API src

Found 2234 results.

Similar terms

s/tomography/topography/gi

Starkregen- und Überflutungsgefahren 2025

Die zwei Kartenthemen bestehen jeweils aus mehreren thematisch und räumlich unterschiedlichen Ebenen. Die Ebenen sind teilweise voneinander unabhängig aussagekräftig. Die Starkregenhinweiskarte basiert maßgeblich auf folgenden Produkten: Hinweiskarte Starkregen des Bundesamts für Kartographie und Geodäsie topografische Senkenanalyse der BWB, starkregenbedingte Feuerwehreinsätze der Berliner Feuerwehr für das Land Berlin. Die Hinweiskarte Starkregen wurde vom Bundesamt für Kartographie und Geodäsie (BKG) in Zusammenarbeit mit den Ländern für die gesamte Fläche Nord- und Ostdeutschlands (11 Bundesländer) im Zeitraum 2023/2025 erarbeitet. Für Berlin-Brandenburg wurde dies in einem Los durchgeführt. Die Karte zeigt die simulierten Überflutungsflächen und -tiefen sowie Fließgeschwindigkeiten /-richtungen für folgende Szenarien: außergewöhnliches Ereignis: 100-jährliches Niederschlagsereignis (T = 100a, Dauerstufe 1 Stunde) mit einem Euler-Typ II Niederschlagsverteilung. extremes Ereignis: 100 mm Niederschlagsereignis in einer Stunde (T extrem) mit einem Blockregenverteilung. Grundlage hierfür sind diverse Geodaten des Bundes und der Länder, insbesondere ein hochaufgelöstes digitales Geländemodell sowie Daten zur Flächennutzung, wie zum Beispiel zur Bebauung. Die Ergebnisse basieren auf einer Modellierung der oberflächlich abfließenden Regenmenge, ähnlich dem Modell für die Starkregengefahrenkarte Berlins (siehe unten). Allerdings wurden die Versickerungsleistung des Untergrundes und das Kanalnetz nicht in die Berechnungen einbezogen und stellen somit eine erhebliche Vereinfachung dar (weitere Informationen finden sich hier ). Die topographische Senkenanalyse ist das Ergebnis einer Analyse des Digitalen Geländemodells (ATKIS® DGM – Digitales Geländemodell, 2021) unter Berücksichtigung der Gebäudeflächen und Durchfahrten sowie Geschossinformationen (ALKIS®- Amtliches Liegenschaftskatasterinformationssystem, 2021), welche durch die BWB im Jahr 2022 durchgeführt wurde. Es erfolgte eine GIS-Analyse zur Ermittlung der Senken, Fließwege und Abflussakkumulation basierend auf dem vorgeglätteten DGM. Die Gebäude wurden als nicht überströmbare Abflusshindernisse in das DGM integriert und Senken in umschlossenen Innenhöfen ausgeschlossen. Folgende Senkenattribute wurden basierend auf einer zonalen Statistik abgeleitet und werden in den Sachdaten dargestellt: Fläche Einzugsgebiet (DrainArea [m²]) Fläche Senke (FillArea [m²]) Maximale Tiefe der Senke (FillDepth [cm]) Geländehöhe Senkenbasis (BottomElev [m]) Geländehöhe maximaler Füllstand (FillElev [m]) Füllvolumen (FillVolume [m³]) Basierend auf folgenden Parametern wurden die relevanten Senken ermittelt: Senkentiefe mindestens 20 cm, Senkenfläche mindestens 4 m², Senkenvolumen mindestens 2 m³, Senkeneinzugsgebiet mindestens 200 m². Der Datensatz der Feuerwehreinsätze zeigt Meldungen der Berliner Feuerwehr in Bezug auf ,,Wasser”, welche anhand des Meldungstextes mit Starkregen in Verbindung zu bringen sind und an Starkregentagen aufgenommen wurden. Der Datensatz wurde durch die Berliner Feuerwehr erfasst und durch die BWB prozessiert (sogenannter Überflutungsatlas). Die BWB haben die Feuerwehreinsätze mit den Niederschlagsdaten der BWB an diesem Tag und Ort abgeglichen und ein anzunehmendes Wiederkehrintervall (T) des aufgetretenen Niederschlagsereignisses zugeordnet. Dopplungen wurden entfernt. Folgende Attribute wurden abgeleitet und werden in den Sachdaten dargestellt: Datum (angelegt) Wiederkehrintervall (T) Ortsteil Die Daten wurden räumlich über die Berliner Adressdatei geocodiert. Der Zeitraum der Meldungen umfasst einerseits den Zeitraum 2005 bis 2017 anderseits 2018 bis 2021. Diese Datensätze wurden zu einem Datensatz von 2005 bis September 2021 zusammengefasst. Zwecks Aggregierung und Darstellung wurden die Daten auf Blockteilflächen und Straßenflächen des Informationssystems Stadt und Umwelt (ISU5 2021) zusammengefasst und klassifiziert. In Berlin wird die Analyse zu Starkregengefahren auf Basis eines gekoppelten 1D-Kanalnetz und eines 2D-Oberflächenabflussmodells (1D/2D gekoppeltes Modell) durchgeführt. Bei diesem Verfahren wird die Berechnung der Abflussvorgänge im Kanalnetz (1D) mit der zweidimensionalen hydrodynamischen Modellierung der Oberflächenabflüsse (2D) kombiniert, um einen bidirektionalen Austausch von Wasservolumen, d.h. einen Austausch in beide Richtungen, zwischen Oberfläche und Kanalnetz an den Schächten und Straßenabläufen zu berücksichtigen. Die Erarbeitung der Starkregengefahren erfolgt basierend auf der von den BWB und der für Wasserwirtschaft zuständigen Senatsverwaltung gemeinsam entwickelten Leistungsbeschreibung „Erstellung von Starkregengefahrenkarten für Berliner Misch- bzw. Regenwassereinzugsgebiete“. Voraussetzung sind Daten zu Topographie, Gebäuden, Straßen, Versiegelung und bodenkundlichen Kennwerten sowie Kanalnetzdaten . Für die 1D-Modellierung des Kanalnetzes wird das aktuelle Kanalnetz (Misch- oder Trennkanalisation) der BWB verwendet. Die Entwässerungsinfrastruktur wird durch ein Kanalnetzmodell abgebildet, wobei dieses u.a. Schächte, Straßenabläufe, Haltungen und Haltungsflächen berücksichtigt. Auf Grundlage des digitalen Geländemodells wird ein detailliertes, lückenloses und überlappungsfreies 2D-Oberflächenmodell erstellt und um standardisierte Dachformen der Gebäudedaten ergänzt. Mauern oder Bordsteine werden durch Bruchkanten berücksichtigt. Die Oberflächenbeschaffenheit des Untersuchungsgebietes beeinflusst die Abflussbildung und -konzentration, daher wird basierend auf den entsprechenden Datengrundlagen (siehe Kapitel Datengrundlage) zwischen Gebäudeflächen, Straßen und Wegen, Gewässer und Grünflächen unterschieden. Mauern, Bordsteine oder ähnliche linienhafte Elemente können Abflusshindernisse darstellen, werden aufgrund der Auflösung jedoch nicht durch das DGM abgebildet und werden – falls sie abflussrelevant sind – nachträglich über Bruchkanten berücksichtigt. Maßgebliche Datensätze für Gebäudeflächen sind die ALKIS-Gebäude und der Datensatz der Gründächer (im Bereich der Kleingärten). Bei der Abflussbildung von Dachflächen wird zwischen einleitenden und nicht einleitenden Dächern basierend auf den Daten der Erfassung des Niederschlagsentgelts unterschieden. Einleitende Dächer werden in der Modellierung als direkt an den Kanal angeschlossen betrachtet (1D-Abflussbildung). Bei nicht einleitenden Dächern erfolgt die Abflussbildung über das Oberflächenabflussmodell. In diesem Fall wird der effektive Niederschlag auf die umliegende Oberfläche verteilt, indem das Prinzip der Randverteilung angewendet wird. Straßen und Wege umfassen alle befestigten Flächen, wie Straßen, Wege, Plätze und private versiegelte Flächen. Die Abflussbildung dieser Flächen erfolgt über das 2D-Oberflächenabflussmodell und es wird nicht zwischen einleitend und nicht einleitend unterschieden. Als Gewässerflächen werden alle stehenden Gewässer und Fließgewässer aus dem ALKIS-Datensatz angenommen. Alle restlichen Flächen werden als Grünflächen angesetzt. Für diese Flächen werden im Modell entsprechende Abflussparameter, wie Benetzungs- und Muldenverluste sowie Anfangs- und Endabflussbeiwerte, basierend auf Literaturwerten, angesetzt. Das Modell bildet den Rückhalt der Vegetation (Interzeption), die Versickerungsfähigkeit des Bodens und die Oberflächenrauheiten ab. Für Hochwasserrisikogebiete (SenMVKU, 2024) wurden in Berlin im Rahmen der Hochwasserrisikomanagementrichtlinie bereits Hochwassergefahrenkarten erarbeitet und Überschwemmungsgebiete ausgewiesen. Um keine Überschneidungen mit den Starkregengefahrenkarten zu erzielen, werden diese Gewässer als hydraulisch voll leistungsfähig angenommen. Außerdem wird für bestimmte Gewässer (z.B. Gewässer 1. Ordnung, Nordgraben) angenommen, dass diese bei kurzen Starkregenereignissen ausreichend hydraulisch leistungsfähig sind. Ein „Anspringen“ ist erst bei länger anhaltenden, räumlich ausgeprägteren Niederschlagsereignissen zu erwarten. Das Modell geht davon aus, dass ein Austritt von Wasser und somit eine Überflutung von diesen Gewässern methodisch nicht möglich ist. Außerdem werden diese Gewässer mit einem einheitlichen Vorflutwasserstand für ein mittleres Hochwasser (für das seltene und außergewöhnliche Ereignis) sowie für ein 100-jährliches Hochwasser (für das extreme Ereignis) angenommen. Im Modell werden für das seltene und außergewöhnliche Ereignis die tatsächlichen Gewässerverrohrungen bzw. -durchlässe angesetzt. Für das Szenario Extremereignis gilt, dass Durchlässe teilverklaust (Durchmesser > 0,5 m (> DN 500)) oder vollständig verklaust (Durchmesser ≤ 0,5 m (≤ DN 500)) angenommen werden, es sei denn, ein Raumrechen verhindert eine Verklausung. Mit dem aufgestellten Modell werden die Überflutungen von Niederschlagsszenarien mit unterschiedlicher Jährlichkeit berechnet, wobei für die Niederschlagshöhen die koordinierte Starkniederschlagsregionalisierung und -auswertung (KOSTRA) des Deutschen Wetterdienstes (DWD) zugrunde gelegt werden. Es kommt die Revision des Datensatzes KOSTRA-DWD-2020 zum Einsatz. Folgende Szenarien werden im Rahmen des Starkregenrisikomanagements in Berlin betrachtet: seltenes Ereignis : 30 bzw. 50-jährliches Niederschlagsereignis (T = 30a bzw. T = 50a, Dauerstufe 180 Min.) mit einer Euler-Typ II Niederschlagsverteilung außergewöhnliches Ereignis : 100-jährliches Niederschlagsereignis (T = 100a, Dauerstufe 180 Min.) mit einer Euler-Typ II Niederschlagsverteilung extremes Ereignis : 100 mm Niederschlagsereignis in einer Stunde (T extrem) mit einer Blockregenverteilung. Basierend auf einer Sensitivitätsanalyse wurde die maßgebliche Dauerstufe mit 180 Minuten für Berlin ermittelt, wobei hier der höchste Wasserstand als maßgeblich betrachtet wird. Für die Intensität und für den zeitlichen Niederschlagsverlauf wird die Euler-Typ II Verteilung (seltenes und außergewöhnliches Ereignis) oder ein Blockregen mit einer Regendauer von 60 Minuten (extremes Ereignis) angenommen. Neben der Beregnungszeit, die der Dauerstufe der betrachteten Szenarien entspricht, wird in der Modellierung jeweils eine einstündige Nachlaufzeit berücksichtigt. Die Plausibilitätsprüfung erfolgt aufgrund der Ergebnisse des außergewöhnlichen Ereignisses. Es werden unplausible Abflusspfade und Wasseransammlungen ggf. durch Ortsbegehungen geprüft, und nicht berücksichtigte, hydraulisch relevante Strukturen nachgepflegt. Die Methode ist sehr daten- und rechenintensiv, so dass sie nicht berlinweit, sondern nur für ausgewählte Bereiche sukzessive angewandt werden kann. Dafür bietet sie relativ genaue und belastbare Ergebnisse und mit der Methode lassen sich die Abflussbildung und Abflusskonzentration nachvollziehen. Es werden kontinuierlich weitere Gebiete mit der gekoppelten 1D/2D Simulation gerechnet und anschließend online verfügbar gemacht. Die nachfolgende Tabelle zeigt, für welche Gebiete bisher Starkregengefahrenkarten erarbeitet wurden.

Der Einfluss von bodennaher Turbulenz auf den Transport von Tracern in marinen Becken (ROBOTRACE)

Mit diesem Antrag sollen die physikalischen Prozesse identifiziert, analysiert und quantifiziert werden, die zu dem Austausch von gelösten Substanzen zwischen der Sediment-Wasser Grenzschicht, innerhalb der turbulenten Bodengrenzschicht (bottom boundary layer, BBL) und dem schwach turbulenten Inneren von geschichteten Becken beitragen. Im Fokus stehen dabei der Effekt von geneigten Hängen, an denen die Austauschprozesse durch das Zusammenwirken des Wiederaufbaus der Bodengrenzschichtschichtung , der Turbulenz innerhalb der BBL und sub-mesoskaligen Prozessen, von denen angenommen wird, dass sie den lateralen Austauschraten von Wasser bestimmen, verkompliziert werden. Diese Prozesse werden durch einen kombinierten Ansatz aus Feldmessungen und numerischer Modellierung untersucht. Insbesondere wird sich das Projekt dabei auf den Sediment-Wasser Austausch von Schwefelwasserstoff und Sauerstoff fokussieren, der in Situ mit Hilfe eines Eddy-Korrelationsmessgerätes als auch mit einem Mikroprofilsystem gemessen wird. Diese Messung wird durch ozeanographische Standardmessungen ergänzt, als auch durch Schiffs- und Verankerungsbasierte Turbulenzmessungen. Dieser Datensatz ist neuartig durch die Kombination von (A) der Sediment-Wasserflüsse von Sauerstoff und Schwefelwasserstoff und (B) der Turbulenzmessungen innerhalb der BBL und des Beckeninneren. Zusätzlich zu den Feldmessungen ist eine numerische Modellierung auf der Basis eines einfachen Sedimentmodells in Kombination mit einer Parametrisierung der Transportprozesse an der Sediment-Wassergrenzschicht geplant. Dieses Modell wird in idealisierten, eindimensionalen Parameterstudien, sowie in einem zweidimensionalen Setup verwendet, welches sich auf die Austauschprozesse der Bodengrenzschicht mit dem Beckeninneren konzentriert. Für die Untersuchung von dreidimensionalen Strukturen wie Eddies auf den Sauerstoff/Schwefelwasserstofftransport wird ein voll dreidimensionales realistisches Modell der zentralen Ostsee angewendet.

Entwicklung einer Technologie zur Verfestigung und Funktionalisierung von Naturfasergarnen für Faserverbundbauteile mittels C-CVD

Digitale Topographische Karte NW 1:100 000

Die Digitale Topographische Karte im Maßstab 1:100.000 (DTK100) stellt großräumige topographische Zusammenhänge in abstrahierter Form dar.

Digitale Topographische Karte 1: 25 000 Hamburg

Die Digitale Topographische Karte 1: 25 000 Hamburg ist Teil des amtlichen Topographischen Kartenwerkes der Bundesrepublik Deutschland. Die DTK25 Hamburg wird von Schleswig-Holstein auf Basis von ATKIS erstellt. Die DTK25 wird derzeit in einer vorläufigen Ausgabe angeboten, die Umstellung der Kartengrafik ist noch nicht abgeschlossen. Die Ausdehnung der Kacheln entspricht max. 10km x 10 km. Aufgrund der kleinen Fläche Hamburgs fallen sie unterschiedlich groß aus. Karteninhalt: politische Grenzen, Verkehrsnetz, Gewässerformen, Bodenbewachsung, Gebäude, topographische Einzelzeichen wie Kirchen, Türme, Windmühlen und andere

Historische Topographische Karte NW 1:100 000

Die Historische Topographische Karte im Maßstab 1: 100 000 (histTK100) stellt großräumige topographische Zusammenhänge in abstrahierter Form dar. Die Kartenblätter der Topographischen Karte 1 : 100 000 werden mit Fortführungsständen ab dem Jahr 1953 zur Verfügung gestellt. Seit den 1960er Jahren ist die TK100 in der Regel alle 5 Jahre aktualisiert worden. Ab 2012 wird die Topographische Karte 1:100 000 als digitale Karte geführt und historisiert. Die Kartenblätter sind je nach Jahrgang als einfarbige bzw. farbige pdf-Datei verfügbar. Auf dem Kartenblatt findet sich jeweils die Angabe zur Georeferenzierung in der Lage sowie in der Höhe.

Digitales Geländemodell

Das Digitale Geländemodell (DGM) beschreibt die Grenzfläche zwischen der Erdoberfläche bzw. Wasseroberfläche und der Luft, ohne Vegetation und Bebauung. Es besteht aus einem regelmäßigen Gitter und wird in der Gitterweite 1 m bzw. 5 m zum Download bereitgestellt.

Schwere UTM32 100m

Schwerebeschleunigung an der Erdoberfläche, d.h. Abweichung des prädizierten Schwerewertes vom Referenzwert 981000 mGal (9,81 m/s²). Genähert entspricht der Wert somit der relativen Abweichung einer Waage in ppm (Millionstel), d.h. auf Sylt (Gitterwert ca. 500 mGal) wird eine Person mit einer Masse von 100 kg auf einer mit 9,81 m/s² geeichten Waage ca. 50 g schwerer gewogen als auf dem Brocken (Gitterwert 0 mGal). Die Aktualität des Datenbestandes (2016) entspricht dem des Quasigeoidmodells GCG2016. Der Geodatensatz ist die Grundlage für die Darstellung des Quasigeoids im WMS Schwere. Hierfür wurden die Schweregitter mit einer Auflösung von 100 m in UTM32-Projektion gesampelt. Dokumentation: https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/wms_schwere.pdf Datenquellen: http://sgx.geodatenzentrum.de/web_public/gdz/datenquellen/Datenquellen_wms_schwere.pdf Schweresystem: International Gravity Standardization Net 1971 (Morelli et al., 1974) Normalschwere: kein Abzug, keine Berücksichtigung des Atmosphäreneinflusses Niveaureduktion: keine Bouguer-Plattenreduktion: keine Geländekorrektur (nur für die Rasterverarbeitung): Sphärische Berechnung des vollständigen topographischen Effekts (exkl. indirektem Effekt der Topographie auf die Schwere) bis 100 km, digitales Geländemodell mit Rasterweite 1“ (ca. 25 m), Quadermethode (Forsberg, 1984) im Nahbereich bis 5‘, außerhalb Tesseroidmethode (Grombein, 2013) Reduktionsdichte/-niveau (nur für die Rasterverarbeitung): Festland 2670 kg/m³ / Bathymetrie (Nordsee, Ostsee, Bodensee) 1000 kg/m³, 0 m ü. NHN (DHHN92) Rasterverarbeitung: Reduktion Normalschwere und Geländereduktion; Interpolation mittels Kollokation (Forsberg et al. 2008), Rasterweite 30“ x 45“, Resampling auf Rasterweite 3,6“ x 5,4“; Wiederherstellung der Geländereduktion und der Normalschwere im Raster; Projektion auf UTM32-Gitter mit Rasterweite 100 m Einheit: mGal = 10^-5 m/s-2 Offset: 981000 mGal Aktualität: 2016

Zur jungpleistozänen Vergletscherung im Hochgebirge von Taiwan

Taiwan besteht im östlichen Teil aus einem Gebirge mit mehr als 20 über 3000 m hohen Gebirgsstöcken, gipfelnd am Wendekreis im Yu Shan (3952 m). TANAKO und KANO (1934) und PANZER (1935) beschrieben glazigene Formen: u.a. Kare am Nanhuta Shan, Kritzungen, Rundhöcker und einen glazialen Talschluß am Hsueh Shan, eine Seitenmoräne am Yu Shan. Interpretationen von Luftbildern, luftbildgestützten Karten und topographischen Karten dienten der Auswahl dreier Untersuchungsgebiete, in denen die aktuelle hydrologische Situation den Erhalt glazialer Formen und Sedimente ermöglicht. Glazigene Ablagerungen und deren maximale Ausdehnung sind bisher nicht durch Feldarbeiten untersucht. Die geplanten Geländearbeiten dienen Erkundung und Kartierung von glazialen und glaziafluvialen Sedimenten, fossilen Böden sowie von gletschergeformten Gesteinsoberflächen. Die Feldbefunde und dabei gewonnene Proben sollen Aufschluß über die Ergiebigkeit der Untersuchungsgebiete im Hinblick auf Datierungsmöglichkeiten geben. Das Projekt ist ein Pilotprojekt für mögliche weitere, gezielte Arbeiten, die der Rekonstruktion der jungpleistozänen Schneegrenze und der Zeitstellung der Talgletscherbildung dienen. Der Beitrag bildet einen Mosaikstein in der Forschung über die Klimaentwicklung im monsunalen System Ostasiens.

Der Einfluss hoher Gebirgsreliefs auf die Isotopenhydrologie und damit verbundener Klimaproxies

Wichtige Klimaproxies wie z.B. Baumringe nutzen stabile Isotopenverhältnisse zur Rekonstruktion paläoklimatischer Verhältnisse. Dies wiederum erlaubt Abschätzungen über die zukünftigen Auswirkungen des derzeit stattfinden Klimawandels. Die Insel Korsika im westlichen Mittelmeer liegt in einer besonders stark von Klimaveränderungen betroffen Region. Die Insel war daher in den letzten Jahren das Ziel von Klimarekonstruktionen mittels Dendrochronologie und stabilen Isotopenmessungen. Allerdings ließen sich vorhandene Untersuchungsergebnisse von Sauerstoffisotopenmessungen an korsischen Schwarzkiefern bislang nicht zufriedenstellend interpretieren. Sauerstoffisotopenuntersuchungen von Baumringen hängen entscheidend vom Sauerstoffisotopenwert (delta18O) des lokalen Niederschlages und des daraus resultierenden Bodenwassers ab. Der delta18O-Wert des Niederschlages variiert vor allem in Abhängigkeit von Temperatur, Geländehöhe und dem Ursprungsgebiet der Luftmassen. Diese Parameter lassen sich heute meist gut bestimmen lassen, müssen für die Vergangenheit aber oft abgeschätzt werden. Ein wichtiger Effekt ist der Höheneffekt, welcher die Abhängigkeit des delta18O-Werts von der Geländehöhe beschreibt. Für solche Isotopeneffekte gibt es über die globale Datenbasis der Internationalen Atomenergiebehörde (IAEA) gute regionale Abschätzungen. Sehr viel schwieriger gestalteten sich hingegen lokale Abschätzungen in Regionen mit einem sehr steilen, hohen Gebirgsrelief. Neueste Arbeiten lassen vermuten, dass für solche Regionen die Isotopenwerte in bestimmten Jahreszeiten keinen höhenabhängigen Gradienten mehr zeigen. Ursache hierfür können jahreszeitliche Schwankungen der Höhenlage der atmosphärischen Grenzschicht sein. Der vorliegende isotopenhydrologische Antrag ist Teil des Bündelantrages CorsicArchive, welcher weitere Anträge zum Klima, der Dendroisotopie und der Dendrologie umfasst. An insgesamt neun Stationen entlang eines Ost-West verlaufenden Höhenprofils sollen Regensammler installiert und beprobt werden. Im Teilprojekt Isotopenhydrologie sollen Fragen zur Wechselwirkung zwischen dem Höheneffekt und der atmosphärischen Grenzschicht untersucht werden. Weitere Fragestellungen sind die Herkunft der Luftmassen sowie der Anteil der lokalen Verdunstung am hydrologischen Kreislauf der Insel. Darüber hinaus sollen Oberflächengewässer- und Bodenwasseruntersuchungen durchgeführt werden, um Veränderungen des delta18O-Wertes auf seinem Weg zum Baumring zu entschlüsseln und zu quantifizieren. Die Untersuchungen sollen zu einem besseren Verständnis isotopenhydrologischer Prozesse in Gebieten mit steilen Höhengradienten beitragen. Dies soll schließlich dazu führen, dass auf stabilen Isotopen basierende Klimarekonstruktionen solcher Regionen zuverlässig interpretiert werden können. Im Hinblick auf den derzeitigen Klimawandel ist es entscheidend solche Prozesse in der Vergangenheit zu verstehen, um verlässliche Prognosen über zukünftige Veränderungen abzugeben.

1 2 3 4 5222 223 224