem Markt erhältlichen Schmelzklebstoffen keinerlei Inhaltsstoffe mit petrochemischem Charakter aufweist. Weiterhin wird die Entwicklung eines aus Biokunststoff bestehenden Kantenbandes ins Auge gefasst, das ebenso rein aus nachwachsenden Rohstoffen bestehen soll. Das TITK ist für die Entwicklung und Charakterisierung des biobasierten Schmelzklebstoffes zuständig. Außerdem sollen Mustermengen im Labor- und Technikumsmaßstab zur Verfügung gestellt werden.

Entwicklung eines zu 100 % auf nachwachsenden Rohstoffen basierenden Klebstoff-Kantenband-Systems, Teilvorhaben 3: Untersuchung der Prototypen und Upscaling der entsprechenden Produkte

In der industriellen Möbelfertigung ist es seit Jahrzehnten üblich die Schnittkanten von Werkstoffplatten zu beschichten. Im Bereich der Schmalflächenbeschichtung hat sich der Begriff des 'Kantenbandes' etabliert. Dabei handelt es sich um schmale Streifen aus Furnier, beharztem Papier, thermoplastischen Kunststoffen oder Aluminium. Das Verfahren zur Anbringung der Kantenbänder an verschiedene Holzwerkstoffsubstrate, wird und a. als ,,Bekantung' bezeichnet. Die meisten zur Bekantung eingesetzten Kantenbänder bestehen aus petrochemischen Kunststoffen wie Polyvinylchlorid PVC oder Acrylnitril-Butadien-Styrol ABS und werden demnach aus nicht erneuerbaren Rohstoffen hergestellt. Ein qualitativ hochwertiges Aussehen, als auch die Summe verschiedener Materialien, die während einer Bekantung aufeinandertreffen, stellen besondere Anforderungen an die Klebtechnik. Um diesen zu genügen, werden seit den 1960er Jahren Schmelzklebstoffe, sogenannte 'Hotmelts', für Bekantungen eingesetzt. Sowohl die marktüblichen Materialien der Kantenbänder, als auch die für die Bekantung eingesetzten Schmelzklebstoffe basieren überwiegend auf fossilen und nicht erneuerbaren Ressourcen. Das vorliegende Projekt sieht die Entwicklung eines möglichst zu 100 % auf nachwachsenden Rohstoffen basierenden Klebstoff-Kantenband-Systems vor. Dabei soll ein Schmelzkleber entwickelt werden, der im Gegensatz zu den auf dem Markt erhältlichen Schmelzklebstoffen keinerlei Inhaltsstoffe mit petrochemischem Charakter aufweist. Weiterhin wird die Entwicklung eines aus Biokunststoff bestehenden Kantenbandes ins Auge gefasst, das ebenso rein aus nachwachsenden Rohstoffen bestehen soll. Im Kontext der gesamten Möbelbauindustrie sollen die Entwicklungen im Projekt dazu beitragen Techniken und Werkstoffe zur Verfügung zu stellen, um in der Möbelindustrie eine nachhaltige Zukunft zu ermöglichen. TV 3 (Klebchemie Becker): Untersuchung der Prototypen und Upscaling der entsprechenden Produkte: In enger Kooperation mit den (Text abgebrochen)

Untersuchungen und Aufbau einer Versuchsanlage zum Verölen von Expandiertem Polystyrol (EPS) mit Flammschutzmitteln, Teilvorhaben 1: Entwicklung und Aufbau der Versuchsanlage

Biotechnologische Produktion von biologisch abbaubaren Thermoplasten, Elastomeren und anderen technisch relevanten Polymeren

Biosynthetische Polymere werden in zunehmender Zahl und Menge eingesetzt und sind aus vielen Bereichen des Alltags nicht mehr wegzudenken. Waren es frueher vorwiegend von hoeheren Lebewesen synthetisierte Polymere, so gewinnen nun von Mikroorganismen synthetisierte Polymere als Werkstoffe sowie als Hilfs- und Nebenstoffe an Bedeutung. Mikroorganismen synthetisieren in vielfaeltiger Form Polymere fuer technische Anwendungen. Die meisten technisch genutzten mikrobiellen Polymere werden heute als Hilfs- und Nebenstoffe eingesetzt, einige auch direkt zu Werkstoffen verarbeitet. Mikrobielle Polymere werden als Rohstoffe zu anderen Werkstoffen oder Hilfs- und Nebenstoffen verarbeitet oder dienen als Ausgangsmittel fuer weitere chemische Synthesen. Der Einsatz von Mikroorganismen bei der biotechnologischen Produktion von Polymeren ermoeglicht haeufig die Nutzung nachwachsender Rohstoffe als Substrate und Kohlenstoffquelle fuer die Produktion wie zB die Nutzung pflanzlicher Photosynthetate, die von der Land- und Forstwirtschaft in grossen Mengen bereitgestellt werden koennen. Die Kenntnis der Biosynthesewege fuer Polymere in Bakterien in Verbund mit der Gentechnik ermoeglicht zudem die Erzeugung transgener Pflanzen, die zur Produktion neuer Polymere anstelle von Bakterien herangezogen werden koennen. 1) Biosynthese von Polyestern: Mikrobielle, aus Hydroxyfettsaeuren aufgebaute Polyester (PHF) machen seit einigen Jahren als neue biologische abbaubare Werkstoffe von sich reden. Neben 3-Hydroxybuttersaeure sind mittlerweile mehr als 100 verschiedene Hydroxyfettsaeuren als Bausteine von PHF bekannt. Seit ca 10 Jahren wird in der Arbeitsgruppe die Biosynthese dieser wasserunloeslichen Polyester untersucht. Als Modellorganismen dienten zunaechst Alcaligenes eutrophus und Pseudomonas aeruginosa; Rhodococcus ruber und zahlreiche anoxygene phototrophe Bakterien wie zB Chromatium vinosum wurden spaeter ebenfalls untersucht. Diese Untersuchungen haben zur Aufklaerung von Biosynthesewegen der PHF und zur Entdeckung neuer Bausteine von PHF sowie zur Klonierung und Ermittlung der Primaerstrukturen des Schluesselenzyms PHF-Synthase aus ca 20 Bakterien beigetragen. Durch Screening nach neuen Wildtypen, durch Verwendung von Mutanten und mit gentechnischen Methoden gelang es, Polyester mit ungewoehnlichen Hydroxyfettsaeuren aus einfachen Kohlenstoffquellen verfuegbar zu machen. In Zusammenarbeit mit Industriepartnern und gefoerdert durch das BMBF und das BML sollen Reststoffe, Kohlen und nachwachsende Rohstoffe fuer die Produktion dieser Polyester erschlossen werden. Ein Biotechnikum mit Bioreaktoren von 1 bis 20 l Nutzvolumen, welches demnaechst durch einen Anbau und einen Bioreaktor von 450 L Nutzvolumen erweitert wird, erlaubt die Herstellung von Polymermustern zur Ermittlung der Materialeigenschaften durch hieran interessierte Kooperationspartner. Ferner kommt der Zusammenarbeit mit Pflanzengenetikern, die Gene fuer PHF Biosynthese aus Bakterien in Pflanzen ...

Untersuchungen und Aufbau einer Versuchsanlage zum Verölen von Expandiertem Polystyrol (EPS) mit Flammschutzmitteln, Teilvorhaben 2: Genehmigungen

1 2 3 4 580 81 82