Die zwei Kartenthemen bestehen jeweils aus mehreren thematisch und räumlich unterschiedlichen Ebenen. Die Ebenen sind teilweise voneinander unabhängig aussagekräftig. Die Starkregenhinweiskarte basiert maßgeblich auf folgenden Produkten: Hinweiskarte Starkregen des Bundesamts für Kartographie und Geodäsie topografische Senkenanalyse der BWB, starkregenbedingte Feuerwehreinsätze der Berliner Feuerwehr für das Land Berlin. Die Hinweiskarte Starkregen wurde vom Bundesamt für Kartographie und Geodäsie (BKG) in Zusammenarbeit mit den Ländern für die gesamte Fläche Nord- und Ostdeutschlands (11 Bundesländer) im Zeitraum 2023/2025 erarbeitet. Für Berlin-Brandenburg wurde dies in einem Los durchgeführt. Die Karte zeigt die simulierten Überflutungsflächen und -tiefen sowie Fließgeschwindigkeiten /-richtungen für folgende Szenarien: außergewöhnliches Ereignis: 100-jährliches Niederschlagsereignis (T = 100a, Dauerstufe 1 Stunde) mit einem Euler-Typ II Niederschlagsverteilung. extremes Ereignis: 100 mm Niederschlagsereignis in einer Stunde (T extrem) mit einem Blockregenverteilung. Grundlage hierfür sind diverse Geodaten des Bundes und der Länder, insbesondere ein hochaufgelöstes digitales Geländemodell sowie Daten zur Flächennutzung, wie zum Beispiel zur Bebauung. Die Ergebnisse basieren auf einer Modellierung der oberflächlich abfließenden Regenmenge, ähnlich dem Modell für die Starkregengefahrenkarte Berlins (siehe unten). Allerdings wurden die Versickerungsleistung des Untergrundes und das Kanalnetz nicht in die Berechnungen einbezogen und stellen somit eine erhebliche Vereinfachung dar (weitere Informationen finden sich hier ). Die topographische Senkenanalyse ist das Ergebnis einer Analyse des Digitalen Geländemodells (ATKIS® DGM – Digitales Geländemodell, 2021) unter Berücksichtigung der Gebäudeflächen und Durchfahrten sowie Geschossinformationen (ALKIS®- Amtliches Liegenschaftskatasterinformationssystem, 2021), welche durch die BWB im Jahr 2022 durchgeführt wurde. Es erfolgte eine GIS-Analyse zur Ermittlung der Senken, Fließwege und Abflussakkumulation basierend auf dem vorgeglätteten DGM. Die Gebäude wurden als nicht überströmbare Abflusshindernisse in das DGM integriert und Senken in umschlossenen Innenhöfen ausgeschlossen. Folgende Senkenattribute wurden basierend auf einer zonalen Statistik abgeleitet und werden in den Sachdaten dargestellt: Fläche Einzugsgebiet (DrainArea [m²]) Fläche Senke (FillArea [m²]) Maximale Tiefe der Senke (FillDepth [cm]) Geländehöhe Senkenbasis (BottomElev [m]) Geländehöhe maximaler Füllstand (FillElev [m]) Füllvolumen (FillVolume [m³]) Basierend auf folgenden Parametern wurden die relevanten Senken ermittelt: Senkentiefe mindestens 20 cm, Senkenfläche mindestens 4 m², Senkenvolumen mindestens 2 m³, Senkeneinzugsgebiet mindestens 200 m². Der Datensatz der Feuerwehreinsätze zeigt Meldungen der Berliner Feuerwehr in Bezug auf ,,Wasser”, welche anhand des Meldungstextes mit Starkregen in Verbindung zu bringen sind und an Starkregentagen aufgenommen wurden. Der Datensatz wurde durch die Berliner Feuerwehr erfasst und durch die BWB prozessiert (sogenannter Überflutungsatlas). Die BWB haben die Feuerwehreinsätze mit den Niederschlagsdaten der BWB an diesem Tag und Ort abgeglichen und ein anzunehmendes Wiederkehrintervall (T) des aufgetretenen Niederschlagsereignisses zugeordnet. Dopplungen wurden entfernt. Folgende Attribute wurden abgeleitet und werden in den Sachdaten dargestellt: Datum (angelegt) Wiederkehrintervall (T) Ortsteil Die Daten wurden räumlich über die Berliner Adressdatei geocodiert. Der Zeitraum der Meldungen umfasst einerseits den Zeitraum 2005 bis 2017 anderseits 2018 bis 2021. Diese Datensätze wurden zu einem Datensatz von 2005 bis September 2021 zusammengefasst. Zwecks Aggregierung und Darstellung wurden die Daten auf Blockteilflächen und Straßenflächen des Informationssystems Stadt und Umwelt (ISU5 2021) zusammengefasst und klassifiziert. In Berlin wird die Analyse zu Starkregengefahren auf Basis eines gekoppelten 1D-Kanalnetz und eines 2D-Oberflächenabflussmodells (1D/2D gekoppeltes Modell) durchgeführt. Bei diesem Verfahren wird die Berechnung der Abflussvorgänge im Kanalnetz (1D) mit der zweidimensionalen hydrodynamischen Modellierung der Oberflächenabflüsse (2D) kombiniert, um einen bidirektionalen Austausch von Wasservolumen, d.h. einen Austausch in beide Richtungen, zwischen Oberfläche und Kanalnetz an den Schächten und Straßenabläufen zu berücksichtigen. Die Erarbeitung der Starkregengefahren erfolgt basierend auf der von den BWB und der für Wasserwirtschaft zuständigen Senatsverwaltung gemeinsam entwickelten Leistungsbeschreibung „Erstellung von Starkregengefahrenkarten für Berliner Misch- bzw. Regenwassereinzugsgebiete“. Voraussetzung sind Daten zu Topographie, Gebäuden, Straßen, Versiegelung und bodenkundlichen Kennwerten sowie Kanalnetzdaten . Für die 1D-Modellierung des Kanalnetzes wird das aktuelle Kanalnetz (Misch- oder Trennkanalisation) der BWB verwendet. Die Entwässerungsinfrastruktur wird durch ein Kanalnetzmodell abgebildet, wobei dieses u.a. Schächte, Straßenabläufe, Haltungen und Haltungsflächen berücksichtigt. Auf Grundlage des digitalen Geländemodells wird ein detailliertes, lückenloses und überlappungsfreies 2D-Oberflächenmodell erstellt und um standardisierte Dachformen der Gebäudedaten ergänzt. Mauern oder Bordsteine werden durch Bruchkanten berücksichtigt. Die Oberflächenbeschaffenheit des Untersuchungsgebietes beeinflusst die Abflussbildung und -konzentration, daher wird basierend auf den entsprechenden Datengrundlagen (siehe Kapitel Datengrundlage) zwischen Gebäudeflächen, Straßen und Wegen, Gewässer und Grünflächen unterschieden. Mauern, Bordsteine oder ähnliche linienhafte Elemente können Abflusshindernisse darstellen, werden aufgrund der Auflösung jedoch nicht durch das DGM abgebildet und werden – falls sie abflussrelevant sind – nachträglich über Bruchkanten berücksichtigt. Maßgebliche Datensätze für Gebäudeflächen sind die ALKIS-Gebäude und der Datensatz der Gründächer (im Bereich der Kleingärten). Bei der Abflussbildung von Dachflächen wird zwischen einleitenden und nicht einleitenden Dächern basierend auf den Daten der Erfassung des Niederschlagsentgelts unterschieden. Einleitende Dächer werden in der Modellierung als direkt an den Kanal angeschlossen betrachtet (1D-Abflussbildung). Bei nicht einleitenden Dächern erfolgt die Abflussbildung über das Oberflächenabflussmodell. In diesem Fall wird der effektive Niederschlag auf die umliegende Oberfläche verteilt, indem das Prinzip der Randverteilung angewendet wird. Straßen und Wege umfassen alle befestigten Flächen, wie Straßen, Wege, Plätze und private versiegelte Flächen. Die Abflussbildung dieser Flächen erfolgt über das 2D-Oberflächenabflussmodell und es wird nicht zwischen einleitend und nicht einleitend unterschieden. Als Gewässerflächen werden alle stehenden Gewässer und Fließgewässer aus dem ALKIS-Datensatz angenommen. Alle restlichen Flächen werden als Grünflächen angesetzt. Für diese Flächen werden im Modell entsprechende Abflussparameter, wie Benetzungs- und Muldenverluste sowie Anfangs- und Endabflussbeiwerte, basierend auf Literaturwerten, angesetzt. Das Modell bildet den Rückhalt der Vegetation (Interzeption), die Versickerungsfähigkeit des Bodens und die Oberflächenrauheiten ab. Für Hochwasserrisikogebiete (SenMVKU, 2024) wurden in Berlin im Rahmen der Hochwasserrisikomanagementrichtlinie bereits Hochwassergefahrenkarten erarbeitet und Überschwemmungsgebiete ausgewiesen. Um keine Überschneidungen mit den Starkregengefahrenkarten zu erzielen, werden diese Gewässer als hydraulisch voll leistungsfähig angenommen. Außerdem wird für bestimmte Gewässer (z.B. Gewässer 1. Ordnung, Nordgraben) angenommen, dass diese bei kurzen Starkregenereignissen ausreichend hydraulisch leistungsfähig sind. Ein „Anspringen“ ist erst bei länger anhaltenden, räumlich ausgeprägteren Niederschlagsereignissen zu erwarten. Das Modell geht davon aus, dass ein Austritt von Wasser und somit eine Überflutung von diesen Gewässern methodisch nicht möglich ist. Außerdem werden diese Gewässer mit einem einheitlichen Vorflutwasserstand für ein mittleres Hochwasser (für das seltene und außergewöhnliche Ereignis) sowie für ein 100-jährliches Hochwasser (für das extreme Ereignis) angenommen. Im Modell werden für das seltene und außergewöhnliche Ereignis die tatsächlichen Gewässerverrohrungen bzw. -durchlässe angesetzt. Für das Szenario Extremereignis gilt, dass Durchlässe teilverklaust (Durchmesser > 0,5 m (> DN 500)) oder vollständig verklaust (Durchmesser ≤ 0,5 m (≤ DN 500)) angenommen werden, es sei denn, ein Raumrechen verhindert eine Verklausung. Mit dem aufgestellten Modell werden die Überflutungen von Niederschlagsszenarien mit unterschiedlicher Jährlichkeit berechnet, wobei für die Niederschlagshöhen die koordinierte Starkniederschlagsregionalisierung und -auswertung (KOSTRA) des Deutschen Wetterdienstes (DWD) zugrunde gelegt werden. Es kommt die Revision des Datensatzes KOSTRA-DWD-2020 zum Einsatz. Folgende Szenarien werden im Rahmen des Starkregenrisikomanagements in Berlin betrachtet: seltenes Ereignis : 30 bzw. 50-jährliches Niederschlagsereignis (T = 30a bzw. T = 50a, Dauerstufe 180 Min.) mit einer Euler-Typ II Niederschlagsverteilung außergewöhnliches Ereignis : 100-jährliches Niederschlagsereignis (T = 100a, Dauerstufe 180 Min.) mit einer Euler-Typ II Niederschlagsverteilung extremes Ereignis : 100 mm Niederschlagsereignis in einer Stunde (T extrem) mit einer Blockregenverteilung. Basierend auf einer Sensitivitätsanalyse wurde die maßgebliche Dauerstufe mit 180 Minuten für Berlin ermittelt, wobei hier der höchste Wasserstand als maßgeblich betrachtet wird. Für die Intensität und für den zeitlichen Niederschlagsverlauf wird die Euler-Typ II Verteilung (seltenes und außergewöhnliches Ereignis) oder ein Blockregen mit einer Regendauer von 60 Minuten (extremes Ereignis) angenommen. Neben der Beregnungszeit, die der Dauerstufe der betrachteten Szenarien entspricht, wird in der Modellierung jeweils eine einstündige Nachlaufzeit berücksichtigt. Die Plausibilitätsprüfung erfolgt aufgrund der Ergebnisse des außergewöhnlichen Ereignisses. Es werden unplausible Abflusspfade und Wasseransammlungen ggf. durch Ortsbegehungen geprüft, und nicht berücksichtigte, hydraulisch relevante Strukturen nachgepflegt. Die Methode ist sehr daten- und rechenintensiv, so dass sie nicht berlinweit, sondern nur für ausgewählte Bereiche sukzessive angewandt werden kann. Dafür bietet sie relativ genaue und belastbare Ergebnisse und mit der Methode lassen sich die Abflussbildung und Abflusskonzentration nachvollziehen. Es werden kontinuierlich weitere Gebiete mit der gekoppelten 1D/2D Simulation gerechnet und anschließend online verfügbar gemacht. Die nachfolgende Tabelle zeigt, für welche Gebiete bisher Starkregengefahrenkarten erarbeitet wurden.
Die Digitale Topographische Karte 1:25 000 (DTK25) ist eine detailgenaue, aktuelle topographische Karte im Rasterdatenformat im Maßstab 1:25 000. Inhalt der DTK25 sind alle Straßen, Wege, Bahnen, Gewässer, Vegetationsflächen, Grenzen, generalisierte Einzelgebäude, Höhenlinien, Schriften usw. Die DTK25 ist für ganz Bayern mit gleicher Detailschärfe und Aktualität verfügbar. Die Graphik der DTK25 richtet sich nach dem Signaturenkatalog SK25 der AdV. Die Rasterdaten der DTK25 sind in 21 thematische Ebenen gegliedert, die als einzelne Rasterdateien (für jede Ebene eine Datei) oder als zusammengerechnete Farbkombination beliebiger Rasterebenen abgegeben werden können. Die Bereitstellung von Rasterdaten beliebig geformter Flächen ist möglich (z. B. entlang eines Flusses). Die Abgabe der Rasterdateien in Kacheln ist möglich. Die Daten können in beliebiger Auflösung bis max. 320 Pixel/cm (813 dpi, entspricht ca. 0.78m Bodenauflösung) abgegeben werden.
Die im Maßstab 1:5.000 vorliegenden Abgrenzungen stellen sinngemäße Übertragungen der offiziellen Abgrenzung der gemeldeten Gebiete (Meldung Deutschland an die EC) auf die Topografien der Deutschen Grundkarte 1:5.000 dar. Die Grenzverläufe im marinen Bereich der Nord- und Ostsee sind unverändert aus dem offiziellen Meldemaßstab 1:25.000 übernommen worden. In Schleswig-Holstein sind alle Vogelschutzgebiete und Gebiete gemeinschaftlicher Bedeutung (GGB oder englisch:SCI) nach nationalem Recht (NSG, LSG oder Europäische Vogelschutzgebiete, soweit nicht als NSG oder LSG ausgewiesen, gem. § 4 LNatSchG i. V. m. § 33 Abs. 1 Satz 1 BNatSchG i.V.m. § 24 Abs. 1 LNatSchG und den förmlich bekannt gemachten gebietsspezifischen Erhaltungszielen) zu Besonderen Schutzgebieten (SPA bzw. SAC) erklärt worden. Dementsprechend sind alle Vogelschutzgebiete und alle FFH- Gebiete in Schleswig-Holstein als Besonderes Schutzgebiet (SPA oder SAC) zu bezeichnen. Im Rahmen einer rechtlichen Sicherung der Einzel-Gebiete im Sinne § 32 Abs.2 und 3 BNatSchG i.V. mit § 23 Abs. 1 LNatSchG werden diese Abgrenzungen abschließend und rechtsverbindlich bearbeitet. Vogelschutzgebiet 0916-491 "Ramsar-Gebiet S-H Wattenmeer und angrenzende Küstengebiete": Im Norden reicht das Gebiet bis an das Hoheitsgebiet Dänemarks. Der Verlauf der Hoheitsgebietsgrenze im marinen Bereich (insbesondere nordwestlich von Sylt) ist zwischen beiden Staaten bislang noch nicht verbindlich kartografisch festgelegt. Stand: Dezember 2008 (letzte techn. Anpassung: 10.04.2012)
Historische Digitale Orthophotos (DOP) sind vollständig entzerrte, maßstabsgetreue Luftbilder auf Grundlage der Bayernbefliegung von 2014. Das DOP steht in Echtfarben (RGB) und als gedruckte Luftbildkarte zur Verfügung.
In Inner Mongolia the heterogeneity of rainfall patterns, differences in grazing intensity and topography lead to strong temporal and spatial variability of soil moisture which has great effects on vegetation growth and influences CO2 and water fluxes. The spatial and temporal distribution and variability of near surface soil moisture will be modelled with a new approach using the atmospheric boundary layer model HIRVAC and thermal imagery obtained during the 2009 field campaign within the MAGIM research group. Thermal imagery was collected using a microlite aircraft which emerged as an adequate platform particularly for remote areas. The resulting soil moisture grids will allow for the analysis of spatial soil moisture variability at field and local scale. The high geometrical resolution (1 m) closes the gap between point surface and satellite measurements.
Hauptziel von TV4 ist die Untersuchung verschiedener Hauptbaumarten in Bezug auf ihre Reaktion auf klimatische Extremereignisse. Dazu werden in Kooperation mit der RWTH Aachen durch dendrochronologische Messungen langfristige Klima-Wachstumsbeziehungen ermittelt und mit hochfrequenten physiologischen Messungen am Baum sowie Messungen der Wasserspeicheränderungen im Untergrund kombiniert. Zur Erklärung der beobachteten Reaktionsmuster werden verschiedene Standortfaktoren und Umweltparameter herangezogen. Dabei werden Klima, Boden und Topographie genauso berücksichtigt wie die Bestandshistorie, Bestandes-Charakteristika und Managementfaktoren. Schwerpunkte bei der Analyse der Reaktionen der verschiedenen Baumarten werden in TV4 auch insbesondere in der Untersuchung des Einflusses der unterirdischen Wasserspeicher, ihrer räumlichen Variabilität und Dynamik liegen. Ein Arbeitspaket befasst sich hier mit dem Einfluss des Grundwasserflurabstandes auf Wachstum und Stressreaktionen der Baumarten. Dazu eignet sich das Untersuchungsgebiet im Müritz Nationalpark besonders, da hier auf geringen Distanzen sehr unterschiedliche Flurabstände auftreten. Zusätzlich ermöglicht das experimentelle Design auch den Vergleich verschiedener grundwasserferner Standorte um den Effekt des Baumbestandes, d.h. Reinbestand gegenüber Mischbestand genauer zu untersuchen. Unterstützend wird die Tiefenverteilung der Wurzelwasseraufnahme aus der Dynamik der Bodenfeuchtedaten ermittelt. An Standorten mit intensiver Instrumentierung zur Bodenfeuchte und Saugspannung werden die räumlichen Verteilungen der Bodenfeuchte (lateral und vertikal) im Kontext der Waldbestände ausgewertet. Diese dynamischen räumlichen Muster werden den hochaufgelösten Wachstums- und Stressreaktionen der Bäume gegenübergestellt. Die direkte Gegenüberstellung sowie die lokalen meteorologischen Beobachtungen ermöglichen dann die Ermittlung von kombinierten hydropedo- und hydrometeorologischen Schwellenwerten der Stressreaktion.
Im 18. und 19. Jahrhundert nehmen die medizinischen Topographien, manchmal auch hygienische oder sanitäre Ortsbeschreibungen genannt, einen wichtigen Platz in der zeitgenössischen Medizinalliteratur ein: Veranlasst durch Verwaltungsvorschriften ('medicinische Policey') oder auch Preisfragen wissenschaftlicher Akademien verfassten Ärzte detaillierte Beschreibungen der Gebiete, in denen sie tätig waren, mit dem Anspruch, alles zu erfassen und zu schildern, was als die Gesundheit der EinwohnerInnen beeinflussend betrachtet wurde - Klimadaten, Wasser- und Luftanalysen sowie demografischen Statistiken haben dort ebenso ihren Platz wie Erörterungen zu städtebaulichen Gegebenheiten oder zu Ernährung und Lebensweise der EinwohnerInnen. Diese Berichte sollten dazu dienen, den zuständigen Behörden einen Maßnahmenkatalog an die Hand zu geben, um die hygienischen Bedingungen in den Städten zu verbessern, wandten sich aber auch in aufklärerischer Absicht an die Bevölkerung. Bisher wurden solche Ortsbeschreibungen vor allem unter medizinhistorischen und volkskundlichen Aspekten als Quellen genutzt. In diesem Projekt sollen medizinische Topographien von großen deutschen Städten unter einer umweltgeschichtlichen Perspektive ausgewertet werden, um die Wahrnehmungs- und Umgehensweisen der Autoren bezüglich ihrer Umwelt, sowohl der naturalen als auch der anthropogen gestalteten, herauszuarbeiten.
Der weit nach Süden vordringende Keil Südamerikas ist weltweit die einzige nennenswerte Landmasse zwischen ca. 45° und 60°Süd. Das senkrecht zur Hauptwindrichtung verlaufende Andengebirge stellt eine wirksame Barriere für die Westwinddrift dar und hat einen bestimmenden Einfluss auf die hemisphärische Zirkulation sowie das lokale Wettergeschehen. Das Gebirge zwingt die maritimen Luftmassen zum Aufsteigen, was häufig mit intensiven Steigungsregen auf der Luvseite der Anden einhergeht. Durch die Überströmung des Gebirges kommt es zur Ausbildung von speziellen Prozessgefügen in der atmosphärischen Strömung sowohl auf der Meso- als auch regionaler Skala. Der damit einhergehende Transport und Austausch von Energie und Masse beeinflusst maßgeblich die Entstehung und den Ausfall von Hydrometeoren. Trotz der starken Wechselwirkung zwischen Strömung, Topographie und Niederschlag wurde in Patagonien darüber bisher nur wenig geforscht. Das vorgeschlagene Forschungsvorhaben leistet daher einen Beitrag zum Verständnis der Wechselwirkung zwischen dynamischen Prozessen und der räumlichen und zeitlichen Variabilität von Niederschlag in dieser Region. Ziel des Projektes ist die Quantifizierung wichtiger Prozesse die neue Aufschlüsse über die relevanten Mechanismen liefern soll. Anhand von hochauflösenden numerischen Simulationen werden an Einzelfallstudien die dynamischen und thermodynamischen Eigenschaften der atmosphärischen Strömung im Detail analysiert. Begleitende Sensitivitätsstudien mit vereinfachten analytischen Modelle werden zudem Aussagen zu den Auswirkungen der atmosphärischen Variabilität auf die Niederschlagsverteilung liefern. Das aus der Studie gewonnene Prozessverständnis ist eine wichtige Grundlage für weiterführende Forschungsarbeiten im Bereich der Hydrologie, Glaziologie und Ökologie.
Das Ziel dieses Projektes ist die Untersuchung der zeitlichen Variabilität in der Energie von internen Wellen und der Stärke von vertikaler Vermischung in Abhängigkeit des Nordatlantikstroms und dem damit verbundenen Wirbelfeld. Hierfür werden 5-6 Jahre von Strömungsmesserdaten und Temperatur/Leitfähigkeitsmessungen von drei Verankerungen entlang eines Schnittes westlich des Mittelatlantischen Rückens (MAR) sowie LADCP/CTD Daten von fünf Schifffahrten genutzt. Konkrete wissenschaftliche Ziele dabei sind:- Erstellung von Zeitserien der Energie in internen Wellen unter Benutzung der Verankerungszeitreihen von Strömung und Schichtung- Untersuchung der Zeitskalen auf denen Veränderungen in der Energie interner Wellen stattfinden. Mögliche Ursachen für Variabilität sind der Windeintrag, Position des Nordatlantikstroms und Wirbel- Identifizierung von Prozessen, welche die beobachteten internen Wellen generieren, wie z.B. Gezeiten, Stürme, Jahresgang, Wirbel, die Arme des Nordatlanikstroms (Verhältnis von lokalen zu großräumigen Erzeugungsmechanismen)- Bestimmung der Vermischungsraten (Temperaturinversionen, Thorpe Skalen, Feinstrukturparameterisierung) in Abhängigkeit der variablen Hintergrundbedingungen Hierfür werden zunächst Spektren potentieller und kinetischer Energy der internen Wellen auf ihre Abhängigkeit von veränderlichen Hintergrundbedingungen wie z.B. Wind, Gezeiten, Wirbel, Schichtung und Variabilität im Nordatlantikstrom sowieso des Einflusses der Topographie untersucht. Die instrumentelle Ausstattung der Verankerungen seit Sommer 2012 erlaubt zusätzlich die Approximation der internen Wellen durch vertikale Moden und damit verbunden die Berechnung von Energieflüssen, welche wichtige Informationen über die Menge und die Variabilität in der Energie, die in internen Wellen im Nordatlantik transportiert wird, liefern. Außerdem geben diese so gewonnenen Energieflüsse in Kombination mit der Berechnung von Ausbreitungspfaden von internen Wellen, welche am mittelatlantischen Rücken erzeugt wurden, Aufschluss über die relative Bedeutung der Topographie des MAR für die Erzeugung von internen Wellen. Beginnend vom Sommer 2015 werden die Analysen erweitert, indem Temperatur- und Druckdaten mit hoher Tiefenauflösung für die Berechnung von Thorpe Skalen und Dissipationsraten und deren zeitlichen Variabilität genutzt werden. Weitere Informationen über die zeitliche und räumliche Variabilität der Vermischungsraten im Nordatlantik werden durch die Analyse von Diffusionsraten, die anhand von LADCP/CTD Daten und einer Feinstrukturparameterisierung berechnet werden, erlangt. Dies liefert weitere Aufschlüsse über die dominanten Prozesse in der Erzeugung von internen Wellen und vertikaler Vermischung im Nordatlantik, sowie deren zeitlicher und räumlicher Variabilität.
Die Wechselwirkung zwischen der Kryosphäre und dem Ozean bildet eine der Hauptursachen für lokale und globale Veränderungen des Meeresspiegels. Das Schmelzen des grönländischen Eisschildes trägt derzeit zu rund einem Drittel zum globalen Meeresspiegelanstieg bei, und der Massenverlust des Eisschildes und damit der Transport von Eis aus dem Eisschild in den Ozean beschleunigen sich weiter. Bis vor kurzem schien es, als sei die Beschleunigung der abfließenden Eisströme auf Grönlands Westküste und die Fjorde im Südosten beschränkt, während die Gletscher im Nordosten als weitgehend stabil galten. Einer dieser scheinbar stabilen Gletscher ist der Nioghalvfjerdsbrae oder 79°Nord Gletscher, der größere zweier Gletscher, die aus dem nordostgrönländischen Eisstrom gespeist werden und direkt ins Meer münden. Wegen der Existenz einer Kaverne unter der schwimmenden Eiszunge analog zu den Schelfeisen der Antarktis ist der 79°Nord Gletscher für Studien der Eis Ozean Wechselwirkung sehr interessant, besonders da das Einzugsgebiet des nordostgrönländischen Eisstroms mehr als 15% der Fläche des grönländischen Eisschildes erfasst. Aktuelle Studien weist nun auf eine Beschleunigung des Eisstromes und eine Abnahme der Eisdicke entlang der Küste von Nordostgrönland hin. Gleichzeitig wurde eine Erwärmung und eine Zunahme des Volumens des Atlantikwassers in der Ostgrönlandsee und der Framstraße beobachtet. Unser Projekt hat zum Ziel, (1) die Mechanismen zu verstehen, mit denen der Ozean Wärme aus der Framstraße und vom Kontinentalhang Nordostgrönlands in die Kaverne unter dem schwimmenden 79°N Gletscher transportiert, (2) die Rolle externer Variabilität relativ zu Prozessen innerhalb der Kaverne hinsichtlich ihres Einflusses auf das Schmelzen an der Eisunterseite zu untersuchen und (3) die wichtigsten Sensitivitäten innerhalb dieses gekoppelten Systems aus Eis und Ozean zu identifizieren. Wir verfolgen dieses Ziel durch eine Kombination von gezielter Beobachtung und innovativer hochauflösender Modellierung. Im Rahmen zweier Forschungsreisen mit dem Eisbrecher FS Polarstern werden Strömungsgeschwindigkeiten, Hydrographie und Mikrostruktur sowohl mit gefierten als auch mit verankerten Instrumenten gemessen. Diese Beobachtungen werden durch den Einsatz eines autonomen Unterwasserfahrzeugs ergänzt. Zur Modellierung nutzen wir das Finite Element Sea ice Ocean Model (FESOM), das um eine Schelfeiskomponente erweitert wurde und in einer Konfiguration betrieben wird, die mit hoher Auflösung die kleinskaligen Prozesse auf dem Kontinentalschelf vor Nordostgrönland und in der Kaverne unter dem 79°N Gletscher in einem globalen Kontext wiedergibt. Zusammen mit den Beiträgen unserer Kooperationspartner aus der Glaziologie und der Tracerozeanographie entwickelt sich aus der Synthese dieser beiden Komponenten ein detailliertes Bild der Prozesse auf dem Kontinentalschelf Nordostgrönlands, einer Schlüsselregion für zukünftige Veränderungen des globalen Meeresspiegels.
| Origin | Count |
|---|---|
| Bund | 1967 |
| Global | 1 |
| Kommune | 36 |
| Land | 921 |
| Wirtschaft | 41 |
| Wissenschaft | 78 |
| Zivilgesellschaft | 2 |
| Type | Count |
|---|---|
| Daten und Messstellen | 13 |
| Ereignis | 4 |
| Förderprogramm | 1181 |
| Repositorium | 1 |
| Text | 71 |
| Umweltprüfung | 15 |
| unbekannt | 947 |
| License | Count |
|---|---|
| geschlossen | 112 |
| offen | 1991 |
| unbekannt | 129 |
| Language | Count |
|---|---|
| Deutsch | 1885 |
| Englisch | 545 |
| Resource type | Count |
|---|---|
| Archiv | 577 |
| Bild | 15 |
| Datei | 556 |
| Dokument | 113 |
| Keine | 943 |
| Unbekannt | 4 |
| Webdienst | 195 |
| Webseite | 549 |
| Topic | Count |
|---|---|
| Boden | 2232 |
| Lebewesen und Lebensräume | 1278 |
| Luft | 988 |
| Mensch und Umwelt | 2232 |
| Wasser | 1545 |
| Weitere | 2210 |