API src

Found 974 results.

Related terms

Agricultural And Aquaculture Facilities / Tierhaltungs- und Aufzuchtanlagen in Brandenburg

Der Datensatz Agricultural And Aquaculture Facilities / Tierhaltungs- und Aufzuchtanlagen in Brandenburg ist die Datengrundlage der interoperablen INSPIRE-Darstellungs- (WMS) und Downloaddienste (WFS): Tierhaltungsanlagen nach BImSchG in Brandenburg - Interoperabler INSPIRE View-Service (WMS-AF-TIERE) Tierhaltungsanlagen nach BImSchG in Brandenburg - Interoperabler INSPIRE Download-Service (WFS-AF-TIERE) Der Datenbestand beinhaltet die Punktdaten zu den betriebenen Tierhaltungsanlagen aus dem Anlageninformationssystem LIS-A. Die Angaben zu den Anlagen enthalten jeweils den Standort und die genehmigte Leistung. Dabei erfolgte eine sog. Schematransformation und Belegung der INSPIRE-relevanten Attribute. Der Datensatz Agricultural And Aquaculture Facilities / Tierhaltungs- und Aufzuchtanlagen in Brandenburg ist die Datengrundlage der interoperablen INSPIRE-Darstellungs- (WMS) und Downloaddienste (WFS): Tierhaltungsanlagen nach BImSchG in Brandenburg - Interoperabler INSPIRE View-Service (WMS-AF-TIERE) Tierhaltungsanlagen nach BImSchG in Brandenburg - Interoperabler INSPIRE Download-Service (WFS-AF-TIERE) Der Datenbestand beinhaltet die Punktdaten zu den betriebenen Tierhaltungsanlagen aus dem Anlageninformationssystem LIS-A. Die Angaben zu den Anlagen enthalten jeweils den Standort und die genehmigte Leistung. Dabei erfolgte eine sog. Schematransformation und Belegung der INSPIRE-relevanten Attribute.

The iron-snow regime in Fe-FeS cores: a numerical and experimental approach

In the Earth, the dynamo action is strongly linked to core freezing. There is a solid inner core, the growth of which provides a buoyancy flux that drives the dynamo. The buoyancy in this case derives from a difference in composition between the solid inner core and the fluid outer core. In planetary bodies smaller than the Earth, however, this core differentiation process may differ - Fe may precipitate at the core-mantle boundary (CMB) rather than in the center and may fall as iron snow and initially remelt with greater depth. A chemical stable sedimentation zone develops that comprises with time the entire core - at that time a solid inner core starts to grow. The dynamics of this system is not well understood and also whether it can generate a magnetic field or not. The Jovian moon Ganymede, which shows a present-day magnetic dipole field, is a candidate for which such a scenario has been suggested. We plan to study this Fe-snow regime with both a numerical and experimental approach. In the numerical study, we use a 2D/3D thermo-chemical convection model that considers crystallization and sinking of iron crystals together with the dynamics of the liquid core phase (for the 3D case the influence of the rotation of the Fe snow process is further studied).The numerical calculations will be complemented by two series of experiments: (1) investigations in metal alloys by means of X-ray radioscopy, and (2) measurements in transparent analogues by optical techniques. The experiments will examine typical features of the iron snow regime. On the one hand they will serve as a tool to validate the numerical approach and on the other hand they will yield important insight into sub-processes of the iron snow regime, which cannot be accessed within the numerical approach due to their complexity.

Forschergruppe (FOR) 918: Carbon flow on belowground food webs assessed by isotope tracers, Nematodes as link between microbial and faunal food web

The proposed project examines the nematode fauna at the two field experiments 'Long-term recalcitrant C input' and 'Carbon flow via the herbivore and detrital food chain'. A gradient from resource rich to deeper oligotrophe habitats, i.e. from high to low diverse food webs, is investigated. The impact of resource availability and quality (recalcitrant versus labile) and presence or absence of living plants (rhizosphere versus detritusphere) on the nematode population are assessed. Insight into micro-food web structure is gained by application of the nematode faunal analysis concept, based on the enrichment, structure and channel index. In laboratory model systems carbon flux rates for food web links are determined between bacteria/fungi and their nematode grazers for dominant taxa in the arable field. Further, carbon leakage from plant roots induced by herbivore nematode is studied as link between root and bacterial energy channels. By using 13C/12C stable isotope probing (FA-SIP) fatty acids serve as major carbon currency. Coupling qualitative and quantitative data on nematode field populations, with carbon flow via biomarker fatty acids in microorganisms and grazers will allow to connect microbial and faunal food web, and to directly link nematode functional groups with specific processes in the soil carbon cycle.

LSG Zichtauer Berge und Klötzer Forst Gebietsbeschreibung Landschafts- und Nutzungsgeschichte Geologische Entstehung, Boden, Hydrographie, Klima Pflanzen- und Tierwelt Entwicklungsziele Exkursionsvorschläge

Das LSG liegt im Bereich der Landschaftseinheit Altmarkheiden. Es erstreckt sich über etwa 12 km in Ost-West- und etwa 10 km in Nord-Süd-Richtung zwischen den Orten Klötze, Kakerbeck, Engersen, Berge und Quarnebeck. Im Südwesten grenzt es an die Landschaftseinheit Drömling und das gleichnamige LSG unmittelbar an. Das Landschaftsschutzgebiet wird durch eine hügelige, überwiegend bewaldete Endmoränenlandschaft geprägt. Das Relief ist mit Höhenunterschieden zwischen 35 m über NN bei Wiepke und 160 m über NN am Langenberg für die Verhältnisse der Altmark beträchtlich. Die Hellberge bei Zichtau weisen mit dem Langenberg die höchste Erhebung der Altmark auf und gaben der Gegend den Namen ”Altmärkische Schweiz”. Bei klarer Wetterlage bietet sich von hier ein prächtiger Rundblick über die Altmark bis hin nach Salzwedel, Stendal und über die im Südwesten liegende Niederung des Drömlings. Neben den Hellbergen sind der Dachsberg (140 m über NN), der Stakenberg (148 m über NN) und die Bauerberge charakteristische Anhöhen. Im nordöstlichen Teil des LSG fällt das Gelände von den Bauerbergen mit 109 m über NN auf 50 m über NN am Auslauf des Langen Grundes bei Kakerbeck ab. Der Begriff ”Grund” ist typisch für die relativ engen und steilen Trockentäler im Zichtauer Gebiet. Die Täler Bauergrund, Klötzer Grund, Güntersgrund, Langer Grund, Biergrund und andere machen das Landschaftserleben besonders abwechslungsreich und schaffen sehr unterschiedliche Lebensräume. Die Flächennutzung wird zu rund 60 % durch Forste und rund 40 % durch Landwirtschaft geprägt. Die Waldflächen werden von großflächigen, kraut- und straucharmen Kiefernforsten dominiert. Größere Laubwälder sind im Bereich der ehemaligen Försterei Döllnitz, bei Zichtau, Wiepke und Jemmeritz vorhanden. Seinen besonderen Reiz erhält das Waldgebiet durch einen häufigen Wechsel der Baumarten und den zum Teil mehrstufigen Waldaufbau. Lichte Kiefernforste wechseln mit Eichen-, Lärchen- bis hin zu dunklen Fichten-, Douglasien- und Buchenforsten ab. Im Bereich der ehemaligen Förstereien Döllnitz und Zartau öffnen sich die Wälder zu kleinen, ackerbaulich genutzten Freiflächen. Zwischen den Klötzer Bergen im Westen und den Hellbergen im Osten erstreckt sich bei den Ortschaften Schwiesau und Breitenfeld eine durch intensiven Ackerbau geprägte Senke. Daneben befinden sich östlich von Zichtau und am Ostrand von Klötze landwirtschaftliche Flächen innerhalb des LSG. Vor allem bei Zichtau erhält die Landschaft durch einen kleinräumigen Wald-, Feld- und Grünlandwechsel sowie straßenbegleitende Obstbaumreihen und zahlreiche alte Eichen und Linden einen besonderen Reiz. Die Ackerflächen bei Klötze werden durch einzelne Hecken gegliedert. Stehende Gewässer größeren Umfangs sind im LSG nicht vorhanden. In Zichtau und nördlich von Schwiesau sind Stauteiche und in den Wäldern vereinzelt kleine Waldtümpel vorhanden Bei Klötze entspringt der Rehwiesenbach. Die Ortschaften des LSG weisen gewachsene, kaum gestörte Dorfbilder und landschaftsästhetisch wertvolle Ortsrandbereiche auf. Nur vereinzelt, so in Schwiesau, stören größere Stallanlagen am Ortsrand das Landschaftsbild. Steingeräte bei Groß Engersen belegen die Anwesenheit des Menschen der Altsteinzeit auf dem Gebiet des heutigen LSG. Die Fundstellen der Jungsteinzeit liegen in Randlage um den Klötzer und Zichtauer Forst bei Zichtau und Wiepke, Quarnebeck und südlich von Kakerbeck in lockerer Streuung an kleinen Bächen. Beigaben eines Grabfundes der Kugelamphorenkultur bei Estedt deutet auf die Nutzung des Gebietes für die Viehhaltung hin. Die einzige im LSG gelegene Siedlung der Bronzezeit befand sich bei Schwiesau am Lauf des südlich von Kakerbeck aus dem Schwiesauer Forst austretenden Baches. Diese war bis in die Eisenzeit hinein bewohnt, wobei in nächster Nähe eine zweite Siedlung entstand. Weitere Fundstellen sind von Zichtau, Wiepke und Quarnebeck bekannt, wo drei Gräberfelder gefunden wurden. Die römische Kaiserzeit ist nur durch drei Fundstellen belegt, von denen eine am östlichen Stadtrand von Klötze liegt, eine andere südwestlich von Kakerbeck und die dritte bei Groß Engersen nahe der B71 zum Vorschein kam. Im Bereich der Altmarkheiden kam es im Zuge der deutschen Ostkolonisation des Mittelalters zu einer intensiven Rodungsphase. In den großflächigen Wäldern entstanden Ansiedlungen und Ackerflächen wachsender Ausdehnung. Im 14. Jahrhundert und später während des Dreißigjährigen Krieges wurden viele Ansiedlungen wieder wüst und ehemals ackerbaulich genutzte Flächen wurden aufgegeben. Heute zeugen die charakteristischen Wölbäcker in den Wäldern, vor allem bei Quarnebeck, von der früheren Ackernutzung der jetzigen Forstflächen. Die Wälder wurden bis hinein in das 18. Jahrhundert zur Waldweide genutzt, wie zahlreiche alte Hudeeichen im Bereich der ehemaligen Försterei Döllnitz bezeugen. Die Weidewirtschaft ließ auch offene, baumfreie Heideflächen entstehen. Mit der Eingliederung des Gebietes nach Preußen im Jahre 1815 begann die geregelte Forstwirtschaft. Ein Großteil der waldfreien Flächen wurde mit schnellwüchsigen Nadelhölzern, vor allem Kiefer, aufgeforstet. Zur Markierung der Wege wurden Eichen gepflanzt, von denen heute noch einige als alte Überhälter vorhanden sind. Die dominierende Flächennutzung ist noch heute die Forstwirtschaft. Auf reicheren Böden haben sich besonders um Schwiesau und Breitenfeld landwirtschaftliche Nutzflächen erhalten, die überwiegend durch intensiven Ackerbau geprägt werden. Vor allem im Bereich der Ortsränder wird Grünlandnutzung betrieben. Der Abbau des Moränenmaterials der Hellberge ließ bei Wiepke einige Mergelgruben entstehen, die heute als Flächenhaftes Naturdenkmal unter Schutz stehen. Heute hat das LSG auch als Naherholungsgebiet eine Bedeutung. Vor allem die Hellberge bei Zichtau sind ein beliebtes Ausflugsziel für Wanderer. In Zichtau befinden sich ein weitbekanntes Jugendcampingzentrum mit einem Hüttenlager und das idyllisch gelegene modernisierte Waldbad. Das LSG liegt im Bereich mehrerer Endmoränenstaffeln (Rückzugsstaffeln) des Warthestadiums der Saalekaltzeit. Die Endmoränenzüge gehören zur Letzlinger (Haupt-) Randlage. Den Endmoränen sind ausgedehnte Sanderflächen vorgelagert. Die quartären Sedimente sind über 100 m mächtig. Die Schichtenfolge beginnt mit elster-kaltzeitlichen Schmelzwassersanden und Geschiebemergeln, die im Durchschnitt 10 bis 40 m mächtig sind. In einer Ziegeleigrube bei Altjemmeritz wurden elsterzeitliche Geschiebemergel abgebaut. Südlich der Linie Schwiesau-Wiepke und nordöstlich Breitenfelde fehlen Sedimente der Elsterkaltzeit. Auf diese Schichten folgen zirka 20 m glazilimnische bis limnisch-fluviatile Sande mit Einschaltungen von Schluff, Mudden sowie Torf der Holsteinwarmzeit. Lokal beinhalten sie fossile Böden. Die Sande und Schluffe sind bis auf wenige Erosionsfenster flächendeckend vorhanden. Während der Saalekaltzeit wurden Endmoränen mit eingeschuppten Tertiärschollen, das heißt glaukonithaltige Sande und bei Wiepke Mergel, abgesetzt, die später während des Warthestadials der Saalekaltzeit noch einmal vom Eis überfahren wurden. Ihr heutiger Aufbau ist durch Stauchung, Verschuppung und Faltung gestört. Die tertiären Sande wurden durch spätere Schmelzwässer nach Norden umgelagert. Saalezeitlicher Geschiebelehm bildet zwei breite Zungen von Wernstedt über Wiebke nach Engersen und im westlichen Teil von Kakerbeck bis südlich Klötze. Oberflächennah kommt er jedoch nur inselhaft vor. Zwischen Zichtau und Jemmeritz sind beide Zungen durch Schmelzwassersand unterbrochern, in den die Bäke ihr Tal gegraben hat. Die Mächtigkeit des Geschiebelehms ist gering und beträgt selten über drei Meter. Während der Eemwarmzeit wurden östlich Engersen und im Wiebker Bachtal der unteren Milde-Niederung Mudden und Torfe abgesetzt, während sich auf den umliegenden Hochflächen tiefentwickelte Lessiveé-Böden zu bilden begannen, deren Reste als Bändersande das Profil der heutigen Böden im LSG prägen. Während der Weichselkaltzeit wurden sandig-schluffige, durch Windablagerung und Frostwechselprozesse geprägte ”periglaziale Deckschichten” gebildet. Sie bestehen aus Flottsand, Lößsand, Sandlöß und Geschiebedecksand sowie aus lehmig-sandigen Fließerden. In diesen Zeitraum fällt auch die Entwicklung der heutigen Trockentäler. Während des Holozäns kam es erneut zur Moorbildung, die auch in den kleineren Tälern wirkte. In den Tälern und Niederungen wurden kolluviale und fluviatile Lehme und lehmige Sande abgesetzt. Auf brachliegenden Äckern kam es wahrscheinlich im Mittelalter zur Ausblasung von Sand und zur Bildung von lokalen Flugsandfeldern und Dünen. Im LSG dominieren Sandböden, deren Ertragsfähigkeit mit der Bindigkeit und Mächtigkeit der äolischen Deckschicht und dem Anteil der lehmigen Bänder im Untergrund wächst. Verbreitet sind podsolige Braunerden bis Braunerde-Podsole aus Geschiebedecksand bis Flottsand über Schmelzwassersand. Ökologisch günstiger sind Braunerde-Fahlerden und Braunerde-Bänderfahlerden aus Lößsand bis Sandlöß über Schmelzwassersand oder über Geschiebelehm zu bewerten. Podsole sind selten und an das Vorkommen von Flugsanddecken und Dünen gebunden. Staunasse Böden kommen sehr untergeordnet in Muldenlagen der Hochflächen vor. In den wasserführenden Tälern der Bäke, der Purnitz und ihren Seitentälern am Wiebker Bach sind Gleye in sandigen und lehmigen Substraten und Niedermoore, selten Hang- bis Quellmoore, entwickelt. In Quellgebieten am Ostrand der Zichtauer Berge und am Westrand der Hellberge entspringen zahlreiche kleine Wasserläufe. Am Osthang des Staken- und Dachsberges entspringt der Wiepker Bach, der in seinem Oberlauf weitgehend naturnah erhalten ist. Hauptquellgebiet des Wiepker Baches ist das bekannte urwüchsige kleine Quellmoor ”Elf Quellen”. Am Westhang der Hellberge liegen in der Mulde um Schwiesau die Quellgebiete von Bäke und Tarnefitzer Elbe. Die Zichtauer Bäke entspringt nördlich von Zichtau in einem mit Erlen und Eschen bestockten Quellmoor. Die Tarnefitzer Elbe entwässert nach Süden zur Ohre, die Bäke nach Norden zur Unteren Milde. Beide Bäche sind im Oberlauf naturfern ausgebaut. Erst unterhalb des sogenannten Schwiesauer Flachteiches ist die Bäke naturnah erhalten. Sie wird hier von einem etwa 200 m breiten Grünlandstreifen begleitet und weist längere natürliche Abschnitte mit Mäanderbildung auf. Bis Altjemmeritz verläuft die Bäke in einem reizvollen, waldgesäumten, durch Grünland und das Jemmeritzer Moor geprägten Tal. Die Klötzer Berge und der Zichtauer Forst liegen im Übergangsbereich zwischen subatlantischem und subkontinentalem Klima. Die mittlere Jahrestemperatur beträgt 8,8°C, der mittlere Niederschlag liegt mit 620 bis 640 mm deutlich über dem der Umgebung. Die potentiell natürliche Vegetation wird im LSG auf den grundwasserfernen Standorten durch Buchenwälder mäßig bodensaurer Standorte geprägt. Dies sind vor allem der Flattergras-Buchenwald und auf besonders flachgründigen Rankern der Dünenstandorte auch Drahtschmielen-Buchenwald. Die heute dominierende Wald-Kiefer dürfte in dem noch subozeanisch geprägten Klima der Altmark keine natürlichen Standorte haben. Auf den grundwassernahen Standorten würden auf Gleyböden Pfeifengras-Eichenwälder im Wechsel mit Sternmieren-Eichen-Hainbuchenwäldern stocken. Bei ganzjährig hoch anstehendem Grundwasser in Bachnähe sind auch Erlen-Eschenwälder sowie kleinflächig Erlen- und Birkenbruchwälder zu erwarten. Vereinzelt sind an den Waldrändern kleinflächige Magerrasen als Reste der einstmals ausgedehnten Heidelandschaften erhalten. Charakteristische und teilweise gefährdete Pflanzenarten sind hier Dorniger Hauhechel und Gemeine Kuhschelle. Im Klötzer Forst dominiert heute die Kiefer mit 62 % der Bestockung. Eichen nehmen 16 %, Lärchen 8 %, Fichten und Buchen jeweils 6 %, Douglasien 2 % und sonstige Laubhölzer 1 % der Forstfläche ein. Die Kiefernforste sind überwiegend kraut- und straucharm. Altbestände weisen eine reichere Krautschicht mit Adlerfarn und Heidelbeere auf. Von Bedeutung sind die Vorkommen des Keulen-Bärlapps. Vor allem im Bereich der ehemaligen Försterei Döllnitz bestehen wertvolle Laubwälder mit zahlreichen alten Trauben-Eichen und Rot-Buchen. Es handelt sich um den größten naturnahen Laubwaldbestand in weitem Umkreis. Die Altholzbestände, vor allem die alten Buchen, stellen für die Altmark seltene Strukturen mit einer hohen Bedeutung für Höhlenbrüter dar. Eine der wertvollsten Flächen innerhalb des LSG ist das Naturschutzgebiet „Jemmeritzer Moor“. Es liegt 1,5 km südlich von Altjemmeritz im Tal der Bäke und hat eine Fläche von 20,56 ha. Es wird durch einen Preiselbeer-Kiefern-Fichtenwald mit Pfeifengras und Tiefland-Fichte charakterisiert. Das Vorkommen der Fichte wird als autochthon angesehen. Durch einen Windbruch im Jahre 1972 entstanden baumfreie Flächen, auf denen heute an vernäßten Standorten Braunseggensümpfe mit Igel-Segge und Grau-Segge ausgebildet sind. Erwähnenswert ist auch das Vorkommen von Rippenfarn. Durch seine Lage am Fuß einer Endmoräne bestehen im Gebiet quellige Bereiche, die von Rispenseggen-Ried und Quellfluren bestanden sind. Die Bachufer sind von Großseggenrieden mit der Sumpf-Segge und Uferstaudenfluren mit Echtem Springkraut, Bitterem Schaumkraut und Sumpf-Haarstrang bestanden. In der Bäke ist initial die Berlen-Gesellschaft entwickelt. Gefährdete Pflanzenarten des LSG sind im Bereich Schwiesau Sumpf-Schafgarbe, Wassernabel, Breitblättriger Merk, Stumpfblütige Binse und Teich-Wasserstern. Im Bäketal wurden daneben Mittleres Hexenkraut, Acker-Filzkraut, Schwarz-Pappel, Einfacher Igelkolben, Sumpf-Sternmiere, Bauernsenf und Gelbe Wiesenraute sowie Rankender Lerchensporn nachgewiesen. Die Wälder sind Einstandsgebiet von Schwarz-, Reh-, Rot- und Damwild. Auch Muffelwild sowie Dachs kommen vor. Bisher wurden neun verschiedene Fledermausarten nachgewiesen, wovon der mehrjährige Nachweis eines Paarungsreviers des Kleinen Abendseglers auf der Höhe des Langen Berges von besonderem wissenschaftlichen Interesse ist. Als Brutvögel kommen in den Wäldern unter anderem Mäusebussard, Grün- und Schwarzspecht, Rotmilan, Sperber sowie Kolkrabe vor. Der Neuntöter tritt an den Waldrändern auf. An der Wiepker Mühle brütet der Weißstorch. Nachgewiesene Reptilien sind Zauneidechse, die auf den Magerrasen und an sonnigen Waldrändern auftritt, Waldeidechse und Kreuzotter, die im Jemmeritzer Moor vorkommen, sowie Blindschleiche. An Amphibien wurden Kamm- und Teichmolch, Grasfrosch und Erdkröte, im Bereich Breitenfelde-Schwiesau Knoblauchkröte und Laubfrosch und an der Bäke Kreuzkröte und Feuersalamander festgestellt. Das Jemmeritzer Moor birgt eines der wenigen Flachlandvorkommen des Feuersalamanders. Für die Fischfauna der Bäke sind Bachneunauge und Bachforelle nachgewiesen worden. Lebensraum des Hirschkäfers sind die alten Hudeeichen. Im Bäketal wurden die gefährdeten Heuschreckenarten Sumpfschrecke, Gefleckte Keulenschrecke, Kurzflügelige Schwertschrecke, Große Goldschrecke und Feld-Grashüpfer nachgewiesen. Das LSG soll in erster Linie der Erhaltung der großflächigen Wälder im Bereich des landschaftlich reizvollen Endmoränenzuges zwischen Klötze und Gardelegen dienen. Mit den Wäldern ist ein beliebtes Naherholungsgebiet, ein charakteristischer Ausschnitt der Altmark und ein wertvoller Lebensraum wildlebender Pflanzen- und Tierarten zu sichern. Die Weiterentwicklung eines naturverträglichen Tourismus geschieht unter Schonung ökologisch sensibler Bereiche wie des NSG „Jemmeritzer Moor“, der Quellbereiche und der naturnahen Bachläufe. Das Wanderwegenetz ist bereits ausreichend entwickelt. Die Forste sind langfristig in naturnahe Wälder, die vor allem durch die Rot-Buche dominiert werden, umzubauen. Die Nutzung sollte möglichst durch Einzelstammentnahme erfolgen. Im Bereich der Waldränder sind Waldmäntel aus standortgerechten Straucharten zu entwickeln. Lichtungen innerhalb der Wälder, die als Grünland oder kleinflächige Äcker genutzt werden, und die historischen Wölbäcker unter Wald wären zu erhalten. Alteichen sind als wertvolle Lebensräume einer artenreichen Insektenfauna zu schützen und nicht zu nutzen. Im Bereich der Quellen, Bachtälchen und des NSG „Jemmeritzer Moor“ sollte auf eine Bewirtschaftung verzichtet werden. Die landwirtschaftlichen Flächen können durch Anlage von Hecken, Baumreihen und Flurgehölzen gegliedert und damit landschaftsästhetisch und ökologisch aufgewertet werden. Die noch naturnah erhaltenen Fließstrecken der Bäke und Wiepker Bach sind zu erhalten. An den ausgebauten Abschnitten der Tarnefitzer Elbe und der Bäke könnte die Nutzung im Schonstreifen extensiviert werden. Zumindest einseitige Gehölzstreifen aus Schwarz-Erle sind im Randstreifen anzulegen. Langfristig sollten die ausgebauten Fließgewässer unter Entwicklung eines geschwungenen Verlaufs und natürlichen Profils wieder renaturiert werden. Die gewachsenen und charakteristischen Dorfbilder und Siedlungsränder sind zu erhalten. Störende Objekte, zum Beispiel die Stallanlagen bei Schwiesau, könnten eingegrünt werden. Klötzer Forst Von Klötze aus geht es in südöstliche Richtung in den Klötzer Forst bis zum ehemaligen Forsthaus Döllnitz. Durch die Laubwälder im Bereich Döllnitz gelangt man nach Süden zum Schwarzen Berg. Von hier aus kann man nach Nordwesten über den bis zu 120 m hohen Endmoränenzug nach Klötze zurückkehren. Von Klötze aus geht es in nordöstliche Richtung in den nördlichen Teil des Klötzer Forstes. Bei Pansau biegt man nach Osten von der Kreisstraße in den Forst ab. Der Weg führt durch das Quellgebiet des Rehwiesenbaches nach Nordosten durch Laubwälder und über Anhöhen. Zurück in südliche Richtung gelangt man zum 125 m hohen Krügerberg und von dort in westlicher Richtung zurück nach Klötze. Zichtauer Berge Von Zichtau aus wandert man nach Süden durch die Hellberge auf den Gr. Stakenberg und weiter auf den Langenberg. Von hier steigt man nach Osten ab und geht am Fuß der Hellberge nach Norden bis Wiepke. Von Wiepke kehrt man in westliche Richtung nach Zichtau zurück. Von Zichtau aus gelangt man in nordwestliche Richtung auf die bis 118 m hohen Anhöhen des Spitzberges. Weiter führt der Weg nach Nordwesten zum Bachtälchen der Bäke und zum Jemmeritzer Moor. Von hier kann man in einer erst nach Osten und weiter nach Süden geführten Schleife zurück nach Zichtau wandern. Von Zichtau aus nach Norden führt der Weg in die Bauerberge zu ”Himmel und Hölle”. Ziemlich steil steigen die Pfade hier vom Fuß der Endmoräne aus dem engen Grund der ”Hölle” auf die Kuppe der Endmoräne in den ”Himmel”. Hier liegt ein großer Findling der Saaleeiszeit (Naturdenkmal). Der Sage nach befand sich hier eine germanische Thingstätte. Verschiedene Wege führen weiter zum Gedenkstein ”Friedrichsruh” mit plattdeutscher Inschrift. Weiter geht es zur ”Lindenbreite” oder zurück nach Zichtau. Von Wiepke aus geht man an der Wassermühle und später am Naturdenkmal ”Rieseneiche von Verchel” vorbei zum Quellmoor des Wiepker Baches, den ”Elf Quellen”, einem alten Buchenhallenwald. Auf Umwegen zurück nach Wiepke oder Zichtau. Unmittelbar um Zichtau zeugt ein artenreicher Mischwald mit verschiedenen exotischen Holzarten, Zypressen, Eiben und Wacholder von dem Versuch, hier einen Landschaftspark oder ein Arboretum zu gestalten. Die sachsen-anhaltische Straße der Romanik quert das LSG zwischen Wiepke und Klötze. Die nächstgelegenen bedeutenden Baudenkmäler befinden sich im unweit der Südgrenze des Schutzgebietes gelegenen Gardelegen. veröffentlicht in: Die Landschaftsschutzgebiete Sachsen-Anhalts © 2000, Landesamt für Umweltschutz Sachsen-Anhalt, ISSN 3-00-006057-X Die Natur- und Landschaftsschutzgebiete Sachsen-Anhalts - Ergänzungsband © 2003, Landesamt für Umweltschutz Sachsen-Anhalt, ISBN 3-00-012241-9 Letzte Aktualisierung: 18.11.2025

Geochemical parameters in peat depth profiles from ombrotrophic bogs in North and Central Europe. Drebbersches Moor, Germany

This dataset contains geochemical variables measured in six depth profiles from ombrotrophic peatlands in North and Central Europe. Peat cores were taken during the spring and summer of 2022 from Amtsvenn (AV1), Germany; Drebbersches Moor (DM1), Germany; Fochteloër Veen (FV1), the Netherlands; Bagno Kusowo (KR1), Poland; Pichlmaier Moor (PI1), Austria and Pürgschachen Moor (PM1), Austria. The cores AV1, DM1 and KR1 were taken using a Wardenaar sampler (Royal Eijkelkamp, Giesbeek, the Netherlands) and had diameter of 10 cm. The cores FV1, PM1 and PI1 had an 8 cm diameter and were obtained using an Instorf sampler (Royal Eijkelkamp, Giesbeek, the Netherlands). The cores FV1, DM1 and KR1 were 100 cm, core AV1 was 95 cm, core PI1 was 85 cm and core PM1 was 200 cm. The cores were subsampeled in 1 cm (AV1, DM1, KR1, FV1) and 2 cm (PI1, PM1) sections. The subsamples were milled after freeze drying in a ballmill using tungen carbide accesoires. X-Ray Fluorescence (WD-XRF; ZSX Primus II, Rigaku, Tokyo, Japan) was used to determine Al (μg g-1), As (μg g-1), Ba (μg g-1), Br (μg g-1), Ca (g g-1), Cl (μg g-1), Cr (μg g-1), Cu (μg g-1), Fe (g g-1), K (g g-1), Mg (μg g-1), Mn (μg g-1), Na (μg g-1), P (μg g-1), Pb (μg g-1), Rb (μg g-1), S (μg g-1), Si (μg g-1), Sr (μg g-1), Ti (μg g-1) and Zn (μg g-1). These data were processed and calibrated using the iloekxrf package (Teickner & Knorr, 2024) in R. C, N and their stable isotopes were determined using an elemental analyser linked to an isotope ratio mass spectrometer (EA-3000, Eurovector, Pavia, Italy & Nu Horizon, Nu Instruments, Wrexham, UK). C and N were given in units g g-1 and stable isotopes were given as δ13C and δ15N for stable isotopes of C and N, respectively. Raw data C, N and stable isotope data were calibrated with certified standard and blank effects were corrected with the ilokeirms package (Teickner & Knorr, 2024). Using Fourier Transform Mid-Infrared Spectroscopy (FT-MIR) (Agilent Cary 670 FTIR spectromter, Agilent Technologies, Santa Clara, Ca, USA) humification indices (HI) were determined. Spectra were recorded from 600 cm-1 to 4000 cm-1 with a resolution of 2 cm-1 and baselines corrected with the ir package (Teickner, 2025) to estimate relative peack heights. The HI (no unit) for each sample was calculated by taking the ratio of intensities at 1630 cm-1 to the intensities at 1090 cm-1. Bulk densities (g cm-3) were estimated from FT-MIR data (Teickner et al., in preparation).

Geochemical parameters in peat depth profiles from ombrotrophic bogs in North and Central Europe. Fochteloër Veen, the Netherlands

This dataset contains geochemical variables measured in six depth profiles from ombrotrophic peatlands in North and Central Europe. Peat cores were taken during the spring and summer of 2022 from Amtsvenn (AV1), Germany; Drebbersches Moor (DM1), Germany; Fochteloër Veen (FV1), the Netherlands; Bagno Kusowo (KR1), Poland; Pichlmaier Moor (PI1), Austria and Pürgschachen Moor (PM1), Austria. The cores AV1, DM1 and KR1 were taken using a Wardenaar sampler (Royal Eijkelkamp, Giesbeek, the Netherlands) and had diameter of 10 cm. The cores FV1, PM1 and PI1 had an 8 cm diameter and were obtained using an Instorf sampler (Royal Eijkelkamp, Giesbeek, the Netherlands). The cores FV1, DM1 and KR1 were 100 cm, core AV1 was 95 cm, core PI1 was 85 cm and core PM1 was 200 cm. The cores were subsampeled in 1 cm (AV1, DM1, KR1, FV1) and 2 cm (PI1, PM1) sections. The subsamples were milled after freeze drying in a ballmill using tungen carbide accesoires. X-Ray Fluorescence (WD-XRF; ZSX Primus II, Rigaku, Tokyo, Japan) was used to determine Al (μg g-1), As (μg g-1), Ba (μg g-1), Br (μg g-1), Ca (g g-1), Cl (μg g-1), Cr (μg g-1), Cu (μg g-1), Fe (g g-1), K (g g-1), Mg (μg g-1), Mn (μg g-1), Na (μg g-1), P (μg g-1), Pb (μg g-1), Rb (μg g-1), S (μg g-1), Si (μg g-1), Sr (μg g-1), Ti (μg g-1) and Zn (μg g-1). These data were processed and calibrated using the iloekxrf package (Teickner & Knorr, 2024) in R. C, N and their stable isotopes were determined using an elemental analyser linked to an isotope ratio mass spectrometer (EA-3000, Eurovector, Pavia, Italy & Nu Horizon, Nu Instruments, Wrexham, UK). C and N were given in units g g-1 and stable isotopes were given as δ13C and δ15N for stable isotopes of C and N, respectively. Raw data C, N and stable isotope data were calibrated with certified standard and blank effects were corrected with the ilokeirms package (Teickner & Knorr, 2024). Using Fourier Transform Mid-Infrared Spectroscopy (FT-MIR) (Agilent Cary 670 FTIR spectromter, Agilent Technologies, Santa Clara, Ca, USA) humification indices (HI) were determined. Spectra were recorded from 600 cm-1 to 4000 cm-1 with a resolution of 2 cm-1 and baselines corrected with the ir package (Teickner, 2025) to estimate relative peack heights. The HI (no unit) for each sample was calculated by taking the ratio of intensities at 1630 cm-1 to the intensities at 1090 cm-1. Bulk densities (g cm-3) were estimated from FT-MIR data (Teickner et al., in preparation).

Geochemical parameters in peat depth profiles from ombrotrophic bogs in North and Central Europe. Pichlmaier Moor, Austria

This dataset contains geochemical variables measured in six depth profiles from ombrotrophic peatlands in North and Central Europe. Peat cores were taken during the spring and summer of 2022 from Amtsvenn (AV1), Germany; Drebbersches Moor (DM1), Germany; Fochteloër Veen (FV1), the Netherlands; Bagno Kusowo (KR1), Poland; Pichlmaier Moor (PI1), Austria and Pürgschachen Moor (PM1), Austria. The cores AV1, DM1 and KR1 were taken using a Wardenaar sampler (Royal Eijkelkamp, Giesbeek, the Netherlands) and had diameter of 10 cm. The cores FV1, PM1 and PI1 had an 8 cm diameter and were obtained using an Instorf sampler (Royal Eijkelkamp, Giesbeek, the Netherlands). The cores FV1, DM1 and KR1 were 100 cm, core AV1 was 95 cm, core PI1 was 85 cm and core PM1 was 200 cm. The cores were subsampeled in 1 cm (AV1, DM1, KR1, FV1) and 2 cm (PI1, PM1) sections. The subsamples were milled after freeze drying in a ballmill using tungen carbide accesoires. X-Ray Fluorescence (WD-XRF; ZSX Primus II, Rigaku, Tokyo, Japan) was used to determine Al (μg g-1), As (μg g-1), Ba (μg g-1), Br (μg g-1), Ca (g g-1), Cl (μg g-1), Cr (μg g-1), Cu (μg g-1), Fe (g g-1), K (g g-1), Mg (μg g-1), Mn (μg g-1), Na (μg g-1), P (μg g-1), Pb (μg g-1), Rb (μg g-1), S (μg g-1), Si (μg g-1), Sr (μg g-1), Ti (μg g-1) and Zn (μg g-1). These data were processed and calibrated using the iloekxrf package (Teickner & Knorr, 2024) in R. C, N and their stable isotopes were determined using an elemental analyser linked to an isotope ratio mass spectrometer (EA-3000, Eurovector, Pavia, Italy & Nu Horizon, Nu Instruments, Wrexham, UK). C and N were given in units g g-1 and stable isotopes were given as δ13C and δ15N for stable isotopes of C and N, respectively. Raw data C, N and stable isotope data were calibrated with certified standard and blank effects were corrected with the ilokeirms package (Teickner & Knorr, 2024). Using Fourier Transform Mid-Infrared Spectroscopy (FT-MIR) (Agilent Cary 670 FTIR spectromter, Agilent Technologies, Santa Clara, Ca, USA) humification indices (HI) were determined. Spectra were recorded from 600 cm-1 to 4000 cm-1 with a resolution of 2 cm-1 and baselines corrected with the ir package (Teickner, 2025) to estimate relative peack heights. The HI (no unit) for each sample was calculated by taking the ratio of intensities at 1630 cm-1 to the intensities at 1090 cm-1. Bulk densities (g cm-3) were estimated from FT-MIR data (Teickner et al., in preparation).

Stable isotope analysis of the common periwinkle Littorina littorea depending on infection status and seasonality

Littorina littorea was collected at the study site. The foot of Littorina littorea was used for stable isotope analysis (δ15N and δ13C). The stable isotope composition of possible food sources was also determined. Samples were taken in spring, summer and autumn. For the analysis a diet tissue discrimination factor (DTDF) of 2.4 for δ15N and 1.0 for δ13C was subtracted, respectively. The data in the sheet are the raw data without the DTDF.

Geochemical parameters in peat depth profiles from ombrotrophic bogs in North and Central Europe. Pürgschachen Moor, Austria

This dataset contains geochemical variables measured in six depth profiles from ombrotrophic peatlands in North and Central Europe. Peat cores were taken during the spring and summer of 2022 from Amtsvenn (AV1), Germany; Drebbersches Moor (DM1), Germany; Fochteloër Veen (FV1), the Netherlands; Bagno Kusowo (KR1), Poland; Pichlmaier Moor (PI1), Austria and Pürgschachen Moor (PM1), Austria. The cores AV1, DM1 and KR1 were taken using a Wardenaar sampler (Royal Eijkelkamp, Giesbeek, the Netherlands) and had diameter of 10 cm. The cores FV1, PM1 and PI1 had an 8 cm diameter and were obtained using an Instorf sampler (Royal Eijkelkamp, Giesbeek, the Netherlands). The cores FV1, DM1 and KR1 were 100 cm, core AV1 was 95 cm, core PI1 was 85 cm and core PM1 was 200 cm. The cores were subsampeled in 1 cm (AV1, DM1, KR1, FV1) and 2 cm (PI1, PM1) sections. The subsamples were milled after freeze drying in a ballmill using tungen carbide accesoires. X-Ray Fluorescence (WD-XRF; ZSX Primus II, Rigaku, Tokyo, Japan) was used to determine Al (μg g-1), As (μg g-1), Ba (μg g-1), Br (μg g-1), Ca (g g-1), Cl (μg g-1), Cr (μg g-1), Cu (μg g-1), Fe (g g-1), K (g g-1), Mg (μg g-1), Mn (μg g-1), Na (μg g-1), P (μg g-1), Pb (μg g-1), Rb (μg g-1), S (μg g-1), Si (μg g-1), Sr (μg g-1), Ti (μg g-1) and Zn (μg g-1). These data were processed and calibrated using the iloekxrf package (Teickner & Knorr, 2024) in R. C, N and their stable isotopes were determined using an elemental analyser linked to an isotope ratio mass spectrometer (EA-3000, Eurovector, Pavia, Italy & Nu Horizon, Nu Instruments, Wrexham, UK). C and N were given in units g g-1 and stable isotopes were given as δ13C and δ15N for stable isotopes of C and N, respectively. Raw data C, N and stable isotope data were calibrated with certified standard and blank effects were corrected with the ilokeirms package (Teickner & Knorr, 2024). Using Fourier Transform Mid-Infrared Spectroscopy (FT-MIR) (Agilent Cary 670 FTIR spectromter, Agilent Technologies, Santa Clara, Ca, USA) humification indices (HI) were determined. Spectra were recorded from 600 cm-1 to 4000 cm-1 with a resolution of 2 cm-1 and baselines corrected with the ir package (Teickner, 2025) to estimate relative peack heights. The HI (no unit) for each sample was calculated by taking the ratio of intensities at 1630 cm-1 to the intensities at 1090 cm-1. Bulk densities (g cm-3) were estimated from FT-MIR data (Teickner et al., in preparation).

The diet contribution and habitat selection of the common periwinkle Littorina littorea depending on infection with parasites and seasonality

The common periwinkle Littorina littorea is an ecologically important grazer and serves as the first intermediate host for several trematode species in the Baltic Sea, especially for the fluke Cryptocotyle lingua. In this series of experiments and analyses, we tested whether the food sources contributing to the diet and the habitat selection differ depending on the infection status of the periwinkle and the season. (1) A spatial pattern analysis was conducted to investigate the habitat composition and availability of food sources at the study site Möltenort, Kiel Bight (54.37°N, 10.19°E), (2) the habitat choice of the periwinkle was observed in-situ by a mark and recapture experiment, and (3) the composition of the diet of L. littorea (based on stable isotope composition of carbon and nitrogen isotopes) was analysed. All experiments were conducted in spring, summer and autumn.

1 2 3 4 596 97 98