API src

Found 1222 results.

Related terms

P 2.3 - Dynamiken von Konvektionen als Kopplung zwischen dem marinen Oberflächenfilm und der Wassermasse

Unsere Motivation liegt in der Tatsache, dass die dynamische Verbindung zwischen dem marinen Oberflächenfilm (engl. sea-surface microlayer, SML) und der darunterliegenden oberflächennahen Wasserschicht über Konvektion zu heterogenen Eigenschaften der SML führt. Dies wiederum steuert das Ausmaß der bio-photochemischen Reaktionen und des Gasaustausches zwischen dem Ozean und der Atmosphäre. Die Konvektion wird durch Verdunstung angetrieben, die die SML abkühlt und es salzhaltiger macht. Infolgedessen wird die SML dichter, sinkt ab und wird durch das darunterliegende Wasser ersetzt. Die auftriebsgetriebene Konvektion wurde jedoch bei der Erforschung der SML und des Gasaustausches als dynamisches Bindeglied zwischen der Atmosphäre und dem Ozean vernachlässigt. Unser Hauptziel ist es, ein mechanistisches Verständnis der Dynamik zwischen der SML und der oberflächennahen Wasserschicht zu beschreiben. Ein mechanistisches Verständnis der Konvektion ist wichtig, da das Ausmaß der bio-photochemischen Reaktionen und Austauschprozessen von Spurengasen, Energie und Impuls letztlich durch Austauschprozesse zwischen der SML und der oberflächennahen Wasserschicht und schließlich mit tieferen Schichten bestimmt wird. Wir werden einen experimentellen Aufbau mit mehreren profilierenden Mikroelektroden und einem optischen Schlierensystem entwickeln, um die Konvektion unter verschiedenen externen Antrieben zu untersuchen. Wir werden den Effekt der horizontalen Strömung aufgrund von Gradienten der Oberflächenspannung (d.h. Marangoni-Effekt) untersuchen. Wir werden auch an dem gemeinsamen Mesokosmen-Experiment BASS teilnehmen, um den Einfluss biogener Tenside auf den konvektiven Transportmechanismus zwischen der SML und der oberflächennahen Wasserschicht zu untersuchen. Im gemeinsamen Feldexperiment BASS werden wir der Frage nachgehen, inwieweit Variationen der klein-skaligen Konvektion durch die Variabilität sub-mesoskaligen (1 km-10 km) und hydrodynamischen Prozessen nahe der Meeresoberfläche beeinflusst werden. Wir werden zwei Forschungskatamarane und eine Flotte von Treibbojen einsetzen, die mit Leitfähigkeits- und Temperatursensoren ausgestattet sind, um Dichteanomalien zwischen der SML und oberflächennahen Wasserschicht zu untersuchen. Wir werden externe ozeanische und atmosphärische Einflüsse beobachten, um die Dichteanomalien zu beschreiben. Schließlich werden wir die gewonnenen Erkenntnisse aus den Laborexperimenten, der Mesokosmos-Studie und der Feldstudie nutzen, um einen mathematischen Rahmen zur Beschreibung von Temperatur- und Salzgehaltsprofilen und deren Schwankungen unter dem Einfluss definierter ozeanischer und atmosphärischer Einflüsse zu entwickeln.

Wozu bauen Coccolithophoriden eine Kalkschale? Dient sie zum Schutz gegen Fressfeinde und Pathogene?

Coccolithophoriden sind eine Gruppe von ca. 200-300 marinen Phytoplanktonarten, die in allen Weltmeeren vorkommt. Sie besitzen die besondere Fähigkeit eine Kalkschale (Coccosphäre) zu bauen, die sie aus vielen kleinen Kalkplättchen (Coccolithen) zusammensetzen. Aufgrund ihrer Fähigkeit zu kalzifizieren sind sie ein wichtiger Bestandteil im Klimasystem, denn die Produktion von Kalk nahe der Meeresoberfläche führt zu einem vertikalen Gradienten der Seewasseralkalinität, beschleunigt den Kohlenstoffexport in die Tiefsee und erhöht die Rückstrahlung von einfallender Sonnenenergie von der Erdoberfläche ins Weltall. Trotz intensiver Forschung an der Physiologie der Kalzifizierung und dessen biogeochemischer Relevanz konnten wir eine der entscheidenden Fragen immer noch nicht beantworten: Wozu bauen Coccolithophoriden eine Kalkschale? Die Beantwortung dieser Frage ist von außerordentlicher Bedeutung, denn solange wir nicht wissen wozu die Kalkschale dient können wir auch nicht vorraussagen in welchem Maße sich die durch die Ozeanversauerung zu erwartende Abnhame in der Kalzifizierung negativ auf die Fitness dieser Lebewesen in ihrem natürlichen Lebensraum auswirkt. In dem hier vorgestellten Projekt möchten wir die Frage nach der Bedeutung der Kalzifizierung erforschen, indem wir untersuchen ob die Coccosphäre einen Schutz gegen planktonische Räuber, Bakterien und Viren darstellt. Dazu haben wir eigens einen experimentellen Ansatz entwickelt wobei kalzifizierte und dekalzifizierte Coccolithophoridentzellen zusammen mit deren Fressfeinden und Pathogenen kultiviert werden. Dieser Ansatz erlaubt es uns folgende Fragestellungen zu untersuchen: 1) Sind kalzifizierte Zellen besser in der Lage sich gegen Fraß und Infektion zu schützen als Zellen ohne Coccosphäre? 2) Bevorzugen Fressfeinde und Pathogene solche Zellen, bei denen die Coccosphäre entfernt wurde, wenn ihnen beides angeboten wird? 3) Sind Wachstum und Reproduktion von Fressfeinden und Pathogenen verlangsamt, wenn sie kalzifizierte Zellen fressen oder infizieren?

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - International Ocean Discovery Program, Teilprojekt: Sedimente des Melvillesees: Ein Zeitfenster in die präholozäne Glazialgeschichte des Laurentidischen Eisschildes (Akronym: MELSED)

Der Melvillesee ist ein Fjordsee, der sich in der letzten Eiszeit am Rande des hochdynamischen Laurentidischen Eisschildes (LIS) befand. Die obersten 10 m der insgesamt ca. 300-400 m Seesedimente haben die postglaziale Geschichte der letzten 10000 Jahre aufgezeichnet. In diesem dicken Sedimentpaket dürfte der See die Klimageschichte bis weit zurück vor das letzte Glazial gespeichert haben und würde sich daher als exzellentes Klimaarchiv anbieten. Um diesen Sachverhalt zu klären, wurde im Sommer 2019 eine Expedition mit dem FS Maria S. Merian (MSM84) unternommen. Während dieser Expedition wurden Sedimentkerne gezogen sowie ein dichtes Netz von hydroakustischen Messungen durchgeführt. Anhang der Sedimentkerne und der Sedimentecholot-Daten kann man fünf verschiedene Schichten im Untergrund des Sees erkennen: (I) post-glaziale Sedimente; (II) Sedimente aus der Zeit des Eisrückzuges; (III) Sedimente, die mit großer Wahrscheinlichkeit in einem subglazialen See unterhalb des aufschwimmenden LIS abgelagert wurden. Darunter finden sich (IV) wiederum schön geschichtete Sedimente, die aus einem früheren eisfreien Zeitraum stammen dürften, vermutlich MIS5, MIS4 oder die erste Hälfte des MIS3. Als unterste Schichte ist das Grundgestein (V) zu erkennen. Unsere Sedimentkerne enthalten Sedimente aus I und II sowie aus dem obersten Bereich von III. Im Rahmen dieses Projektes schlagen wir vor, die post-glazialen Sedimente sowie diejenige vom Rückzug des LIS genauer zu untersuchen, um daran Paläoklimaschwankungen sowie die Rückzugsgeschichte des LIS zu rekonstruieren. In einem zweiten Schritt möchten wir auch die Sedimente analysieren, die vom subglazialen See zu stammen, um diesen besser zu charakterisieren und um zu testen, ob auch diese Sedimente Klimaschwankungen aufgezeichnet haben. Um diese Fragen zu beantworten, werden wir die Sedimentkerne zuerst mit zerstörungsfreien Methoden wie CT-Scanning, Multisensor-Core-Logging und XRF-Scanning untersuchen. Danach werden ausgewählte Kernabschnitte beprobt. Mit Hilfe von Radiokarbondatierungen und paläomagnetischen Messungen werden wir ein Altersmodell erstellen können. Mit einer Kombination der zerstörungsfreien Messungen mit Einzelprobenmessungen (TIC, TOC, Korngröße, XRD, WD-XRF) werden wir die in den Kernen enthaltene paläoklimatologische Information entschlüsseln. Hierbei werden wir einen Schwerpunkt auf die Entwicklung von Proxies legen, die geeignet sind, die vergangenen Vorstöße und Rückzüge des LIS zu rekonstruieren. Falls wir zeigen können, dass die Sedimente des Melvillesees tatsächlich ein Archiv für Klimageschichte auch jenseits des Holozäns sind, dann empfiehlt sich der See als ein Hauptziel einer zukünftigen amphibischen Tiefbohrung von IODP und ICDP. Diese würde mit dem Ziel abgeteuft, die Dynamik des LIS zu rekonstruieren.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - International Ocean Discovery Program, Teilprojekt: Küstenfernes Süßwasser: 3D numerische Simulationen von Grundwasserströmung am New Jersey Shelf

Ziel dieser Studie ist die Erforschung der Grundwasserbewegung im New Jersey Shelf (NJS). Ende der 1970er Jahre wurde Grundwasser mit deutlich geringerem Salzgehalt als Meerwasser in zahlreichen Bohrungen entlang der U.S. Ostküste nachgewiesen - teilweise mehr als 100 km vom Festland entfernt. Besonders detaillierte Daten zur Porenwassersalinität wurden im Rahmen von IODP Leg 313 am NJS gewonnen: Sie zeigen abrupte vertikale Salinitätskontraste an allen drei Bohrlokationen. Verschiedene Autoren erklären die Entstehung von küstenfernem Süßwasser im NJS durch rezenten meerwärts gerichteten Grundwasserfluss oder führen sie auf ein erhöhtes hydraulisches Potential während der letzten Eiszeit zurück. Zur Klärung welcher dieser Prozesse zur Entstehung von küstenfernem Süßwasser geführt hat, soll im Rahmen dieser Studie, auf der Basis eines detaillierten 3D hydrogeologischen Modells, die Grundwasserströmung im NJS numerisch simuliert werden. Es werden folgende Arbeitshypothesen aufgestellt: 1. Küstenfernes Süßwasser im NJS entstand während der letzten Eiszeit. 2. Ablandige Grundwasserströmung reicht gegenwärtig nicht bis zu 100 km von der Küste. 3. Küstenferne Süßwasservorkommen sind auf Sedimentschichten mit niedriger Permeabilität beschränkt. Die verfügbare Datengrundlage ist exzellent und besteht neben petrophysikalischen Messungen und Bohrlochdaten vergangener ODP/IODP Expeditionen aus zahlreichen 2D seismischen Profilen. Das gleichnamige Projekt wird seit Mitte 2015 an der TU Freiberg und seit Ende 2016 an der RWTH Aachen durch die DFG gefördert. Eine Tiefenmigration reflexionsseismischer Profile ist nahezu abgeschlossen und bildet die Grundlage zur Erstellung eines hydrogeologischen Modells. Auf Basis einer sequenz-stratigraphischen Interpretation der seismischen Daten und unter Berücksichtigung der aus Bohrlochdaten abgeleiteten Korngrößenverteilung am NJS, wurde mittels geostatistischer Verfahren ein komplexes, über 30 Millionen Gitterpunkte umfassendes und geologisch plausibles 2D Faziesmodell erstellt. Dabei ist jeder Faziestyp durch bohrloch- und literaturgestützte petrophysikalische Eigenschaften charakterisiert. Nach sorgfältiger Definition von Anfangs- und Randbedingungen, bildet dieses Modell die Grundlage für vorläufige numerischer Simulationen. Die Simulationsergebnisse sind vielversprechend und deuten auf eine Bestätigung der oben genannten Hypothesen hin. Zukünftig geplante Arbeiten umfassen eine Erweiterung des hydrogeologischen Modells in 3D unter Einbeziehung multiple-point-geostatistischer Methoden. Dabei sollen auch die durch eine AVO-Analyse der Seismik abgeleiteten petrophysikalischen Parameter berücksichtigt werden. Die Überprüfung der oben genannten Hypothesen wird durch numerische Simulationsrechnung auf Basis des finalen 3D Modells erfolgen. Die Ergebnisse dieser Studie können zu einem verbesserten Verständnis von meerwärts gerichtetem Grundwassertransport im Allgemeinen beitragen.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - International Ocean Discovery Program, Teilprojekt: Der Einfluss von Nährstoff- und Temperaturänderungen auf die Entwicklung der Korallenriffe in der Korallensee seit 12 Ma

Weltweit erleben Korallenriffe einen Niedergang. Die langfristigen Folgen dieses Rückgangs der Korallenriffe sind noch ungewiss. Es ist dagegen klar, dass Millionen von Menschen für ihr Überleben auf dieses am weitesten entwickelte Ökosystem in niederen Breiten angewiesen sind. Anthropogen bedingte globale Veränderungen wie die globale Erwärmung, die Versauerung der Ozeane und die Verschlechterung der Wasserqualität (Eutrophierung) wurden als mögliche Schuldige für den Niedergang der Korallenriffe identifiziert. Das Zusammenspiel dieser Faktoren ist jedoch unbekannt und verschiedene Studien deuten darauf hin, dass sie die Entwicklung der Korallenriffe hemmen oder fördern können. Ein Problem ist das Fehlen von Langzeitaufzeichnungen von Meeresoberflächentemperatur (SST) und -produktivität aus Gebieten mit einer Korallen-Vergesellschaftung, die modernen Riffen ähnelt. In diesem Projekt planen wir diese Rekonstruktion für das Queensland Plateau, welches in der Nähe des heutigen Großen Barriere Riffs liegt. Es ist bekannt, dass sich die Korallenriffe in dieser Region bis zum späten Miozän (10-5,5 Ma) ausgedehnt haben. Danach kam es während der mittelpliozänen Warmzeit (3,0-3,5 Ma) zu einer Reduktion der Fläche des Riffsystems. Wir planen drei Biomarker (UK37', TEX86, LDI) zur Rekonstruktion der Meeresoberflächentemperatur zu verwenden. Zur Rekonstruktion der Produktivität werden neue, korallenspezifische Stickstoffisotope mit den Biomarkern und korallen-basierten Ba/Ca verglichen werden. Unsere Pilotdaten zeigen, dass sowohl Meeresoberflächentemperaturen als auch die Produktivität während des Mittel-Pliozäns hoch waren, während nur SSTs während des späten Miozäns hohe Werte zeigen. Diese vorläufigen Daten deuten darauf hin, dass hohe SSTs in Kombination mit einer erhöhten Produktivität während des mittleren Pliozäns die Reduktion des Riffwachstums auf dem Queensland Plateau verursacht haben könnten. Um diese Hypothese zu überprüfen ist es essentiell Daten in höherer Auflösung zu generieren, um die Wechselwirkung von Faktoren zu bestimmen, die zum Verlust von Korallenriffen in der Vergangenheit geführt haben und potentiell in der Zukunft führen werden.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - International Ocean Discovery Program, Teilprojekt: Leben am Limit: Die Tiefe Biosphäre des West Antarktischen Kontinentalrandes

Die tiefe Biosphäre umfasst eine diverse aber nur wenig untersuchte Gemeinschaft aus Mikroorganismen in Sedimenten und Gesteinen. Mikrobiologische und geochemische Untersuchungen der letzten Jahrzehnte haben gezeigt, dass bakterielles und archeales Leben weit verbreitet ist in marinen Sedimenten und sich dort bis in Tiefen von mehreren Kilometern unter dem Ozeanboden erstreckt und noch in über hundert Millionen Jahre alten Ablagerungen überdauert. Bestimmungen von Zellzahlen und deren Extrapolation auf einen globalen Maßstab legen den Schluss nahe, dass die marine tiefe Biosphäre ein bedeutendes Reservoir an Kohlenstoff darstellt und durch ihren Stoffwechselreaktionen direkten Einfluss auf das Leben an der Erdoberfläche nimmt. Obwohl Mikroorganismen der tiefen Biosphäre somit vermutlich einen enormen Einfluss auf globale Stoffkreisläufe ausüben, ist vergleichsweise wenig über ihre Zusammensetzung und Aktivität mit zunehmender Sedimenttiefe und zwischen den unterschiedlichen Regionen der Weltmeere bekannt. Ein Bereich der Ozeane, für den zurzeit so gut wie keine Informationen hinsichtlich der Verbreitung und Zusammensetzung der tiefen Biosphäre vorliegt, ist der Kontinentalrand der Westantarktis. IODP Expedition 379 hat in dieser Region zwei kontinuierliche und überwiegend ungestörte Sedimentabfolgen von exzellenter Qualität erbohrt. Diese erlauben es erstmalig die tiefe Biosphäre in marinen Sedimenten der West Antarktis bis in eine Tiefe von ca. 800 m unter dem Meeresboden zu untersuchen. Änderungen im Porenwasserchemismus, wie das Aufzehren von Sulfat und das plötzliche Auftreten von Methan in einer Tiefe von ca. 670 Metern unter dem Meeresboden, liefen erste Hinweise auf die Existenz einer tiefen Biosphäre in dieser bis jetzt wenig untersuchten Region. Um die Gesellschaft an Mikroorganismen und die durch sie durchgeführten Prozesse qualitative und quantitative zu erfassen, wird in diesem Projekt ein Multiproxyansatz gewählt, der aus der Mengenbestimmung und Identifizierung von Verteilungsmustern von intakten polaren Lipiden, der Kohlenstoffisotopie leichter Kohelnwasserstoffe und direkten Zellzählungen besteht. Diese Untersuchungen werden durch komplementäre phylogenetischen Analysen und Kultivierungsexperimenten ergänzt. Ergebnisse der hier geplanten Untersuchungen werden damit neue Erkenntnisse hinsichtlich der Zusammensetzung und Verteilung der mikrobiellen Vergesellschaftung in einer Region unseres Planeten führen, welche mit Blick auf die tiefe Biosphäre komplettes Neuland darstellt.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - International Ocean Discovery Program, Teilprojekt: Erforschung von mikrobieller Sulfatreduktion unter hoher Temperatur und Druck

Selbst in tiefen Sedimentschichten unter z.T. mehreren Kilometern mächtiger Sedimentbedeckung finden sich noch aktive Mikroorganismen. Mit zunehmender Tiefe steigt die Temperatur im Untergrund an und überschreitet irgendwann die Grenze bis zu welcher Leben möglich ist. Die bisher festgestellte Temperaturobergrenze von Leben auf der Erde wurden an Mikroorganismen von hydrothermalen Systemen, sogenannten Schwarzen Rauchern gemessen und liegt bei ca. 120 Grad C. In Sedimenten hingegen liegt die Grenze deutlich niedriger. Messdaten aus Ölfeldern deuten auf eine Grenze von ca. 80 Grad C hin. Diese Diskrepanz zwischen hydrothermalen und sedimentären Systemen wurde dadurch erklärt, dass die Mikroorganismen in Sedimenten nicht genügend Energie gewinnen können um die bei hohen Temperaturen verstärkt notwendigen Reparaturen ihrer Zellbestandteile wie DNA und Proteinen durchzuführen. Interessanterweise lässt sich metabolische Aktivität bei extrem hohen Temperaturen nur dann nachweisen, wenn die Experimente unter hohem Druck stattfinden. IODP Expedition 370 wurde spezifisch zur Klärung der Frage nach dem Temperaturlimit von Leben in sedimentären Systemen durchgeführt. Im Nankai Graben vor der Küste Japans herrscht ein recht hoher geothermischer Gradient von ca. 100 Grad C/km, d.h. das gesamte Temperaturspektrum in dem Leben möglich ist erstreckt sich über ein Tiefeninterval von etwas mehr als einem Kilometer. Durch modernste Bohr- und Labortechniken war es möglich, Proben von höchster Qualität zu gewinnen, welche garantiert frei von Kontamination sind. Die Expedition hat einen stark interdisziplinären Charakter, so dass eine Vielzahl von biologischen und chemischen Parameter gemessen wurde, welche eine detaillierte Charakterisierung des Sediments erlauben. Das beantragte Projekt ist ein wichtiger Teil der Expedition, da Sulfatreduktion der quantitativ wichtigste anaerobe Prozess für den Abbau von organischem Material im Meeresboden ist. Im Rahmen einer MSc Arbeit wurden bereits erste Messungen durchgeführt. Diese konnten zeigen das Sulfatreduktion über die gesamte Kernlänge messbar ist, wenn auch z.T. mit extrem geringen Raten. Im Rahmen des beantragten Projekts sollen weitere Messungen durchgeführt werden, unter anderem auch unter hohem Druck. Dazu soll ein Hochdruck Temperatur-Gradientenblock gebaut und betrieben werden. Neben Sedimenten von IODP Exp. 370 sollen weitere Experimente mit hydrothermal beeinflusstem Sediment aus dem Guaymas Becken durchgeführt werden. Ein Vergleich zwischen diesen beiden Sedimenten soll weitere Einblicke in einen der wichtigsten biologischen Prozesse im Meeresboden liefern und ein besseres Verständnis über die Grenzen von Leben im allgemeinen.

Alternative Szenarien, innovative Technologien und Überwachungskonzepte für die Speicherung von Kohlendioxid unter dem Meeresboden, Vorhaben: Charakterisierung krustaler Stoffkreisläufe, biogeochemische Beobachtung und Modellierung der CO2-Injektion am Reykjanes-Rücken

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - International Ocean Discovery Program, Teilprojekt: Untersuchung der Rolle biologischer Eisenreduktion als lebenserhaltenden Prozess am potentiellen Temperaturlimit der tiefen Biosphäre in marinen Sedimenten (IODP Expedition 370) (RESPIRE)

Dieses Projekt trägt zu Forschungsfragen der IODP Expedition 370: T-Limit of the Deep Biosphere off Muroto bei. Die Temperatur an Site C0023 (Nankai Trog, Japan) steigt bis 1.2 km Tiefe auf ca. 120 Grad C an - das Maximum dessen, was potentiell von Mikroorganismen toleriert werden kann. Nährstoffarme tiefe Sedimente werden wahrscheinlich bei 80-90 Grad C sterilisiert. Ziel der Expedition war es, herauszufinden, wie und gesteuert durch welche Faktoren sich die Mikroorganismen-Vergesellschaftung mit der Tiefe ändert und wo Leben erlischt. Teil des wissenschaftlichen Programms ist die Untersuchung mikrobiell nutzbarer Substrate und eindeutiger geochemischer und mikrobieller Signaturen, die eine Identifizierung von biotischem und abiotischem Bereich bzw. dessen Übergang ermöglichen. Es wurden hochauflösende und präzise Porenwasserdaten gewonnen, die Reaktionsfronten, potentielle mikrobielle Aktivität und hydrothermale Überprägung anzeigen. Ein Teil der Sedimente ist Methan- und Sulfat-frei. Mikrobielle Aktivität hängt also von anderen Elektonenakzeptoren als Sulfat ab. Aktuelle Studien zeigen, dass die klassische Redoxkaskade durch Fe- und Mn-Reduktion in methanführenden Sedimenten ergänzt werden muss und, dass biogeochemische Prozesse in natürlichen Systemen stärker durch Mineralogie als durch eine strikte Abfolge von Reaktionen, die sich aus theoretischen Berechnungen ergibt, bestimmt sind. Fe(III)-Reduktion ist eine der ältesten Formen der mikrobiellen Respiration. Eisenreduzierer können unter hohen T- und Druckbedingungen wachsen, was nahelegt, dass diese einen Großteil der tiefen Biosphäre ausmachen. Fe- und Mn wird in Sedimenten von Lokation C0023 freigesetzt. Durch sequentielle Extraktionen soll aufgezeigt werden, welche Fe- und Mn-Phasen als Elektronenakzeptoren verfügbar sind und wie stark primäre Minerale diagenetisch überprägt wurden. Von besonderem Interesse sind Aschelagen, die an anderer Stelle bereits als Hotspots für mikrobielles Leben identifiziert wurden. Diese sind zahlreich in C0023 Sedimenten und typischerweise reich an Fe und Mn. Mikrobielle Fe-Reduktion führt zu einer Anreicherung von 54Fe im Porenwasser und sich daraus bildenden authigenen Mineralen (z.B. Siderit, Magnetit). Dementgegen führen abiotische Reaktionen mit Sulfid zu einer Anreicherung von 56Fe in der gelösten Phase. Stabile Fe-Isotope von gelöstem Fe2+ und reaktivem Fe in der Festphase sollen genutzt werden, um biologische und abiotische Fe-Reduktion zu unterscheiden. Die d56Fe Signatur wird an Karbonat-gebundenem Fe, der Ferrihydrit+Lepidkrokit-Fraktion, Goethit+Hämatit sowie Magnetit gemessen. Weiterhin soll das Ausmaß der Sulfidisierung, die Auswirkungen auf die Interpretation von Daten zu magnetischen Eigenschaften hat, durch sequentielle Extraktion von Fe-Monosulfiden und Pyrit erfasst werden. Ziel des Projekts ist es, die Rolle von Eisenoxiden für mikrobielle Respiration und entsprechende diagenetische Alterationen in tiefen Sedimenten von Site C0023 zu erfa

Veränderung globaler Umweltfaktoren und Zyklizität in Tiefseesedimenten des Pazifik (Leg 185) und des Atlantik von der Kreide bis heute

Die paläoklimatische und paläozeanographische Entwicklung des nordwestlichen Pazifik (ODP Leg 185) soll auf unterschiedlichen Zeitskalen untersucht und mit Daten aus dem Atlantik versehen werden. Anhand von sedimentologischen, mikropaläontologischen, geochemischen und stabilen Isotopen-Daten sollen Veränderungen der Akkumulationsraten klimatisch und ozeanographisch sensitiver Komponenten dokumentiert werden. Diese sollen mit biostratigraphischen und chemostratigraphischen Methoden sowohl im Hinblick auf die langfristigen zeitlich-räumlichen Trends, als auch mit frequenzanalytischen Methoden hochauflösend analysiert werden. Von besonderem Interesse sind die Intensitäten der atmosphärischen Zirkulation und die marine Produktivität sowie deren räumliche und zeitliche Variabilität. Diese Umwelt-Parameter sind vor allem in der Zusammensetzung der Feinfraktion und in den Akkumulationsraten von äolischem Staub, biogenem Opal und organischem Material überliefert. Der Vergleich mit ausgewählten DSDP/ODP-Sites im Atlantik soll Hinweise auf Zirkulationsregime und Wasseraustausch beider Ozeane geben.

1 2 3 4 5121 122 123