Ein Flurstück ist gemäß Gesetz über die Landesvermessung und das Liegenschaftskataster (VermKatG NRW) ein begrenzter Teil der Erdoberfläche, der im Liegenschaftskataster unter einer besonderen Nummer, dem Flurstückskennzeichen geführt wird. Diese kleinste Buchungseinheit im Liegenschaftskataster ist von einer Grenzlinie umschlossen. Gebäude sind gemäß VermKatG NRW dauerhafte, selbständig benutzbare, überdeckte bauliche Anlagen, die wegen ihrer Bedeutung im Liegenschaftskataster nachgewiesen werden. Sie können von Menschen betreten werden und sind geeignet oder bestimmt, dem Schutz von Menschen, Tieren, Sachen oder der Produktion von Wirtschaftsgütern zu dienen. Für alle Flurstücke weist das Liegenschaftskataster deren Form (Geometrie samt bestimmender Koordinaten), Lage, Nutzung, Größe, Bebauung und weitere Eigenschaften wie die Lagebezeichnung und das Flurstückkennzeichen nach. Neben den geometrischen Merkmalen eines Gebäudes werden auch beschreibende Eigenschaften wie Gebäudefunktion, Baujahr, Bauweise und Angaben zur Lage geführt. Zudem sind im Datenumfang enthalten: Charakteristische Topographie, Tatsächliche Nutzung, Bodenschätzung, Relief/Geländeform und Öffentlich-rechtliche sowie sonstige Festlegungen. Stand der verwendeten Daten: 01.01.2026
Topographische Gebietskarten stellen landesspezifische Strukturen und Aussagen in besonderen Kartenzeichen dar und werden in der Regel in Zusammenarbeit mit bzw. auf Anforderung von Landesverwaltungen bearbeitet und herausgegeben.
Die Anzahl der verfügbaren Wolkenkondensationskerne (CCN) beeinflusst maßgeblich die mikrophysikalischen Wolkeneigenschaften, wie z.B. die Wolkentropfenanzahlkonzentration (CDNC) und deren Größenverteilung. CDNC und die Tropfengröße steuern sowohl die Strahlungseigenschaften als auch die Lebensdauer von Wolken. Dies wirkt sich komplex auf die Energiebilanz der Erde aus. Aktuelle Klimamodelle basieren häufig auf Annahmen über CCN Anzahlkonzentrationen und andere CCN bezogene Eigenschaften (z.B. Hygroskopizität), da für viele Regionen auf der Erde repräsentative Daten fehlen. Wenn vorhanden, handelt es sich bei diesen CCN Daten um bodengebundene Messungen, welche somit nicht - mit Ausnahme von Bergstationen - in der für Wolkenbildungsprozesse relevanten Höhe durchgeführt wurden. Für die Karibikregion wurde gezeigt, dass die bodengebundenen CCN Messungen für die gesamte marine Grenzschicht repräsentativ zu sein scheinen also auch für die Wolkenbildungsregionen. Im hier vorgeschlagenen Projekt wollen wir überprüfen, ob bodengebundene CCN Messungen auch in anderen Erdregionen repräsentativ sind für die CCN Anzahl in der Wolkenbildungsregion, und wenn ja, unter welchen Bedingungen. Dies würde die Anwendung von CCN Daten in Modellen stark vereinfachen. Dazu wird die Gültigkeit der Beobachtungen in der Karibik, in zwei gegensätzlichen Umgebungen getestet werden, einmal in einer marinen und einmal in einer kontinentalen Umgebung. Die Messkampagne zu marinen CCN soll auf den Azoren (Portugal) durchgeführt werden. Wir werden kontinuierlich verfügbare CCN Daten von der Azoren Eastern Nordatlantik (ENA) Station auf der Insel La Graciosa (auf Meereshöhe) mit Daten von der Bergstation Pico (Pico Island, 2225 m ü.d.M.) kombinieren. Ergänzend werden CCN und CDNC Messungen auf der Helikopter-Messplattform (ACTOS) durchgeführt, um die vertikale Lücke zwischen den Meeresspiegel- und Bergmessungen zu schließen. Die kontinentalen bodengebundenen CCN Messungen werden kontinuierlich an der ACTRIS Station Melpitz durchgeführt. Die vertikale CCN und CDNC Verteilung wird in Melpitz mit Hilfe eines Ballons in mehreren einwöchigen Kampagnen einmal pro Jahreszeit gemessen werden. Darüber hinaus werden wir mit Hilfe der Aerosol-Wolken-Wechselwirkungsmetrik (ACI) die in der Wolke in-situ gemessen CCN Eigenschaften (das heißt Anzahl und Hygroskopizität) mit den CDNC quantitativ verbinden. Es wird außerdem eine Sensitivitätsstudie mit einem Cloud-Parcel Model durchgeführt, welches durch die realen Messungen in der Atmosphäre angetrieben werden wird. Dies wird einen Einblick in das Übersättigungsregime von frisch gebildeten Wolken gewähren.Die CCN Daten selbst, die Erkenntnisse zu CCN Eigenschaften und ihrer vertikalen Verteilung sowie die quantitative Verbindung zwischen CCN und CDNC werden im Hinblick auf das Verständnis und die Modellierung der Wolkentropfenaktivierung sowie der mikrophysikalischen Wolkeneigenschaften von außerordentlichem Wert sein.
Mit diesem Antrag sollen die physikalischen Prozesse identifiziert, analysiert und quantifiziert werden, die zu dem Austausch von gelösten Substanzen zwischen der Sediment-Wasser Grenzschicht, innerhalb der turbulenten Bodengrenzschicht (bottom boundary layer, BBL) und dem schwach turbulenten Inneren von geschichteten Becken beitragen. Im Fokus stehen dabei der Effekt von geneigten Hängen, an denen die Austauschprozesse durch das Zusammenwirken des Wiederaufbaus der Bodengrenzschichtschichtung , der Turbulenz innerhalb der BBL und sub-mesoskaligen Prozessen, von denen angenommen wird, dass sie den lateralen Austauschraten von Wasser bestimmen, verkompliziert werden. Diese Prozesse werden durch einen kombinierten Ansatz aus Feldmessungen und numerischer Modellierung untersucht. Insbesondere wird sich das Projekt dabei auf den Sediment-Wasser Austausch von Schwefelwasserstoff und Sauerstoff fokussieren, der in Situ mit Hilfe eines Eddy-Korrelationsmessgerätes als auch mit einem Mikroprofilsystem gemessen wird. Diese Messung wird durch ozeanographische Standardmessungen ergänzt, als auch durch Schiffs- und Verankerungsbasierte Turbulenzmessungen. Dieser Datensatz ist neuartig durch die Kombination von (A) der Sediment-Wasserflüsse von Sauerstoff und Schwefelwasserstoff und (B) der Turbulenzmessungen innerhalb der BBL und des Beckeninneren. Zusätzlich zu den Feldmessungen ist eine numerische Modellierung auf der Basis eines einfachen Sedimentmodells in Kombination mit einer Parametrisierung der Transportprozesse an der Sediment-Wassergrenzschicht geplant. Dieses Modell wird in idealisierten, eindimensionalen Parameterstudien, sowie in einem zweidimensionalen Setup verwendet, welches sich auf die Austauschprozesse der Bodengrenzschicht mit dem Beckeninneren konzentriert. Für die Untersuchung von dreidimensionalen Strukturen wie Eddies auf den Sauerstoff/Schwefelwasserstofftransport wird ein voll dreidimensionales realistisches Modell der zentralen Ostsee angewendet.
Beach sand deposits are widespread in the area around Sandefjord, at the western coast of the Oslofjord, southern Norway. The age of the deposits continuously increases with elevation, as the area has been subject to steady glacio-isostatic uplift throughout the Holocene. Existing local sea level curves provide age control related to elevation. Thus, the area offers excellent conditions to test hypotheses on soil formation and OSL dating. A chronosequence covering the last 10 000 years will be established. A preliminary study showed that soil formation leads to Podzols within 4300 - 6600 years. Micromorphological analyses suggest that clay illuviation takes place before and below podzolisation. It is hypothesised that clay translocation goes on contemporarily with podzolisation, but at greater soil depth, where the chemical conditions are suitable. This hypothesis will be proved by more detailed micromorphological investigation and chemical analyses. The factors controlling soil forming processes and their rates, will be determined by analyzing elemental composition, primary minerals and clay mineralogy. Preliminary OSL dating tests suggest that the beach sand deposits are OSL dateable despite the high latitude. This hypothesis will be checked by comparing OSL datings to ages derived from the 14C-based sea level curves.
High altitude ecosystems are still widely perceived as natural and anthropogenic transformation is generally considered to be concentrated on lower elevations and late. However, recent studies challenge this view and for quaternary environmental science and prehistory, the question where humans retreated to during the driest intervals of the last 20 ka when lowlands may have become uninhabitable is still demanding. Based on previous own and third-party research and a total of four reconnaissances to the study area as part of the preparation of this research unit, we challenge the initially stated long-held belief. Given the higher humidity of the African mountains archipelago, the afro-alpine environments are a potential glacial refuge not only for plants and animals, but also for humans. Among others, this idea is backed up by the facts that - highland people of Ethiopia are genetically adapted to high altitude hypoxia which indicates their presence at least in parts of the higher areas over evolutionary time scales. - surface scatters of stone artefacts showing heavy abrasion have been found during the most recent reconnaissance trip between 3,700 and 4,100 m which for the first time likely indicates the presence of stone working people on the Sanetti Plateau. - the mosaic of isolated groves of Erica trimera across the plateau cannot be explained by climatic gradients but indicates a human induced and fire-based shaping of the afro-alpine heathlands. As a consequence, we postulate not a late but early afro-alpine occupation expressed as the 'Mountain Exile Hypothesis'. Hence, the research unit will focus on reconstructing the natural and the anthropogenic history of this afro-alpine environment in space and time and the identification and quantification of the natural and anthropogenic drivers and processes that shaped the ecology evolution of the research area. To tackle the research questions arising from the Mountain Exile Hypothesis and to test the hypothesis itself, a multi-disciplinary and multi-proxy approach which combines established as well as newly developed and complementing methods has been designed which focuses on both the - human side of environmental change (P1 - Archeology and Archeozoology, P2 - Anthrosols and Intensity of Human Occupation) and the - natural side of environmental change (P5 - Paleoclimatology, P6 - Glacial Chronology and P7 - Ground Beetles as a Human-Independent Paleoproxy). The respective investigations are bridged by paleoecological investigations (P4 - Paleoecology) which focus on pollen, spores and macrofossil analyses and discriminate the human and natural signals. To complete the scientific inventory required to address the overall objectives, relevant baseline environmental and ecological information is provided (P3 - Environmental Baseline Assessment) and all datasets are combined as part of a central scientific analysis and synthesis platform, the BalePaleoGIS (C2 - Central Scientific Services).
Hauptziel des Vorhabens der Universität Bremen ist es, im Rahmen der HALO COMET Mission Antworten auf die Frage zu geben, inwieweit sich starke lokale Quellen der Treibhausgase CO2 und CH4 bzgl. ihrer Emissionen mit Hilfe von Flugzeug-gestützten Fernerkundungsmethoden (aktiv und passive) quantifizieren lassen. Um dies zu erreichen, werden aktive (Lidar) und passive (Spektrometer) Fernerkundungsmethoden mit einander kombiniert. Dabei wird mit dem Sensor MAMAP die Region um die Quelle kleinskalig erfasst, während HALO-COMET den großräumigeren Kontext der atmosphärischen CO2 bzw. CH4 Verteilung in der Atmosphäre erfasst. Der Fokus des Beitrages der Universität Bremen liegt dabei in der kleinskaligen Befliegung der Quellregionen. Aussichtsreiche Quellregionen sind für CO2 die Stadt Berlin und den naheliegenden Kohlkraftwerken im Südosten. Für CH4 eignet sich die Region Oberschlesien in Polen mit ihren aktiven Kohlerevieren und den damit verbundenen starken Methanemissionen besonders. Die Daten der Messkampagne im Frühjahr 2017 werden ausgewertet und analysiert, um daraus mit unterschiedlichen Methoden die CO2-bzw. CH4 Emissionen in der Quellregion zu bestimmen. Dabei werden die Daten von MAMAP und HALO COMET auch synergistisch verwendet, wobei insbesondere den in-situ Messungen zur Verifizierung der Fernerkundungsdaten eine wichtige Rolle zukommt (vgl. auch HALO COMET White Paper). Unterstützt wird die Dateninterpretation zudem durch hochaufgelöste Modellierung in Zusammenarbeit mit dem MPI in Jena.Im Rahmen des Vorhabens wird zudem untersucht, inwieweit die im Rahmen von COMET eingesetzten Fernerkundungssensoren (MAMAP, CHARM-F) zur Validation von Satellitensensoren eignen. Dies erfolgt durch die koordinierte Planung der Messkampagne bzgl. der Satellitenüberflüge von OCO-2 (CO2) und Sentienl-5P (CH4).
Das Shape beinhaltet die Abgrenzungen der von der Europäischen Kommission in die Liste der Gebiete von gemeinschaftlicher Bedeutung (GGB-Liste) aufgenommenen Gebiete FFH-Gebiete. (Entscheidungen der Kommission vom 12. und 13. November 2007 veröffentlicht im Amtsblatt der Europäischen Union vom 15.1.2008) Die im Maßstab 1:5.000 vorliegenden Abgrenzungen stellen sinngemäße Übertragungen der offiziellen Abgrenzung der gemeldeten Gebiete (Meldung Deutschland an die EC) auf die Topografien der Deutschen Grundkarte 1:5.000 dar. In Schleswig-Holstein sind alle Vogelschutzgebiete und Gebiete gemeinschaftlicher Bedeutung (GGB oder englisch:SCI) nach nationalem Recht (NSG, LSG oder Europäische Vogelschutzgebiete, soweit nicht als NSG oder LSG ausgewiesen, gem. § 4 LNatSchG i. V. m. § 33 Abs. 1 Satz 1 BNatSchG i.V.m. § 24 Abs. 1 LNatSchG und den förmlich bekannt gemachten gebietsspezifischen Erhaltungszielen) zu Besonderen Schutzgebieten (SPA bzw. SAC) erklärt worden. Dementsprechend sind alle Vogelschutzgebiete und alle FFH- Gebiete in Schleswig-Holstein als Besonderes Schutzgebiet (SPA oder SAC) zu bezeichnen. Im Rahmen einer rechtlichen Sicherung der Einzel-Gebiete im Sinne § 32 Abs.2 und 3 BNatSchG i.V. mit § 23 Abs. 1 LNatSchG werden diese Abgrenzungen abschließend und rechtsverbindlich bearbeitet. Im Norden des FFH-Gebietes NTP S-H Wattenmeer und angrenzende Küstengebiete (0916-391) reicht das Gebiet bis an das Hoheitsgebiet Dänemarks. Der Verlauf der Hoheitsgebietsgrenze im marinen Bereich (insbesondere nordwestlich von Sylt) ist zwischen beiden Staaten bislang noch nicht verbindlich kartografisch festgelegt.
Historische Digitale Orthophotos (DOP) sind vollständig entzerrte, maßstabsgetreue Luftbilder auf Grundlage der Bayernbefliegung von 2021. Das DOP steht in Echtfarben (RGB) und als gedruckte Luftbildkarte zur Verfügung.
| Origin | Count |
|---|---|
| Bund | 1987 |
| Global | 1 |
| Kommune | 38 |
| Land | 943 |
| Wirtschaft | 42 |
| Wissenschaft | 80 |
| Zivilgesellschaft | 2 |
| Type | Count |
|---|---|
| Daten und Messstellen | 14 |
| Ereignis | 4 |
| Förderprogramm | 1185 |
| Hochwertiger Datensatz | 27 |
| Repositorium | 1 |
| Text | 66 |
| Umweltprüfung | 15 |
| unbekannt | 942 |
| License | Count |
|---|---|
| geschlossen | 108 |
| offen | 2018 |
| unbekannt | 128 |
| Language | Count |
|---|---|
| Deutsch | 1904 |
| Englisch | 550 |
| Resource type | Count |
|---|---|
| Archiv | 593 |
| Bild | 15 |
| Datei | 573 |
| Dokument | 115 |
| Keine | 945 |
| Unbekannt | 4 |
| Webdienst | 197 |
| Webseite | 546 |
| Topic | Count |
|---|---|
| Boden | 2254 |
| Lebewesen und Lebensräume | 1476 |
| Luft | 984 |
| Mensch und Umwelt | 2254 |
| Wasser | 1571 |
| Weitere | 2196 |