Schwermetalle (z. B. Cadmium) werden in Böden in unterschiedlichem Maß gebunden. Die Bindung erfolgt durch Adsorption an Austauschern (Tonminerale, Oxide) oder durch Bindung an organische Bodenbestandteile (Humus) in Abhängigkeit vom pH-Wert. Der pH-Wert entspricht bei landwirtschaftlicher Nutzung einem bodenspezifischen pH-Optimum, bei Forstnutzung dem derzeitigen mittleren standortspezifischen Versauerungsgrad unter Wald. Aufgrund der Bodeneigenschaften Tongehalt, Humusgehalt, pH-Wert und Eisenoxidgehalt kann die relative Bindungsstärke der Böden für die einzelnen Schwermetalle beurteilt werden. Die Karte zeigt die Relative Bindungsstärke des Oberbodens (FSMo) exemplarisch für Cadmium (aufgrund seiner für Schwermetalle relativ repräsentativen Eigenschaften) und basiert auf der Bodenkarte von Niedersachsen 1 : 50 000.
Schwermetalle (z. B. Cadmium) werden in Böden in unterschiedlichem Maß gebunden. Die Bindung erfolgt durch Adsorption an Austauschern (Tonminerale, Oxide) oder durch Bindung an organische Bodenbestandteile (Humus) in Abhängigkeit vom pH-Wert. Der pH-Wert entspricht bei landwirtschaftlicher Nutzung einem bodenspezifischen pH-Optimum, bei Forstnutzung dem derzeitigen mittleren standortspezifischen Versauerungsgrad unter Wald. Aufgrund der Bodeneigenschaften Tongehalt, Humusgehalt, pH-Wert und Eisenoxidgehalt kann die relative Bindungsstärke der Böden für die einzelnen Schwermetalle beurteilt werden. Die Karte zeigt die Relative Bindungsstärke des Oberbodens (FSMo) exemplarisch für Cadmium (aufgrund seiner für Schwermetalle relativ repräsentativen Eigenschaften) und basiert auf der Bodenkarte von Niedersachsen 1 : 50 000.
Gewinnung von Tonen und tonhaltigen Mineralien (Schieferton, Lehm, Mergel) für die Herstellung von Ziegeln im Tagebau. Die Daten sind der Ökobilanz von Mauerziegeln der Ziegelverbände Deutschlands, Österreichs und der Schweiz entnommen (#1). Die Daten wurden von 12 Ziegelwerken zur Verfügung gestellt. Sie gelten für die Jahre 1992 und 1993. In GEMIS wird das arithmetische Mittel der Angaben der einzelnen Werke verwendet. Allokation: keine Genese der Kennziffern Massenbilanz: Für die Massenbilanz der Tongrube liegen keine Daten vor. Daher werden in GEMIS nach eigener Schätzung 1100 kg bewegte Erdmassen pro Tonne verwertbare Tone angenommen. Energiebedarf: Der Energiebedarf der Tongruben wurde in der Studie der Ziegelverbände nur mit Diesel bilanziert. Als arithmetisches Mittel des Dieselbedarfs für die Grube wird mit 8,24 kWh/t Tone -respektive ca. 30 MJ/t - angegeben (#1. Prozeßbedingte Luftemissionen: Neben den Emissionen aus der Verbrennung des Diesels werden keine weiteren Luftemissionen bilanziert. Wasserinanspruchnahme: Für den Prozeß der Gewinnung der Tone wird keine Wasserinanspruchnahme bilanziert. Abwasserinhaltsstoffe: Bei dem Prozeß der Ton-Extraktion fällt kein Abwasser an. Reststoffe: Den eigenen Abschätzungen folgend werden pro Tonne Tonmineralien 100 kg Abraum bilanziert. Auslastung: 1h/a Brenn-/Einsatzstoff: Ressourcen Flächeninanspruchnahme: 0,00417m² gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 1a Leistung: 1t/h Nutzungsgrad: 91% Produkt: Rohstoffe
Eingabe Porosierungsmittel als Sägespäne; Korrektur CO2-Emissionen von 180 auf 148 kg/t (Sägespäneanteil:32 kg/t) Herstellung von Mauerziegeln (Ziegelwerk). Die im Ziegelwerk angelieferten tonhaltigen Rohstoffe werden vor dem Brennen aufbereitet. Dabei werden sie mit Wasser konditioniert und ins Walzwerk gegeben. Heute werden meist ein grobes und ein feines Walzwerk betrieben. Nach den Walzwerken werden die Mineralien durch Strangpresse und Abschneider geformt. Derartig vorbehandelt werden sie in die Trocknungskammer eingebracht, die mit der Abwärme des Brennofens beheizt wird. Im Anschluß werden die Ziegel gebrannt. Häufig wird die Trocknung und der Vorbrand in einem Prozeß mit dem keramischen Brand realisiert. Der Brand erfolgt in den meisten Fällen in kontinuierlich betriebenen Tunnelöfen bei Temperaturen zwischen 1000 und 1200°C. Die gebrannten Ziegel werden luftgekühlt. Die Datenbasis für den Prozeß der Ziegelherstellung in GEMIS bildet die Ökobilanz von Mauerziegeln der deutschen, österreichischen und schweizerischen Ziegelverbände (#1). Sie stützt sich auf die Primärdaten von 12 einzelnen Ziegelwerken. Die Daten wurden im Zeitraum von 1992 bis 1993 ermittelt. Genese der Kennziffern Massenbilanz: Für die Herstellung einer Tonne Ziegel müssen im Mittel ca. 1350 kg Tone in den Prozeß eingebracht werden. Dabei reicht die Spanne in der betrachteten Studie von 1055 kg bis 1725 kg Tonmineralien pro Tonne Ziegel (DACH 1996). Die enormen Differenzen sind auf Schwankungen des Wassergehalts und die Art der Ziegel zurückzuführen. Je nach Wassergehalt werden den Tonen Sand und Natursteinmehl beigemengt. Diese Mengen werden in GEMIS allerdings nicht berücksichtigt. Neben den Tonmineralien werden eine Reihe von Zuschlagsstoffen und Porosierungsmittel eingesetzt. Als Porosierungsmittel werden häufig Sägemehl und Polystyrol verwendet. Ein großer Anteil der Porosierungsstoffe wird über Reststoffe gedeckt. Da die Massenanteile der Porosierungsmittel gering sind, der Anteil von Ziegel zu Ziegel sehr unterschiedlich ist und Reststoffe in der Prozeßkettenanalyse ohne Vorkette bilanziert werden, werden die Porosierungsmittel an dieser Stelle nicht aufgeführt. Die über die Porosierungsmittel bereitgestellte Energie ist jedoch beim Energiebedarf des Prozesses zu berücksichtigen (s.u.) Energiebedarf: Der Energiebedarf der in #1 bilanzierten Werke wird größtenteils über Erdgas und Strom gedeckt. Vereinzelt werden auch Heizöle und Propan als Energieträger eingesetzt. Diese werden in GEMIS nicht bilanziert. Der arithmetisch gemittelte Energiebedarf der bilanzierten Ziegelwerke aufgeteilt nach Energieträgern ist in der folgenden Tabelle dargestellt. Tab.: Energiebedarf zur Herstellung einer Tonne Ziegel getrennt nach Energieträgern (DACH 1996, arithmetisch gemittelt). Energieträger Menge in MJ/t Erdgas 1310 elektr. Strom 150 Die Zuschlagsstoffe, die als Porosierungsmittel dienen, sind ebenfalls als Energieträger zu werten, da sie beim Brennen der Ziegel praktisch vollständig verbrennen., wobei den jeweiligen Heizwerten entsprechende Wärmemengen freigesetzt werden. Die Deckung des Energiebedarfs über Porosierungsmittel schwankt stark von Ziegelwerk zu Ziegelwerk. Arithmetisch gemittelt für die bilanzierten Werke ergibt sich ein Anteil an Endenergie von 620 MJ/t. Die Porosierungsmittel werden in GEMIS ohne Vorkette bilanziert. Prozeßbedingte Luftemissionen: Die prozeßbedingten Luftemissionen wurden für die 12 bilanzierten Werke durch Messungen erfaßt . In GEMIS wird das arithmetische Mittel der einzelnen Werke angesetzt. Die Emissionsfaktoren sind in der folgenden Tabelle dargestellt: Tab.: Emissionsfaktoren der einzelnen Luftschadstoffe pro Tonne gebrannter Ziegel (DACH 1996, arithmetisch gemittelt). Schadstoff Masse in kg/t Ziegel SO2 0,100 NOx 0,260 Staub 0,019 CO2 180,417 CO 0,391 HF 0,003 HCl 0,012 organische Stoffe (gesamt C) 0,063 Die Emissionen, die aus der Bereitstellung des Stromes resultieren, sind dabei noch nicht berücksichtigt. Wasserinanspruchnahme: Der Wasserbedarf beim Mischen und Formen der Rohmaterialien im Prozeß der Ziegelherstellung ist wie der Rohstoffbedarf selbst sehr stark von der Grubenfeuchte der Tone abhängig. Daher kann die eingesetzte Wassermenge stark variieren (#3). Das arithmetische Mittel der für die Ziegelverbände erstellten Ökobilanz ergibt einen Wasserbedarf von 0,1 m³/t Ziegel. Dieser Wert wird in GEMIS übernommen. Abwasserinhaltsstoffe: Bei allen bilanzierten Werken ist der Abwasseranfall zu vernachlässigen (#1). Das eingesetzte Prozeßwasser und die Grubenfeuchte der Tone verdampfen während des Trocknungs- und Brennprozesses (#2). Reststoffe: Bei allen in #1 untersuchten Werken ist die aus der Entsorgung fester Abfälle resultierende Umweltbelastung gering. Daten hierzu wurden daher nicht aufgeführt. Der bei der Ziegelherstellung anfallende Trocken- und Brennbruch wird werksintern wiederverwertet (Beimengen zum Rohton) oder nach einer Weiterverarbeitung verkauft (Tennismehl). Die daraus resultierenden Produkte werden in GEMIS nicht berücksichtigt (s. Allokation). Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 74,1% Produkt: Baustoffe
Das Heft Nr. 19 aus der Serie „scriptumonline - Geowissenschaftliche Arbeitsergebnisse aus Nordrhein-Westfalen“ präsentiert Untersuchungsergebnisse der lithologischen und geochemisch-mineralogischen Sedimentanalyse eines Bohrkernabschnitts aus der Emscher-Formation (Obersantonium) der Bohrung Waltrop 1, gelegen am nordöstlichen Ortsausgang von Waltrop. Im Fokus standen dabei die Ermittlung der Tongehalte und die detaillierte Analyse der Tonmineralogie mithilfe der Röntgendiffraktometrie unter Berücksichtigung des Anteils quellfähiger Tonminerale. [2021. 21 S., 7 Abb., 2 Tab., ISSN 2510-1331]
~ ....... BUNDESGESELLSCHAFT tßGE FÜR ENDLAGERUNG BGE 1 Eschenstraße 55 1 31224 Peine Firma Ansprechpartner Straße und Hausnummer Postleitzahl und Ort gespeich€rt/gefertigt Bundesgesellschaft für Endlage- rung mbH - Standortauswahl - Eschenstraße 55 31224 Peine auf: am: gelesen: . abgesandt 2 7. April Anlagen: Datum und Zeichen Ihres Schreibens Mein Zeichen 20Y · Ansprechpartner T +49 517143-0 poststelle@bge.de www.bge.de Durchwahl BGEA0114/03 Abfrage der Daten für die Anwendung der Mindestanforderun- gen gemäß Standortauswahlgesetz Ergebnisse des Fachworkshops am 16./17. 04.2018 E-Mail Standortauswahl@bge.de 27. April 2018 Sehr geehrte Damen und Herren, auf dem o. a. Fachworkshop konnten wir mit den Teilnehmern in drei Arbeitskreisen einen sehr intensi- ven Austausch zu unserer Datenabfrage zu den Mindestanforderungen und Ihren Möglichkeiten zur Be- reitstellung geeigneter Daten führen. Im Folgenden halten wir die wesentlichen Ergebnisse noch einmal fest und gehen davon aus, dass wir mit den gefundenen Klärungen und Rückmeldungen eine gute ge- meinsame Basis für die laufende Bereitstellung Ihrer Geodaten zur Anwendung der Mindestanforderun- gen gemäß Standortauswahlgesetz gefunden haben. • Begriffsbestimmungen von Gesteinstyp. Gesteinsformation in den Tabellen 1 bis 3 Die getroffenen Definitionen folgen dem Sinn des Gesetzes und setzen diesen in die entspre- chende geologische Beschreibung um. Wenn Sie bei der Lieferung der von uns gewünschten An- gaben Zweifel an der hierfür z~ treffenden Auswahl und /oder Eingrenzung haben, bitten wir Sie um Kontaktaufnahme mit den Ihnen bereits bekannten Ansprechpartnern unseres Hauses. Gleichwohl bitten wir bzgl. der Gesteinstypen um die von Ihnen verwendeten Klassifizierungen, insbesondere bei der Verwendung des Begriffs Tongestein 1. 1 Unter Tongesteinen wird eine Abfolge pelitischer Gesteine (Hauptbestandteil Tonfraktion < 2µm überwiegend als Tonminerale) ggf. mit geringfügigen Beimengungen und/oder zwischengeschalteten, geringmächtigen Lagen/Bän- ken von sandigen, grobschluffigen, karbonatischen, organischen und/oder sonstigen Nebenbestandteilen verstan- den. Bundes-Gesellschaft für Endlagerung mbH [BGE) Sitz der Gesellschaft: Peine, eingetragen beim Handelsregister AG Hildesheim [HRB 204918) Geschäftsführung: Ursula Heinen-Esser [Vors.), Dr. Ewold Seeba, Prof. Dr. Hans-Albert Lennartz, Dr. Thomas Lautsch Vorsitzender des Aufsichtsrats: Staatssekretär Jochen Flasbarth Kontoverbindung: Volksbank eG Braunschweig Wolfsburg - IBAN DE57269910667220227000, BIC GENODEFlWOB USt-ld.Nr. DE 30B282389 E-Mait-Adresse: poststelle@bge.de BUNDESGESELLSCHAFT FÜR ENDLAGERUNG • Datenabfrage von „sicher" bzw. „ wahrscheinlich vorhandenen" Gesteinsformationen Diese Unterscheidung ist fachlich nicht standardisiert und kann von den Behörden daher auch nicht entsprechend eindeutig getroffen werden, so dass wir auf diese Unterscheidung verzich- ten. Gleichwohl bitten wir für jede von Ihnen aufgezeigte Gesteinsformation um die Angabe, in welcher Art Aufschlüsse existieren oder ob Ihre Angabe zu dem Vorkommen aus Ihrer fachlichen Expertise stammt. • Für die Abfrage von „Gebieten" werden interpretierte Daten benötigt Wir haben in unseren Arbeitshilfen ausgeführt: „Wir erwarten von Ihnen grundsätzlich keine neu zu prozessierenden Ergebnisse, sondern Daten, die Ihnen bereits vorliegen. Damit sollen die bei Ihnen entstehenden Aufwände für die Datenbereitstellung begrenzt werden." Für uns sind die von Ihnen mit Ihrer Expertise prozessierten Ergebnisse der ideale Input. Wenn Sie für andere Vorkommen nur Grunddaten liefern können, bitten wir sie um deren Bereitstel- lung, um mit diesen Daten unsere Prüfung auf Erfüllung der Mindestanforderungen vorzuneh- men. Auch geeignete geologische Oberflächenkarten, Mächtigkeitskarten, abgedeckte Karten o.ä., möglichst in digitalen, georeferenzierten Formaten, würden uns bei unserer Aufgabenstel- lung helfen. • Digitale und analoge Geodaten Die für die Anwendung der Mindestanforderungen erforderlichen Geodaten und Informationen können sowohl digital als auch analog vorliegen. Zum jetzigen Zeitpunkt bevorzugen wir digi- tale Daten für die Bearbeitung. Dennoch bitten wir Sie um Nennung der analog verfügbaren Da- ten. Ein Bereitstellen von analogen Daten für unsere Bearbeitung werden wir darauf basierend gezielt mit Ihnen abstimmen. • 1 Aktualität der Geodaten Die Geodaten müssen im Standortauswahlverfahren wiederholt aktualisiert werden. Das betrifft sowohl die derzeit abgefragten Geodaten zu den Mindestanforderungen als auch die bereitge- stellten Geodaten zu den Ausschlusskriterien sowie zukünftige Geodatenabfragen. Wir werden das Verfahren der Aktualisierung der Geodaten mit Ihnen im Einzelnen abstimmen, um den Auf- wand auf beiden Seiten zu minimieren. • Verwendung der von den Behörden gelieferten Geodaten Die von Ihnen gelieferten und von uns verwendeten Geodaten werden Ihnen im Rahmen unserer Qualitätssicherung zurückgespiegelt. Das beinhaltet dann noch keine Ergebnisse aus unserer Auswertung. Auch hierzu werden wir das Verfahren noch mit Ihnen abstimmen. • Rechte Dritter Gern.§ 12 (3) Satz 2, 2. Halbsatz des Standortauswahlgesetzes (StandAG) sind uns von den Be- hörden alle abgefragten und verfügbaren Daten zur Verfügung zu stellen, unabhängig davon, ob Bundes-Gesellschaft für Endlagerung mbH (BGE) Sitz der Gesellschaft: Peine, eingetragen beim Handelsregister AG Hildesheim (HRB 204918) Geschäftsführung: Ursula Heinen-Esser (Vors.), Dr. Ewold Seeba, Prof. Dr. Hans-Albert Lennartz, Dr. Thomas Lautsch Vorsitzender des Aufsichtsrats: Staatssekretär Jochen Flasbarth Kontoverbindung: Volksbank eG Braunschweig Wolfsburg - IBAN DE57269910667220227000, BIC GENDDEFlWOB USt-ld.Nr. DE 308282389 E-Mail-Adresse: poststelle@bge.de 2 BUNDESGESELLSCHAFT FÜR ENDLAGERUNG an diesen Daten Rechte Dritter bestehen. Sollten Sie hierzu eine andere Rechtsauffassung ver- treten, bitten wir um entsprechende Mitteilung und Darlegung. Wir bitten in dem Zusammenhang für alle Geodaten o um die jeweilige Angabe, für welche der gelieferten Daten Rechte Dritter bestehen, o welche Rechtsinhaber betroffen sind, o ob und welche Daten Sie zur Wahrung der Rechte Dritter nicht an uns liefern bzw. gelie- fert haben. Wir werden eine Information zur Verwendung der Daten, an denen Rechte Dritter bestehen, lie- fern. Dieses wird auch rechtzeitig das Thema der Veröffentlichung beinhalten und umfasst auch Belange des Datenschutzes. • Umfang der Datenabfrage zu „Ausschlusskriterien" und .:Mindestanforderungen" Es ist richtig, dass bei der Ermittlung von Teilgebieten zunächst die Ausschlusskriterien anzu- wenden sind und auf das verbleibende Gebiet die Mindestanforderungen„ Der Anwendung der Kriterien und Anforderungen ist zunächst jedoch die Datenerhebung bei den zuständigen Behör- den vorgeschaltet. Wie und in welcher Reihenfolge der Vorhabenträger die geologischen Daten zusammenzutragen hat, dazu trifft das Standortauswahlgesetz keine Regelung. Die parallele Abfrage von Dateri zu den Ausschlusskriterien und den Mindestanforderungen ist also grund- sätzlich zulässig. § 13 Abs. 2 Satz 1 StandAG besagt außerdem, dass die Daten, die der Vorhabenträger zu nutzen hat, das gesamte Bundesgebiet umfassen. Eine Eingrenzung der bereitzustellenden Daten ist a priori nach StandAG demnach nicht zulässig. Ganz im Gegenteil: Da Ausschlusskriterien und Mindestanforderungen (sowie auch die geowissenschaftlichen Abwägungskriterien) während des gesamten Verfahrens wiederholt zu beachten sind, können sie im weiteren Verlauf des Ver- fahrens jederzeit und unabhängig voneinander zum Ausschluss eines Gebietes führen oder aber dazu, dass ein zunächst ausgeschlossenes Gebiet wieder in das Verfahren aufzunehmen ist. • Mindestfläche und Teufenbereich Um eine Einschränkung für eine zukünftige, standortbezogene Endlagerplanung zu vermeiden, werden der Abfrage keine Mindestflächen zugrunde gelegt. Aus der notwendigen Mächtigkeit von mindestens 100 m ergibt sich aber i. d. R. auch ein adäquat lateral ausgebildetes Gesteins-:- vorkommen. Der abgefragte Teufenbereich orientiert sich an der heute in Deutschland beherrschten Berg- bautechnik und damit möglichen Teufenlage für ein Endlager. Bundes-Gesellschaft für Endlagerung mbH (BGE) Sitz der Gesellschaft: Peine, eingetragen beim Handelsregister AG Hildesheim {HRB 204918) Geschäftsführung: Ursula Heinen-Esser (Vors.), Dr. Ewold Seeba, Prof. Dr. Hans-Albert Lennartz, Dr. Thomas Lautsch Vorsitzender des Aufsichtsrats: Staatssekretär Jochen Flasbarth Kontoverbindung: Volksbank eG Braunschweig Wolfsburg - IBAN DE57269910667220227000, BIC GENODEFlWOB USt-ld .Nr. DE 308282389 E-Mail-Adresse: poststelle@bge.de 3
Böden besitzen in Abhängigkeit von Ausgangsmaterial, Korngrößenzusammensetzung, Humusgehalt, Relief und Grundwasserflurabstand große Spannbreiten in ihren ökologischen Eigenschaften. Wesentliche, die ökologischen Eigenschaften eines Bodens kennzeichnenden, Parameter sind nutzbare Feldkapazität, Durchlüftung, Kationenaustauschkapazität, pH-Wert, effektive Durchwurzelungstiefe und Sommerfeuchtezahl. Die nutzbare Feldkapazität ist das Maß für die Menge des pflanzenverfügbaren Wassers im Boden. Es ist das langsam bewegliche Sickerwasser und Haftwasser in engen Grobporen und Mittelporen des Bodens. Bodenwasser in den Feinporen (Totwasser) unterliegt hohen Saugspannungen und ist von Pflanzen nicht aufnehmbar. Die Menge des im Boden speicherbaren Wassers wird vom Porenvolumen, von der Porengrößenverteilung, der Korngrößenzusammensetzung und vom Humusgehalt des Bodens bestimmt. Die Durchlüftung des Bodens (Gasaustausch zwischen Atmosphäre und Boden durch Diffusion) ist entscheidend für das Wachstum der Pflanzenwurzeln und die Existenz und Tätigkeit der Bodenlebewesen. Die Intensität des Gasaustausches ist abhängig vom Porenvolumen, insbesondere dem Anteil an Grobporen, sowie deren Kontinuität, von der Korngrößenzusammensetzung, vom Gefüge und vom Wassergehalt des Bodens. Unter der Kationenaustauschkapazität ist die Menge der im Boden an Tonmineralen und Huminstoffen austauschbar gebundenen Kationen (z.B. Ca 2+ , Mg 2+ , K + , Na + , NH 4 + , H + ) zu verstehen. Die Kationenaustauschkapazität liefert eine Aussage über das Vermögen des Bodens, Nährstoffe zu binden und zu speichern. Dieses Bindungsvermögen bzw. Nährstoffspeichervermögen ist von der Art und der Menge der Tonminerale, vom Humusgehalt und vom pH-Wert abhängig. Das aktuelle Nährstoffangebot des Bodens kann daher deutlich geringer sein als das potentielle. Die potentielle (d.h. maximale) Kationenaustauschkapazität wird bei einem pH-Wert von 8,2 und die effektive Kationenaustauschkapazität für den aktuellen pH-Wert des Bodens ermittelt. Die effektive Kationenaustauschkapazität ist u. a. neben Luft- und Wasserverhältnissen, biologischer Aktivität, Redoxeigenschaften usw. ein entscheidender Faktor für die Beurteilung des tatsächlich verfügbaren Nährstoffangebotes des Bodens. Vom pH-Wert werden direkt und indirekt verschiedene Vorgänge und Eigenschaften des Bodens bestimmt. Das sind unter anderem Verwitterungsvorgänge, Bodenbildungsprozesse (wie Podsolierung oder Tonverlagerung), Aktivität und Artenspektrum der Bodenlebewesen, Huminstoffbildung, Gefügestabilität, Bodenversäuerung und Verschlämmungsneigung. Die Sommerfeuchtezahl ist ein Ausdruck für das nutzbare Wasserangebot in kritischen Trockenperioden während der Hauptvegetationszeit im effektiven Wurzelraum und berücksichtigt nutzbare Feldkapazität, Klima, Relief und Grundwassereinfluss. Unter effektiver Durchwurzelungstiefe ist die Bodentiefe zu verstehen, aus der Pflanzenwurzeln dem Boden Wasser entziehen können. In anthropogen veränderten Böden kann die Durchwurzelbarkeit durch undurchdringliche Schichten (z. B. Betonfundamente), Luftmangel oder Methanbildung, beispielsweise in Deponieböden, eingeschränkt sein. Bodentypen Im Berliner Raum verbreitete, durch ihre Nutzung wenig beeinflusste naturnahe Böden mit einer langen Entwicklungsgeschichte sind Parabraunerden, Fahlerden, Braunerden, Rostbraunerden, Podsol-Braunerden, Podsole, Gleye und moorige Böden, welche fast ausschließlich im weniger dicht besiedelten und unbesiedelten städtischen Außenbereich vorkommen. Parabraunerden und Fahlerden sind die vorwiegend vorkommenden Böden der sandüberlagerten Geschiebemergelhochflächen des Barnims und des Teltows, wobei sie bis in 1 bis 2 m Tiefe entkalkt sind. Fahlerden kommen dabei vor allem in Gebieten mit Waldnutzung vor. Parabraunerden haben aufgrund ihres höheren Humus- und Tongehaltes im Oberboden ein deutlich höheres Nährstoffangebot als Fahlerden. Sie besitzen ein mittleres bis hohes Speichervermögen für Wasser und Nährstoffe und sind gut durchlüftet. Sind unter forstwirtschaftlicher Nutzung die pH-Werte im Oberboden zumeist niedrig (pH-Wert 3 bis 4, Bodenversauerung durch Humin- und Fulvosäuren sowie “sauren Regen”), so haben Ackerböden durch den Einsatz von Düngemitteln und Kalkung einen höheren pH-Wert. Auf Forstflächen ist das Nährstoffangebot im Flachwurzelraum (bis 0,3 m Tiefe) sehr gering bis mäßig und auf Ackerflächen gering bis erhöht, im Tiefwurzelraum (bis 1,5 m Tiefe) durch Zunahme des pH-Wertes mittel bis hoch (Grenzius 1987). Fahlerden weisen im Unterboden (Bt-Horizont) ein höheres Nährstoffangebot auf als im tonverarmten Oberboden. Wasserhaltevermögen und Durchlüftung sind ausreichend. Parabraunerden stellen damit besonders in Rudow, Mariendorf, Lichtenrade (Teltow-Hochfläche), Kladow (Nauener Platte) sowie Hohenschönhausen, Hellersdorf, Weißensee und Pankow (Barnim-Hochfläche) günstige Pflanzenstandorte für den Ackerbau dar. Braunerden entwickeln sich auf sandigen Bereichen der Geschiebemergelhochflächen des Barnims und des Teltows, an den Unterhängen der Hochflächen, Moränenhügel und Endmoränen, insbesondere als kolluviale Bildung, auf z.T. schluffhaltigen Mittel- und Feinsanden des Berliner Urstromtales und des Panke-Tales sowie in Senken der Dünenlandschaften. In Abhängigkeit vom früheren und aktuellen Grundwasserstand treten v. a. im Urstromtal auch vergleyte und reliktisch vergleyte Braunerden und Gley-Braunerden auf. Braunerden sind tief durchwurzelbar und gut durchlüftet. Sie weisen ein geringes, an Unterhängen der Endmoränen durch Wasserzufuhr und Einlagerung von Lehm z. T. ein mittleres Wasserspeichervermögen auf. Dabei handelt es sich für Flachwurzler um trockene, für Tiefwurzler um frische Standorte, wobei die vergleyten Braunerden und Gleybraunerden des Urstromtales vor der Grundwasserabsenkung feuchte Standorte darstellten. Braunerden haben meist ein mittleres Nährstoffspeichervermögen. Jedoch ist das tatsächliche Nährstoffangebot der Braunerden unter forstlicher Nutzung und unter Getreideanbauflächen bei niedrigen pH-Werten sehr gering bis mäßig, bei höherem Humusgehalt und pH-Wert (Gemüseanbauflächen, Gartennutzung) auch erhöht. Rostbraunerden sind auf den Geschiebesanden der Nauener Platte (Gatow-Kladow), des Barnims und des Teltows verbreitet und stellen außerdem den dominierenden Boden der Endmoränen im Düppeler Forst, im Grunewald (Havelberge), im Köpenicker Forst (Müggelberge), der Gosenberge und des Seddinberges dar. Sie bilden sich ebenfalls auf grundwasserfernen Talsanden (z. B. Forst Jungfernheide) und sind gemeinsam mit den Podsol-Braunerden Leitböden der Dünen im Spandauer, Tegeler und Köpenicker Forst. Sowohl Rost- als auch Podsol-Braunerden sind tief durchwurzelbar und gut durchlüftet. Sie besitzen eine geringe bis mittlere nutzbare Feldkapazität und ein mittleres Nährstoffspeichervermögen. Sie sind sehr trockene bis trockene und sehr nährstoffarme Standorte. Bei Einlagerung von Schluffen im Unterboden und unter Gartennutzung bzw. in der Nachbarschaft mit Mooren (vergleyte Podsol- bzw. Rostbraunerden und Rostbraunerde- bzw. Podsol-Braunerde-Gleye) ist ihr Wasser- und Nährstoffspeichervermögen erhöht. Spezielle klimatische Verhältnisse (niedrige Temperaturen, erhöhte Niederschläge) sind Voraussetzung für die Bildung von Podsolen . Sie entwickeln sich au feinkörnigen, kalkfreien sandigen Substraten und kommen in den Berliner Forsten nur an wenigen Stellen vor, v. a. an Nordosthängen von Dünen im Tegeler Forst (vgl. Grenzius 1987) und in den Püttbergen im Köpenicker Forst (vgl. Smettan 1995) sowie in einem Bereich der Endmoränenbildung des Seddinberges. Podsole sind in der Regel tief durchwurzelbare und gut durchlüftete, jedoch trotz des mittleren bis erhöhten Wasser- und Nährstoffspeichervermögens nährstoffarme und trockene Böden. Gleye bilden sich auf Standorten mit hohem Grundwasserstand aus sandigen oder schluffigen Substraten. So treten Gleye in Senken der Talsandebenen im Spandauer Forst auf. Reliefbedingt sind sie häufig mit Nassgleyen, Anmoorgleyen und Mooren vergesellschaftet. Sie stellen gemeinschaftlich die Böden der Senken in Dünenbildungen im Spandauer Forst und im Forstrevier Schmöckwitz südlich des Seddinsees, der Schmelzwasserrinnen (wie die Kuhlake, das Breite Fenn, das Rudower Fließ, das Tegeler Fließ, die Wuhle, das Neuenhagener Mühlenfließ, die Krumme Laake) sowie der Toteissenken (Großer Rohrpfuhl und Teufelsbruch in Spandau sowie der Toteissenke Teufelssee in Köpenick) dar. Die ökologischen Eigenschaften der Gleye sind je nach Ausgangsmaterial, Humusgehalt, Grundwasserstand und Nährstoffgehalt des Grundwassers sehr unterschiedlich. Im Berliner Stadtgebiet sind neben den Gleyen in Bereichen mit geringen Grundwasserflurabständen aufgrund von Grundwasserabsenkungen reliktische Gleye zu finden, die noch typische Gleymerkmale im Profilaufbau besitzen, sich in ihren ökologischen Eigenschaften aber von den Gleyen sehr stark unterscheiden. Gleye sind in der Regel im Oberboden für Flachwurzler feuchte und im Unterboden für Tiefwurzler nasse Standorte. Demzufolge gestaltet sich das Luftangebot umgekehrt proportional zum Wassergehalt des Bodens. Die Folge ist ein luftarmer Unterboden und in Abhängigkeit vom Wasserstand ein gut bis schlecht durchlüfteter Oberboden (z. T. wechseltrocken bis nass) mit einer mittleren Durchwurzelbarkeit. Gleye besitzen in Abhängigkeit vom Humusgehalt ein erhöhtes bis hohes Nährstoffspeichervermögen sowie ein mäßiges bis hohes Nährstoffangebot. Das Nährstoffangebot ist erhöht, wenn über eutrophiertes Grundwasser und dessen kapillaren Aufstieg eine zusätzliche Nährstoffzufuhr erfolgt. Reliktgleye sind trockene bis sehr trockene, bis in den Unterboden gut durchlüftete und demzufolge tiefgründig durchwurzelbare Standorte mit zumeist mittleren bis erhöhten Wasserkapazitäten. In Abhängigkeit vom Humusgehalt und pH-Wert ist ihr Nährstoffangebot gering bis mittel. Eine Nährstoffzufuhr durch das Grundwasser bleibt weitgehend aus. Moore mit ihrem hohen Wasserstand sind sehr schlecht durchlüftet und nur flach durchwurzelbar. Sie haben ein sehr hohes Wasser- und ein mittleres bis erhöhtes Nährstoffspeichervermögen. Sie sind nicht entwässerte, naturnahe Standorte mit unterschiedlichen Nährstoffangeboten. Moore unterliegen infolge von Grundwasserabsenkungen der Vererdung und Mineralisierung und haben dadurch veränderte Standorteigenschaften für Pflanzen. Vererdete moorige und anmoorige Böden, die z. B. im Urstromtal in Kleingartengebieten entlang des Teltow- und des Neuköllner Kanals sowie in Treptow entlang des Hochflächenrandes der Teltow-Hochfläche vorkommen, sind im Gegensatz zu intakten Mooren sehr tief durchwurzelbare, gut durchlüftete und feuchte Standorte. Eine im Vergleich zu Böden mit einer hundert- bzw. tausendjährigen Entwicklung relativ junge Bodenbildung wird durch die Bodentypen Lockersyrosem, Regosol und Pararendzina charakterisiert. Sie entwickeln sich sowohl auf jungen Abtragungsflächen aus natürlich anstehenden Gesteinen als auch auf Flächen aus anthropogen geschütteten Materialien. Der Bodenabtrag erfolgt dabei einerseits ohne Zutun des Menschen, z. B. durch Wind- oder Wassererosion an Hängen der Dünen sowie der Kames- und Moränenhügel, andererseits infolge der Nutzung des Bodens durch die Menschen. Bodenaufträge können durch natürliche Um- und Verlagerungsprozesse und ebenso durch den Menschen in Form von Aufschüttungen entstehen. Dabei wird in Aufschüttungen von natürlichem Material (z. B. Bodenaushub, Kies) und in Aufschüttungen von technogenen Substraten (Trümmer- und Bauschutt, Schlacke usw.) unterschieden. Lockersyroseme, Regosole und Pararendzinen aus anthropogen geschüttetem Material durchlaufen die gleiche Bodenentwicklung wie aus natürlichen Gesteinen. Ihr unterschiedliches Ausgangsmaterial wird durch die Bodenform, z. B. Regosol aus Geschiebesand bzw. Regosol aus Trümmerschutt, beschrieben (vgl. Grenzius 1987). Die Böden des Berliner Stadtgebietes sind durch intensive anthropogene Eingriffe infolge Besiedlung, Abriss von Gebäuden, Kriegszerstörungen (2. Weltkrieg) sowie Baumaßnahmen gekennzeichnet. Einerseits gibt es großflächige Aufschüttungen von Trümmerschutt, Schlacken und Bauschutt, andererseits Abtragsflächen infolge von Baumaßnahmen (Straßen, Bahntrassen) sowie den Abbau von Kies, Sand und Ton in Tagebauen. Daher sind Lockersyroseme, Regosole und Pararendzinen im Berliner Stadtgebiet weit verbreitete Böden. Lockersyroseme auf Abtragsflächen natürlich anstehender Gesteine kommen v. a. im äußeren Stadtgebiet vor. Sie entwickeln sich überall dort, wo Rostbraunerden und Braunerden der Geschiebe-, Talsand- und Flugsandflächen infolge der Nutzung, z. B. als Truppenübungsplätze oder im Tagebau, abgetragen wurden. Auf kleinflächigen, geringfügig beeinträchtigten Bodenarealen der Truppenübungsplätze sind noch naturnahe Böden erhalten. Größere Truppenübungsplätze befinden sich in Heiligensee (Baumberge), im Grunewald und im Köpenicker Forst (Jagen 161). Tagebaue im Berliner Stadtgebiet sind die Kaulsdorfer Seen, der Kiessee Arkenberge in Pankow, der Tegeler Flughafensee sowie der Laszinssee in Spandau. Die ökologischen Eigenschaften werden vom natürlichen Untergrund und dem Grundwasserstand geprägt. Zum Beispiel sind Lockersyroseme, die durch Erosion aus Rostbraunerden entstanden sind, gut durchlüftete, meist trockene und nährstoffarme Böden. Lockersyroseme auf Aufschüttungsflächen aus aufgetragenen anthropogenen Gesteinen, wie Trümmerschutt, Bauschutt, Gleisschotter, Industrieschotter, sind auf Freiflächen des gesamten dicht besiedelten Stadtgebietes (Innenstadt, alle im Krieg stark zerstörten Bereiche – Bodengesellschaft 52 – Industrie- und Gewerbestandorte) zu finden. Zudem treten sie auf Trümmer- und Bauschuttdeponien, wie Eichberge in Köpenick, Arkenberge in Pankow, Teufelsberg im Grunewald, Trümmerberg im Friedrichshain und Volkspark Prenzlauer Berg, und an den das gesamte Stadtgebiet durchziehenden Gleisanlagen auf. Seltener kommen Lockersyroseme auf aufgeschütteten bzw. umgelagerten natürlichen Gesteinen, so z. B. auf geschütteten Wällen von Truppenübungsplätzen einschließlich Schießplätzen, vor. Die ökologischen Eigenschaften dieser Lockersyroseme werden durch das Aufschüttungsmaterial bestimmt. Lockersyroseme aus Sanden und technogenen Substraten bilden sehr trockene bis trockene, bei Teer- oder Betondecken im Untergrund wechselfeuchte Standorte. Die Durchlüftung und damit das Sauerstoffangebot sind gut, die Durchwurzelbarkeit ist dagegen bei hohem Steingehalt eingeschränkt, bei steinfreien sandigen Böden tief. Nährstoffangebot und -speichervermögen sind je nach Ausgangsgesteinen und Nutzungseinflüssen gering bis hoch. Aus den infolge natürlicher (durch Wasser und Wind) und anthropogen indizierter Erosion (in Berlin häufig Folge der starken Trittbelastung von Hangbereichen) auf Kames-, Moränen- oder Dünensanden entstandenen Lockersyrosemen entwickeln sich – da der Prozess der Bodenbildung ständig fortschreitet – durch Humusanreicherung im Ah-Horizont Regosole (vgl. Grenzius 1987). Diese Regosole treten z. B. an den steileren Hangbereichen im Grunewald entlang der Havel, im Düppeler Forst und an den Hängen der Müggelberge auf. Bodenauf- und -abträge durch das Anlegen und Einebnen der Rieselfelder in den nördlichen Gebieten der Stadtbezirke Pankow, Weißensee und Hohenschönhausen bedingten ebenfalls die Entstehung von Regosolen aus natürlichem Material (Bodengesellschaften 2560 [60], 2580 [62], 2590 [63]). Regosole aus sandigen kalkfreien Aufschüttungen entwickeln sich vor allem im gesamten dichter bebauten Stadtgebiet einschließlich kleinerer Grün- und Parkanlagen. Sie sind meist nährstoffarm. Humusanreicherung im Oberboden verbessert das Nährstoffangebot. Sie weisen oft ein geringes Wasserhaltevermögen, eine gute Durchlüftung und eine vom Steingehalt abhängige tiefe bis mittlere Durchwurzelbarkeit auf. Pararendzinen entwickeln sich aus Lockersyrosemen kalkhaltiger Substrate. Pararendzinen natürlicher Herkunft entwickeln sich auf abgetragenen Bereichen offen gelassener Mergelgruben, auf umgelagertem Mergel (z. B. bei Tiefbaumaßnahmen) und an erodierten Hangbereichen von Gewässern und Rinnen der Geschiebemergelhochflächen. Im Niederungsgebiet der Bäke am Landgut Eule und an Albrechts Teerofen bildeten sich Pararendzinen aus beim Bau des Teltowkanals ausgebaggerten und wieder abgelagerten Kalkmudden bzw. aus gestörten Flachwassersedimenten (vgl. Grenzius 1987). Pararendzinen aus anthropogenem Aufschüttungsmaterial entstehen auf allen Flächen, die mit Trümmer- oder Bauschutt aufgefüllt wurden, so im gesamten dicht bebauten Stadtgebiet, auf allen im Krieg stark zerstörten Bereichen mit Trümmerschuttauffüllungen und auf Bahnanlagen. Pararendzinen sind ebenso entlang der vielen überschütteten Ufer und Niederungen von Havel, Spree und deren seenartigen Erweiterungen anzutreffen. Pararendzinen aus Geschiebemergel weisen durch ihren höheren Tongehalt ein erhöhtes Nährstoffspeichervermögen sowie eine mittlere bis hohe nutzbare Feldkapazität auf. Pararendzinen aus Trümmerschutt sind dagegen nährstoffärmer und trocken. Die Durchlüftung ist gut, die Durchwurzelbarkeit bei den Pararendzinen aus Trümmerschutt ist aufgrund des Steingehaltes flach. Pararendzinen aus Kalkmudden stellen frische, nährstoffreiche sowie je nach Grundwasserstand gut bis schlecht durchlüftete Standorte dar. Ausgewählte Bodengesellschaften Von den derzeit 78 Bodengesellschaften (siehe Tab. 7) werden im Folgenden einige charakteristische Bodengesellschaften beschrieben. Eine ausführliche Beschreibung der Bodengesellschaften erfolgte durch Grenzius (1987). Die abgebildeten Landschaftsschnitte stammen aus der Dissertation von Grenzius (1987). Naturnahe Bodengesellschaften BG 1010 [1] Parabraunerde – Sandkeilbraunerde Grundmoränenhochfläche aus Geschiebemergel Ausgangsgestein der in dieser Bodengesellschaft vereinten Bodentypen ist die aus Geschiebelehm bzw. -mergel bestehende Grundmoränenhochfläche, die durch Schrumpfung entstandene, mit Sand verfüllte Keile aufweist und durch Flugsande überlagert wurde. Eine Durchmischung des Flugsandes mit dem Geschiebemergel führte zur Ausbildung des Geschiebedecksandes. Auf den mit einer geringen Geschiebesanddecke überlagerten Geschiebelehm- bzw. -mergelflächen entwickelten sich Parabraunerden, auf den 1 bis 3 m tiefen Sandkeilen Sandkeilbraunerden. Diese Bodengesellschaft ist vor allem auf den Geschiebemergelhochflächen des Teltows und des Barnims verbreitet. BG 1070 [6] Rostbraunerde – kolluviale Braunerde (Sander über) Moränenfläche aus geschiebehaltigem Sand Diese Bodengesellschaft umfasst die Rostbraunerden auf den sandigen, morphologisch relativ ebenen Bereichen der Geschiebemergelhochflächen bzw. der Grundmoränen des Teltow (Grunewald, Düppeler Forst) und des Barnims. Dabei tritt in den oberen 2 m des Geschiebesandes kein Geschiebelehm bzw. -mergel auf. Rostbraunerden kommen auch auf den Kamesbildungen des Grunewaldes und von Lübars bis Arkenberge sowie den Endmoränenbildungen in Gatow und der Müggelberge vor. Da sie dort jedoch einen anderen räumlichen Bezug (geomorphe Einheit) besitzen, wurden sie für diese geomorphe Einheit mit einem anderen auftretenden Bodentyp zu einer weiteren Bodengesellschaft zusammengefasst (BG 1040 [4]). Rostbraunerden auf mehr oder weniger hohen Moränenhügeln aus Geschiebesanden mit teilweise auftretenden Geschiebemergel- bzw. Geschiebelehmresten innerhalb der ersten zwei Meter des Geschiebesandes bilden ebenfalls eine eigene Bodengesellschaft (BG 1020 [2] bzw. 1030 [3]). BG 1090 [9] Podsol-Braunerde – Podsol – kolluviale Rostbraunerde (Düne aus Feinsand) BG 1100 [10] Podsol-Braunerde – Rostbraunerde – kolluviale Rostbraunerde (Düne aus Feinsand) Die Bodengesellschaften 1090 [9] und 1100 [10] sind die Einheiten der grundwasserfernen, mehrere Meter mächtigen Dünen sowie größeren Dünengebiete mit Geländehöhen über 40 m NHN. Sie unterscheiden sich im Wesentlichen durch das Auftreten von Podsolen. Sie kommen v.a. im Tegeler und Frohnauer, aber auch im Köpenicker Forst vor. Ohne Bodenprofiluntersuchungen können keine Aussagen zum Vorhandensein von Podsolen gemacht werden. Diese beiden Bodengesellschaften wurden im östlichen Stadtgebiet teilweise als Sammelgesellschaft, bei Vorhandensein von Kartierungen (Standortskarten des Forstbetriebes Ost-Berlin, Smettan 1995) getrennt ausgewiesen. BG 1160 [15] Rostbraunerde – vergleyte Braunerde – Gley-Braunerde (Talsandfläche aus Mittel- und Feinsand) Diese Bodengesellschaft ist eine weit verbreitete Bodengesellschaft im Berliner Urstromtal. Das Berliner Urstromtal stellt das Abflusstal der Schmelzwässer der Frankfurter Phase der Weichseleiszeit dar. Die durch die Schmelzwässer transportierten und im Talbereich abgelagerten Mittel- und Feinsande bilden das Ausgangsgestein für die Bildung der Braun- und Rostbraunerden. Unterschiedliche Grundwasserstände verursachten die Ausbildung von Gleymerkmalen (z. B. Rostflecken) in verschiedenen Tiefen. Dafür stehen die Bodentypen vergleyte Braunerde und Gley-Braunerde. Da das Grundwasser in diesem Jahrhundert durch die Grundwasserförderung der Berliner Wasserwerke abgesenkt wurde, liegen die Gleymerkmale häufig nur noch als Relikte vor, d.h. das Grundwasser steht heute tiefer an als die von ihm erzeugten Gleymerkmale. Diese Bodengesellschaft wird vor allem vom Spreetal in Köpenick und von den Talsandflächen der Forsten Spandau, Tegel und Jungfernheide eingenommen. BG 1231 [22a] Gley-Braunerde – Gley – Niedermoor (Schmelzwasserrinne in Talsandfläche ohne Düne) Die während des Glazials aufgrund des hohen Druckes des Gletschers auf seiner Sohle entstandenen subglazialen Schmelzwässer sowie die in der Zeit zwischen den Eiszeiten durch Erwärmung des Klimas entstandenen Schmelzwässer flossen in die großen Urstromtäler ab und schufen durch ihre Erosionskraft z. T. tiefe (subglaziale) Schmelzwasserrinnen. Die im Bereich des Grundwassers liegenden Rinnen verlandeten und vermoorten nach der letzten Eiszeit. Viele dieser Rinnen, insbesondere im Gebiet der Berliner Innenstadt, wurden anthropogen verfüllt und überbaut und sind deshalb heute nicht mehr sichtbar. Solche glazifluvialen Schmelzwasserrinnen innerhalb der Talsandflächen sind z. B. Teilbereiche der Wuhle, des Neuenhagener Mühlenfließes, die Spekte-Lake, die Egelpfuhlwiesen und das Breite Fenn. Im unmittelbaren Rinnenzentrum entstanden je nach Grundwasserstand Anmoorgleye, teilweise auch Flachmoortorfe. Zu den Rinnenrändern hin folgen je nach Grundwasserstand Gley-Braunerden bzw. Gley-Rostbraunerden sowie vergleyte Braun- bzw. Rostbraunerden. Anthropogene Bodengesellschaften BG 2420 [41] Nekrosol + Gley-Braunerde-Hortisol + Gley (Friedhof auf Talsandfläche aus Mittel- und Feinsand) Bei dieser Bodengesellschaft wurden die Böden der Talsandflächen zusammengefasst, die durch die Nutzung als Friedhof teilweise einer anthropogenen Beeinflussung unterlagen. Dabei werden als Nekrosole die durch tiefgründiges Graben beim Anlegen der Gräber entstandenen Böden bezeichnet. Auf den ungenutzten Flächen des Friedhofes auf Talsand sind dagegen noch reliktische Gley-Braunerden und Gleye zu finden. Infolge einer langjährigen Humuszufuhr entwickelten sich Humusregosole, Hortisol-Gley-Braunerden und Hortisole. Bei anderen Nutzungen sind die Böden so stark anthropogen verändert, dass ehemals natürliche Böden weitgehend zerstört bzw. durch Fremdmaterialien überschüttet wurden. BG 2470 [49] Syrosem + Kalkregosol + Pararendzina (Gleisanlage auf Aufschüttungs- und Abtragungsfläche) Zu dieser Bodengesellschaft sind die Böden, die einer Nutzung als Bahnanlagen und Bahnhof unterliegen, zusammengefasst. Die Gleiskörper bestehen aus groben Schottern unterschiedlichen Materials; Bahndämme aus Sand, auch Trümmer- und Industrieschutt wurden aufgeschüttet. Je nach Bodensubstrat kam es zur Ausbildung vor allem von Syrosemen, Lockersyrosemen, Pararendzinen und Kalkregosolen. BG 2490 [51] Lockersyrosem + Humusregosol + Pararendzina (dichte Innenstadtbebauung, im Krieg nicht zerstört, auf Aufschüttung) Diese Bodengesellschaft charakterisiert Böden innerhalb Flächen geschlossener Bebauung der Innenstadt, die vor dem 2. Weltkrieg erbaut und nicht bzw. kaum zerstört wurden sowie stark versiegelt sind. Die in den Hinterhöfen auftretenden Böden, die einer Gartennutzung unterlagen bzw. noch unterliegen, sind durch humose Oberböden gekennzeichnet und konnten sich zu Humusregosolen, Hortisolen und Humuspararendzinen entwickeln. Auf den anderen Flächen der Hinterhöfe, die geringfügig auch mit Trümmerschutt bedeckt sein können, bildeten sich Lockersyroseme und Regosole. BG 2500 [52] Lockersyrosem + Regosol + Pararendzina (Innenstadt auf Aufschüttung) Diese Bodengesellschaft beschreibt die Böden ehemals dicht bebauter Innenstadtbereiche, die während des 2. Weltkrieges zum Teil vollständig zerstört wurden. Der Trümmerschutt verblieb größtenteils an Ort und Stelle. Auf vielen nicht durch Gebäude beanspruchten Flächen sind die Bodenschichten von wenigen Dezimetern bis zu zwei Metern mit Trümmerschutt und/oder Bausand durchsetzt bzw. bestehen aus diesem (vgl. Grenzius 1987). Wie in Abb. 10 ersichtlich, entwickelten sich auf diesen Flächen Syroseme und Pararendzinen, auf Flächen ohne Trümmerschutt Syroseme und Regosole. Die Karte der Bodengesellschaften, erarbeitet aus vorhandenen Daten unterschiedlicher Art, gibt einen Überblick über die je nach Ausgangsmaterial, Geomorphologie bzw. Landschaftsausschnitt, Grundwasserstand und Nutzung zu erwartenden Vergesellschaftungen von naturnahen und/oder anthropogenen Böden. Aus den Bodengesellschaften lassen sich die Hauptbodentypen und weitere Standorteigenschaften ableiten: Durchlüftung, Durchwurzelbarkeit, Feldkapazität und nutzbares Feldkapazität, Nährstoffspeichervermögen, potentielle und effektive Kationenaustauschkapazität als Maß für das Nährstoffspeichervermögen (vgl. Grenzius 1987). Unter Zuhilfenahme zusätzlicher Informationen (z. B. topographische Karten, aktueller Grundwasserstand) und der Bodengesellschaft ist es möglich, ohne Kartierung den jeweiligen Bodentyp im Gelände und dessen ökologische Eigenschaften mit einer gewissen Wahrscheinlichkeit herzuleiten. Aussagen zu vergleyten oder reliktisch vergleyten Böden und damit zu feuchten oder trockenen Standorten können im Zuge dieser Vorgehensweise nur unter Berücksichtigung der aktuellen Grundwasserstände gemacht werden. Da die Böden als wesentliches Landschaftselement eines Gebietes die Standortvielfalt von Flora und Fauna mitbestimmen, werden besonders seltene und unveränderte bzw. wenig veränderte Böden bei der Ausweisung von Schutzgebieten berücksichtigt. Neben der Ableitung von Standorteigenschaften ist die Bodengesellschaftskarte auch geeignet, Auswertungen hinsichtlich Bodenschutz und Bodenfunktionen vorzunehmen. In den Karten 01.06 des Umweltatlas sind Bodenkundliche Kennwerte, in den Karten 01.12 eine Bewertung der Bodenfunktionen und in den Karten 01.11 Kriterien für die Ableitung dieser Funktionen dokumentiert.
Böden besitzen in Abhängigkeit von Ausgangsmaterial, Korngrößenzusammensetzung, Humusgehalt, Relief und Grundwasserflurabstand große Spannbreiten in ihren ökologischen Eigenschaften. Wesentliche, die ökologischen Eigenschaften eines Bodens kennzeichnende Parameter sind nutzbare Feldkapazität, Durchlüftung, Kationenaustauschkapazität, pH-Wert, effektive Durchwurzelungstiefe und Sommerfeuchtezahl. Die nutzbare Feldkapazität ist das Maß für die Menge des pflanzenverfügbaren Wassers im Boden. Es ist das langsam bewegliche Sickerwasser und Haftwasser in engen Grobporen und Mittelporen des Bodens. Bodenwasser in den Feinporen (Totwasser) unterliegt hohen Saugspannungen und ist von Pflanzen nicht aufnehmbar. Die Menge des im Boden speicherbaren Wassers wird vom Porenvolumen, von der Porengrößenverteilung, der Korngrößenzusammensetzung und vom Humusgehalt des Bodens bestimmt. Die Durchlüftung des Bodens (Gasaustausch zwischen Atmosphäre und Boden durch Diffusion) ist entscheidend für das Wachstum der Pflanzenwurzeln und die Existenz und Tätigkeit der Bodenlebewesen. Die Intensität des Gasaustausches ist abhängig vom Porenvolumen, insbesondere dem Anteil an Grobporen, sowie deren Kontinuität, von der Korngrößenzusammensetzung, vom Gefüge und vom Wassergehalt des Bodens. Unter der Kationenaustauschkapazität ist die Menge der im Boden an Tonmineralen und Huminstoffen austauschbar gebundenen Kationen (z.B. Ca 2+ , Mg 2+ , K + , Na + , NH 4 + , H + ) zu verstehen. Die Kationenaustauschkapazität liefert eine Aussage über das Vermögen des Bodens, Nährstoffe zu binden und zu speichern. Dieses Bindungsvermögen bzw. Nährstoffspeichervermögen ist von der Art und der Menge der Tonminerale, vom Humusgehalt und vom pH-Wert abhängig. Das aktuelle Nährstoffangebot des Bodens kann daher deutlich geringer sein als das potentielle. Die potentielle (das heißt maximale) Kationenaustauschkapazität wird bei einem pH-Wert von 8,2 und die effektive Kationenaustauschkapazität für den aktuellen pH-Wert des Bodens ermittelt. Die effektive Kationenaustauschkapazität ist u. a. neben Luft- und Wasserverhältnissen, biologischer Aktivität, Redoxeigenschaften usw. ein entscheidender Faktor für die Beurteilung des tatsächlich verfügbaren Nährstoffangebotes des Bodens. Vom pH-Wert werden direkt und indirekt verschiedene Vorgänge und Eigenschaften des Bodens bestimmt. Das sind unter anderem Verwitterungsvorgänge, Bodenbildungsprozesse (wie Podsolierung oder Tonverlagerung), Aktivität und Artenspektrum der Bodenlebewesen, Huminstoffbildung, Gefügestabilität, Bodenversauerung und Verschlämmungsneigung. Unter effektiver Durchwurzelungstiefe ist die Bodentiefe zu verstehen, aus der Pflanzenwurzeln dem Boden Wasser entziehen können. In anthropogen veränderten Böden kann die Durchwurzelbarkeit durch undurchdringliche Schichten (z.B. Betonfundamente), Luftmangel oder Methanbildung, beispielsweise in Deponieböden, eingeschränkt sein. Die Sommerfeuchtezahl ist ein Ausdruck für das nutzbare Wasserangebot in kritischen Trockenperioden während der Hauptvegetationszeit im effektiven Wurzelraum und berücksichtigt nutzbare Feldkapazität, Klima, Relief und Grundwassereinfluss. Parabraunerden, Fahlerden, Braunerden, Rostbraunerden, Podsol-Braunerden, Podsole, Gleye und moorige Böden sind im Berliner Raum verbreitete, durch ihre Nutzung wenig beeinflusste naturnahe Böden mit einer langen Entwicklungsgeschichte. Diese Böden kommen fast ausschließlich im weniger dicht besiedelten und unbesiedelten städtischen Außenbereich vor. Parabraunerden und Fahlerden sind die vorwiegend vorkommenden Böden der sandüberlagerten Geschiebemergelhochflächen des Barnims und des Teltows, wobei sie bis in 1 bis 2 m Tiefe entkalkt sind. Fahlerden kommen dabei vor allem in Gebieten mit Waldnutzung vor. Parabraunerden haben aufgrund ihres höheren Humus- und Tongehaltes im Oberboden ein deutlich höheres Nährstoffangebot als Fahlerden. Sie besitzen ein mittleres bis hohes Speichervermögen für Wasser und Nährstoffe und sind gut durchlüftet. Parabraunerden stellen damit besonders in Rudow, Mariendorf, Lichtenrade (Teltow-Hochfläche), Kladow (Nauener Platte) sowie Hohenschönhausen, Hellersdorf, Weißensee und Pankow (Barnim-Hochfläche) günstige Pflanzenstandorte für den Ackerbau dar. Sind unter forstwirtschaftlicher Nutzung die pH-Werte im Oberboden zumeist niedrig (pH-Wert 3 bis 4, Bodenversauerung durch Humin- und Fulvosäuren sowie “sauren Regen”), so haben Ackerböden durch den Einsatz von Düngemitteln und Kalkung einen höheren pH-Wert. Auf Forstflächen ist das Nährstoffangebot im Flachwurzelraum (bis 0,3 m Tiefe) sehr gering bis mäßig und auf Ackerflächen gering bis erhöht. Im Tiefwurzelraum (bis 1,5 m Tiefe) ist das Nährstoffangebot durch Zunahme des pH-Wertes mittel bis hoch (Grenzius 1987). Fahlerden weisen im Unterboden (Bt-Horizont) ein höheres Nährstoffangebot auf als im tonverarmten Oberboden. Wasserhaltevermögen und Durchlüftung sind ausreichend. Braunerden entwickeln sich auf sandigen Bereichen der Geschiebemergelhochflächen des Barnims und des Teltows, an den Unterhängen der Hochflächen, Moränenhügel und Endmoränen insbesondere als kolluviale Bildung, auf z. T. schluffhaltigen Mittel- und Feinsanden des Berliner Urstromtals und des Panke-Tals sowie in Senken der Dünenlandschaften. In Abhängigkeit vom früheren und aktuellen Grundwasserstand treten v. a. im Urstromtal auch vergleyte und reliktisch vergleyte Braunerden und Gley-Braunerden auf. Braunerden sind tief durchwurzelbar und gut durchlüftet. Sie weisen ein geringes Wasserspeichervermögen, an Unterhängen der Endmoränen durch Wasserzufuhr und Einlagerung von Lehm z. T. ein mittleres Wasserspeichervermögen auf. Dabei handelt es sich für Flachwurzler um trockene, für Tiefwurzler um frische Standorte, wobei die vergleyten Braunerden und Gley-Braunerden des Urstromtals vor der Grundwasserabsenkung feuchte Standorte darstellten. Braunerden haben meist ein mittleres Nährstoffspeichervermögen. Jedoch ist das tatsächliche Nährstoffangebot der Braunerden unter forstlicher Nutzung und unter Getreideanbauflächen bei niedrigen pH-Werten sehr gering bis mäßig, bei höherem Humusgehalt und pH-Wert (Gemüseanbauflächen, Gartennutzung) auch erhöht. Rostbraunerden sind auf den Geschiebesanden der Nauener Platte (Gatow-Kladow), des Barnims und des Teltows verbreitet und stellen außerdem den dominierenden Boden der Stauchmoränen (Pichelsberg Charlottenburg-Wilmersdorf) dar. Sie bilden sich ebenfalls auf grundwasserfernen Talsanden (z.B. Forst Jungfernheide) und sind gemeinsam mit den Podsol-Braunerden Leitböden der Dünen im Spandauer, Tegeler und Köpenicker Forst. Sowohl Rost- als auch Podsol-Braunerden sind tief durchwurzelbar und gut durchlüftet. Sie besitzen eine geringe bis mittlere nutzbare Feldkapazität und ein mittleres Nährstoffspeichervermögen. Sie sind sehr trockene bis trockene und sehr nährstoffarme Standorte. Bei Einlagerung von Schluffen im Unterboden und unter Gartennutzung bzw. in der Nachbarschaft mit Mooren (vergleyte Podsol- bzw. Rostbraunerden und Rostbraunerde- bzw. Podsol-Braunerde-Gleye) ist ihr Wasser- und Nährstoffspeichervermögen erhöht. Für die Bildung von Podsolen sind spezielle klimatische Verhältnisse (niedrige Temperaturen, erhöhte Niederschläge) eine wesentliche Voraussetzung. Podsole entwickeln sich aus feinkörnigen, kalkfreien, sandigen Substraten und kommen in den Berliner Forsten nur an wenigen Stellen vor, v. a. an Nordosthängen von Dünen im Tegeler Forst (vgl. Grenzius 1987) und in den Püttbergen im Köpenicker Forst (vgl. Smettan 1995). Podsole sind in der Regel tief durchwurzelbare und gut durchlüftete, jedoch trotz des mittleren bis erhöhten Wasser- und Nährstoffspeichervermögens nährstoffarme und trockene Böden. Gleye bilden sich auf Standorten mit hohem Grundwasserstand aus sandigen oder schluffigen Substraten. Sie treten in Senken der Talsandebenen im Spandauer Forst auf. Reliefbedingt sind sie häufig mit Nassgleyen, Anmoorgleyen und Mooren vergesellschaftet. Sie stellen gemeinschaftlich die Böden der Senken in Dünenbildungen im Spandauer Forst und im Forstrevier Schmöckwitz südlich des Seddinsees, der Schmelzwasserrinnen (wie die Kuhlake, das Breite Fenn, das Rudower Fließ, das Tegeler Fließ, die Wuhle, das Neuenhagener Mühlenfließ, die Krumme Laake) und der Toteissenken (Großer Rohrpfuhl und Teufelsbruch in Spandau sowie die Toteissenke Teufelssee in Köpenick) dar. Die ökologischen Eigenschaften der Gleye sind je nach Ausgangsmaterial, Humusgehalt, Grundwasserstand und Nährstoffgehalt des Grundwassers sehr unterschiedlich. Im Berliner Stadtgebiet sind neben den Gleyen in Bereichen mit geringen Grundwasserflurabständen aufgrund von Grundwasserabsenkungen reliktische Gleye zu finden, die noch typische Gleymerkmale im Profilaufbau besitzen, sich in ihren ökologischen Eigenschaften aber von den Gleyen sehr stark unterscheiden. Gleye sind in der Regel für Flachwurzler im Oberboden feuchte Standorte und für Tiefwurzler im Unterboden nasse Standorte. Demzufolge gestaltet sich das Luftangebot umgekehrt proportional zum Wassergehalt des Bodens. Die Folge ist ein luftarmer Unterboden und in Abhängigkeit vom Wasserstand ein gut bis schlecht durchlüfteter Oberboden (z. T. wechseltrocken bis nass) mit einer mittleren Durchwurzelbarkeit. Gleye besitzen in Abhängigkeit vom Humusgehalt ein erhöhtes bis hohes Nährstoffspeichervermögen sowie ein mäßiges bis hohes Nährstoffangebot. Das Nährstoffangebot ist erhöht, wenn über eutrophiertes Grundwasser und dessen kapillaren Aufstieg eine zusätzliche Nährstoffzufuhr erfolgt. Reliktgleye sind trockene bis sehr trockene, bis in den Unterboden gut durchlüftete und demzufolge tiefgründig durchwurzelbare Standorte mit zumeist mittleren bis erhöhten Wasserkapazitäten. In Abhängigkeit vom Humusgehalt und pH-Wert ist ihr Nährstoffangebot gering bis mittel. Eine Nährstoffzufuhr durch das Grundwasser bleibt weitgehend aus. Moore mit ihrem hohen Wasserstand sind sehr schlecht durchlüftet und nur flach durchwurzelbar. Sie haben ein sehr hohes Wasser- und ein mittleres bis erhöhtes Nährstoffspeichervermögen. Sie sind nicht entwässerte, naturnahe Standorte mit unterschiedlichen Nährstoffangeboten. Moore unterliegen zumeist der Vererdung und Mineralisierung infolge von Grundwasserabsenkungen und haben dadurch veränderte Standorteigenschaften für Pflanzen. Vererdete moorige und anmoorige Böden sind im Gegensatz zu intakten Mooren sehr tief durchwurzelbare, relativ gut durchlüftete und feuchte Standorte. Sie kommen z.B. im Urstromtal in Kleingartengebieten entlang des Teltow- und des Neuköllner Kanals sowie in Treptow entlang des Hochflächenrandes der Teltow-Hochfläche vor. Die Bodentypen Lockersyrosem, Regosol und Pararendzina charakterisieren relativ junge Bodenbildungen im Vergleich zu Böden mit hundert- bzw. tausendjährigen Entwicklungszeiträumen. Sie entwickeln sich sowohl auf jungen Abtragungsflächen aus natürlich anstehenden Gesteinen als auch auf Flächen aus anthropogen geschütteten Materialien. Der Bodenabtrag erfolgt dabei einerseits ohne Zutun des Menschen, z.B. durch Wind- oder Wassererosion an Hängen der Dünen sowie der Kames- und Moränenhügel, andererseits infolge der Nutzung des Bodens durch die Menschen. Bodenaufträge können durch natürliche Um- und Verlagerungsprozesse und ebenso durch den Menschen in Form von Aufschüttungen entstehen. Dabei wird in Aufschüttungen von natürlichem Material (z.B. Bodenaushub, Kies) und in Aufschüttungen von technogenen Substraten (Trümmer- und Bauschutt, Schlacke usw.) unterschieden. Lockersyroseme, Regosole und Pararendzinen aus anthropogen geschüttetem Material durchlaufen die gleiche Bodenentwicklung wie aus natürlichen Gesteinen. Ihr unterschiedliches Ausgangsmaterial wird durch die Bodenform, z.B. Regosol aus Geschiebesand bzw. Regosol aus Trümmerschutt, beschrieben (vgl. Grenzius 1987). Die Böden des Berliner Stadtgebietes sind durch intensive anthropogene Eingriffe infolge von Besiedlung, Abriss von Gebäuden, Kriegszerstörungen (2. Weltkrieg) sowie Baumaßnahmen gekennzeichnet. Einerseits gibt es großflächige Aufschüttungen von Trümmerschutt, Schlacken und Bauschutt, andererseits Abtragsflächen infolge von Baumaßnahmen (Straßen, Bahntrassen) sowie den Abbau von Kies, Sand und Ton in Tagebauen. Daher sind Lockersyroseme, Regosole und Pararendzinen im Berliner Stadtgebiet weit verbreitete Böden. Lockersyroseme auf Abtragsflächen natürlich anstehender Gesteine kommen v. a. im äußeren Stadtgebiet vor. Sie entwickeln sich überall dort, wo Rostbraunerden und Braunerden der Geschiebe-, Tal- und Flugsandflächen infolge der Nutzung, z.B. als Truppenübungsplätze oder im Tagebau, abgetragen wurden. Auf kleinflächigen, geringfügig beeinträchtigten Bodenarealen der Truppenübungsplätze sind noch naturnahe Böden erhalten. Größere Truppenübungsplätze befinden sich in Heiligensee (Baumberge), im Grunewald und im Köpenicker Forst (Jagen 161). Tagebaue im Berliner Stadtgebiet sind die Kaulsdorfer Seen, der Kiessee Arkenberge in Pankow, der Tegeler Flughafensee sowie der Laszinssee in Spandau. Die ökologischen Eigenschaften werden vom natürlichen Untergrund und dem Grundwasserstand geprägt. Zum Beispiel sind Lockersyroseme, die durch Erosion aus Rostbraunerden entstanden sind, gut durchlüftete, meist trockene und nährstoffarme Böden. Lockersyroseme auf Aufschüttungsflächen aus aufgetragenen anthropogenen Gesteinen, wie Trümmerschutt, Bauschutt, Gleisschotter, Industrieschotter, sind auf Freiflächen des gesamten dicht besiedelten Stadtgebietes (Innenstadt, alle im Krieg stark zerstörten Bereiche (Bodengesellschaft 2500), Industrie- und Gewerbestandorte (Bodengesellschaft 2540)) zu finden. Zudem treten sie auf Trümmer- und Bauschuttdeponien, wie Eichberge in Köpenick, Arkenberge in Pankow, Teufelsberg im Grunewald, Trümmerberg im Friedrichshain und Volkspark Prenzlauer Berg, und an den das gesamte Stadtgebiet durchziehenden Gleisanlagen auf. Seltener kommen Lockersyroseme auf aufgeschütteten bzw. umgelagerten natürlichen Gesteinen, so z.B. auf geschütteten Wällen von Truppenübungsplätzen einschließlich Schießplätzen, vor. Die ökologischen Eigenschaften dieser Lockersyroseme werden durch das Aufschüttungsmaterial bestimmt. Lockersyroseme aus Sanden und technogenen Substraten bilden sehr trockene bis trockene, bei Teer- oder Betondecken im Untergrund wechselfeuchte Standorte. Die Durchlüftung und damit das Sauerstoffangebot sind gut, die Durchwurzelbarkeit ist dagegen bei hohem Steingehalt eingeschränkt, bei steinfreien sandigen Böden jedoch tief. Nährstoffangebot und -speichervermögen sind je nach Ausgangsgesteinen und Nutzungseinflüssen gering bis hoch. Regosole entwickeln sich aus den Lockersyrosemen der natürlich oder anthropogen induzierten Erosionsflächen auf Kames-, Moränen- oder Dünensanden durch Humusanreicherung im Ah-Horizont (vgl. Grenzius 1987). Diese Regosole treten z.B. an den steileren Hangbereichen im Grunewald entlang der Havel, im Düppeler Forst und an den Hängen der Müggelberge auf. Bodenauf- und -abträge durch das Anlegen und Einebnen der Rieselfelder in den nördlichen Gebieten der Stadtbezirke Pankow, Weißensee und Hohenschönhausen bedingten ebenfalls die Entstehung von Regosolen aus natürlichem Material (Bodengesellschaften 2560 [60], 2580 [62], 2590 [63]). Regosole aus sandigen kalkfreien Aufschüttungen entwickeln sich vor allem im gesamten dicht bebauten Stadtgebiet einschließlich kleinerer Grün- und Parkanlagen. Sie sind meist nährstoffarm. Humusanreicherung im Oberboden verbessert das Nährstoffangebot. Sie weisen oft ein geringes Wasserhaltevermögen, eine gute Durchlüftung und eine vom Steingehalt abhängige tiefe bis mittlere Durchwurzelbarkeit auf. Pararendzinen entwickeln sich aus Lockersyrosemen kalkhaltiger Substrate. Pararendzinen natürlicher Herkunft entwickeln sich auf abgetragenen Bereichen offen gelassener Mergelgruben, auf umgelagertem Mergel (z.B. bei Tiefbaumaßnahmen) und an erodierten Hangbereichen von Gewässern und Rinnen der Geschiebemergelhochflächen. Im Niederungsgebiet der Bäke am Landgut Eule und an Albrechts Teerofen bildeten sich Pararendzinen aus den beim Bau des Teltowkanals ausgebaggerten und wieder abgelagerten Kalkmudden bzw. aus gestörten Flachwassersedimenten (vgl. Grenzius 1987). Pararendzinen aus anthropogenem Aufschüttungsmaterial entstehen auf allen Flächen, die mit Trümmer- oder Bauschutt aufgefüllt wurden, so im gesamten dicht bebauten Stadtgebiet, auf allen im Krieg stark zerstörten Bereichen mit Trümmerschuttauffüllungen und auf Bahnanlagen. Pararendzinen sind ebenso entlang der vielen überschütteten Ufer und Niederungen von Havel, Spree und deren seenartigen Erweiterungen anzutreffen. Pararendzinen aus Geschiebemergel weisen durch ihren höheren Tongehalt ein erhöhtes Nährstoffspeichervermögen sowie eine mittlere bis hohe nutzbare Feldkapazität auf. Pararendzinen aus Trümmerschutt sind dagegen nährstoffärmer und trocken. Die Durchlüftung ist gut, die Durchwurzelbarkeit bei Pararendzinen aus Trümmerschutt fällt aufgrund des Steingehaltes flach aus. Pararendzinen aus Kalkmudden stellen frische, nährstoffreiche sowie je nach Grundwasserstand gut bis schlecht durchlüftete Standorte dar. Von den derzeit 78 Bodengesellschaften (siehe Tab. 7) werden im Folgenden einige charakteristische Bodengesellschaften beschrieben. Eine ausführliche Beschreibung der Bodengesellschaften erfolgte durch Grenzius (1987). Die abgebildeten Landschaftsschnitte stammen aus der Dissertation von Grenzius (1987). BG 1010 [1] Parabraunerde – Sandkeilbraunerde Grundmoränenhochfläche aus Geschiebemergel Ausgangsgestein der in dieser Bodengesellschaft vereinten Bodentypen ist die aus Geschiebelehm bzw. -mergel bestehende Grundmoränenhochfläche, die durch Schrumpfung entstandene, mit Sand verfüllte Keile aufweist und durch Flugsande überlagert wurde. Eine Durchmischung des Flugsandes mit dem Geschiebemergel führte zur Ausbildung des Geschiebedecksandes. Auf den mit einer geringen Geschiebesanddecke überlagerten Geschiebelehm- bzw. -mergelflächen entwickelten sich Parabraunerden, auf den 1 bis 3 m tiefen Sandkeilen Sandkeilbraunerden. Diese Bodengesellschaft ist vor allem auf den Geschiebemergelhochflächen des Teltows und des Barnims verbreitet. BG 1070 [6] Rostbraunerde – kolluviale Braunerde (Sander über) Moränenfläche aus geschiebehaltigem Sand Diese Bodengesellschaft umfasst die Rostbraunerden auf den sandigen, morphologisch relativ ebenen Bereichen der Geschiebemergelhochflächen bzw. der Grundmoränen des Teltows (Grunewald, Düppeler Forst) und vereinzelt des Barnims. Dabei tritt in den oberen 2 m des Geschiebesandes kein Geschiebelehm bzw. -mergel auf. Rostbraunerden kommen auch auf der Stauchmoränenbildung in Pichelsberg vor. Da sie dort jedoch einen anderen räumlichen Bezug (geomorphologische Einheit) besitzen, wurden sie für diese geomorphologische Einheit mit einem anderen auftretenden Bodentyp zu weiteren Bodengesellschaften zusammengefasst (BG 1040 [4] und 1060 [5]). Eigene Bodengesellschaften (BG 1020 [2] bzw. 1030 [3]) bilden ebenfalls Rostbraunerden auf mehr oder weniger hohen Moränenhügeln aus Geschiebesanden mit teilweise auftretenden Geschiebemergel- bzw. Geschiebelehmresten innerhalb der ersten zwei Meter des Geschiebesandes. BG 1090 [9] Podsol-Braunerde – Podsol – kolluviale Rostbraunerde (Düne aus Feinsand) BG 1100 [10] Podsol-Braunerde – Rostbraunerde – kolluviale Rostbraunerde (Düne aus Feinsand) Die Bodengesellschaften 1090 [9] und 1100 [10] sind die Einheiten der grundwasserfernen, mehrere Meter mächtigen Dünen sowie größeren Dünengebiete mit Geländehöhen über 40 m NHN. Sie unterscheiden sich im Wesentlichen durch das Auftreten von Podsolen. Sie kommen v. a. im Tegeler und Frohnauer aber auch im Köpenicker Forst vor. Ohne Bodenprofiluntersuchungen können keine Aussagen zum Vorhandensein von Podsolen gemacht werden. Diese beiden Bodengesellschaften wurden im östlichen Stadtgebiet teilweise als Sammelgesellschaft, bei Vorhandensein von Kartierungen (Standortskarten des Forstbetriebes Ost-Berlin, Smettan 1995) getrennt ausgewiesen. BG 1160 [15] Rostbraunerde – vergleyte Braunerde – Gley-Braunerde (Talsandfläche aus Mittel- und Feinsand) Diese Bodengesellschaft ist eine weit verbreitete Bodengesellschaft im Berliner Urstromtal. Das Berliner Urstromtal stellt das Abflusstal der Schmelzwässer der Frankfurter Phase der Weichseleiszeit dar. Die durch die Schmelzwässer transportierten und im Talbereich abgelagerten Mittel- und Feinsande bilden das Ausgangsgestein für die Bildung der Braun- und Rostbraunerden. Unterschiedliche Grundwasserstände verursachten die Ausbildung von Gleymerkmalen (z.B. Rostflecken) in verschiedenen Tiefen. Dafür stehen die Bodentypen vergleyte Braunerde und Gley-Braunerde. Da das Grundwasser in diesem Jahrhundert durch die Grundwasserförderung der Berliner Wasserwerke abgesenkt wurde, liegen die Gleymerkmale häufig nur noch als Relikte vor, d. h. das Grundwasser steht heute tiefer an als die von ihm erzeugten Gleymerkmale. Diese Bodengesellschaft wird vor allem vom Spreetal in Köpenick und von den Talsandflächen der Forsten Spandau, Tegel und Jungfernheide eingenommen. BG 1231 [22a] Gley-Braunerde – Gley – Niedermoor (Schmelzwasserrinne in Talsandfläche ohne Düne) Die während des Glazials aufgrund des hohen Drucks des Gletschers auf seiner Sohle entstandenen subglazialen Schmelzwässer sowie die in der Zeit zwischen den Eiszeiten durch Erwärmung des Klimas entstandenen Schmelzwässer flossen in die großen Urstromtäler ab und schufen durch ihre Erosionskraft z. T. tiefe (subglaziale) Schmelzwasserrinnen. Die im Bereich des Grundwassers liegenden Rinnen verlandeten und vermoorten nach der letzten Eiszeit. Viele dieser Rinnen, insbesondere im Gebiet der Berliner Innenstadt, wurden anthropogen verfüllt und überbaut und sind deshalb heute nicht mehr sichtbar. Solche glazifluvialen Schmelzwasserrinnen innerhalb der Talsandflächen sind z.B. Teilbereiche der Wuhle, des Neuenhagener Mühlenfließes, die Spektelake, die Egelpfuhlwiesen und das Breite Fenn. Im unmittelbaren Rinnenzentrum entstanden je nach Grundwasserstand Anmoorgleye, teilweise auch Niedermoortorfe. Zu den Rinnenrändern hin folgen je nach Grundwasserstand Gley-Braunerden bzw. Gley-Rostbraunerden sowie vergleyte Braun- bzw. Rostbraunerden. Anthropogene Bodengesellschaften BG 2420 [41] Nekrosol + Gley-Braunerde-Hortisol + Gley (Friedhof auf Talsandfläche aus Mittel- und Feinsand) Bei dieser Bodengesellschaft wurden die Böden der Talsandflächen zusammengefasst, die durch die Nutzung als Friedhof teilweise einer anthropogenen Beeinflussung unterliegen. Als Nekrosole werden dabei die durch tiefgründiges Graben beim Anlegen der Gräber entstehenden Böden bezeichnet. Auf den ungenutzten Flächen des Friedhofs auf Talsand sind dagegen noch reliktische Gley-Braunerden und Gleye zu finden. Infolge einer langjährigen Humuszufuhr entwickelten sich Humusregosole, Hortisol-Gley-Braunerden und Hortisole. Bei anderen Nutzungen sind die Böden so stark anthropogen verändert, dass ehemals natürliche Böden weitgehend zerstört bzw. durch Fremdmaterialien überschüttet wurden. BG 2470 [49] Syrosem + Kalkregosol + Pararendzina (Gleisanlage auf Aufschüttungs- und Abtragungsfläche) Zu dieser Bodengesellschaft sind die Böden, die einer Nutzung als Bahnanlagen und Bahnhof unterliegen, zusammengefasst. Die Gleiskörper bestehen aus groben Schottern unterschiedlichen Materials; Bahndämme aus Sand, auch Trümmer- und Industrieschutt wurden aufgeschüttet. Je nach Bodensubstrat kam es zur Ausbildung vor allem von Syrosemen, Lockersyrosemen, Pararendzinen und Kalkregosolen. BG 2490 [51] Lockersyrosem + Humusregosol + Pararendzina (dichte Innenstadtbebauung, im Krieg nicht zerstört, auf Aufschüttung) Diese Bodengesellschaft charakterisiert Böden innerhalb von Flächen geschlossener Bebauung der Innenstadt, die vor dem 2. Weltkrieg erbaut und nicht bzw. kaum zerstört wurden sowie stark versiegelt sind. Die in den Hinterhöfen auftretenden Böden, die einer Gartennutzung unterlagen bzw. noch unterliegen, sind durch humose Oberböden gekennzeichnet und konnten sich zu Humusregosolen, Hortisolen und Humuspararendzinen entwickeln. Auf den anderen Flächen der Hinterhöfe, die geringfügig auch mit Trümmerschutt bedeckt sein können, bildeten sich Lockersyroseme und Regosole. BG 2500 [52] Lockersyrosem + Regosol + Pararendzina (Innenstadt auf Aufschüttung) Diese Bodengesellschaft beschreibt die Böden ehemals dicht bebauter Innenstadtbereiche, die während des 2. Weltkrieges zum Teil vollständig zerstört wurden. Der Trümmerschutt verblieb größtenteils an Ort und Stelle. Auf vielen nicht durch Gebäude beanspruchten Flächen sind die Bodenschichten von wenigen Dezimetern bis zu zwei Metern mit Trümmerschutt und/oder Bausand durchsetzt bzw. bestehen aus diesem (vgl. Grenzius 1987). Wie in Abb. 10 ersichtlich, entwickelten sich auf diesen Flächen Syroseme und Pararendzinen, auf Flächen ohne Trümmerschutt Syroseme und Regosole. Die Karte der Bodengesellschaften, erarbeitet aus vorhandenen Daten unterschiedlicher Art, gibt einen Überblick über die je nach Ausgangsmaterial, Geomorphologie bzw. Landschaftsausschnitt, Grundwasserstand und Nutzung zu erwartenden Vergesellschaftungen von naturnahen und/oder anthropogenen Böden. Aus den Bodengesellschaften lassen sich die Hauptbodentypen und weitere Standorteigenschaften ableiten: Durchlüftung, Durchwurzelbarkeit, Feldkapazität und nutzbare Feldkapazität, Nährstoffspeichervermögen, potentielle und effektive Kationenaustauschkapazität als Maß für das Nährstoffspeichervermögen (vgl. Grenzius 1987). Unter Zuhilfenahme zusätzlicher Informationen (z.B. topographische Karten, aktueller Grundwasserstand) und der Bodengesellschaft ist es möglich, ohne Kartierung den jeweiligen Bodentyp im Gelände und dessen ökologische Eigenschaften mit einer gewissen Wahrscheinlichkeit herzuleiten. Aussagen zu vergleyten oder reliktisch vergleyten Böden und damit zu feuchten oder trockenen Standorten können im Zuge dieser Vorgehensweise nur unter Berücksichtigung der aktuellen Grundwasserstände gemacht werden. Da die Böden als wesentliches Landschaftselement eines Gebietes die Standortvielfalt von Flora und Fauna mitbestimmen, werden besonders seltene und unveränderte bzw. wenig veränderte Böden bei der Ausweisung von Schutzgebieten berücksichtigt. Neben der Ableitung von Standorteigenschaften ist die Bodengesellschaftskarte 01.01 auch geeignet, Auswertungen hinsichtlich des Bodenschutzes und der Bodenfunktionen vorzunehmen. In den Karten 01.06 des Umweltatlas sind Bodenkundliche Kennwerte, in den Karten 01.11 Kriterien für die Ableitung der Bodenfunktionen und in den Karten 01.12 eine Bewertung der Bodenfunktionen dokumentiert, aus denen die Karte 01.13 der „Planungshinweise zum Bodenschutz“ abgeleitet ist.
Origin | Count |
---|---|
Bund | 174 |
Land | 14 |
Wissenschaft | 2 |
Type | Count |
---|---|
Förderprogramm | 153 |
Text | 26 |
unbekannt | 9 |
License | Count |
---|---|
geschlossen | 28 |
offen | 158 |
unbekannt | 2 |
Language | Count |
---|---|
Deutsch | 186 |
Englisch | 39 |
unbekannt | 1 |
Resource type | Count |
---|---|
Archiv | 2 |
Bild | 1 |
Datei | 2 |
Dokument | 8 |
Keine | 134 |
Webdienst | 2 |
Webseite | 47 |
Topic | Count |
---|---|
Boden | 188 |
Lebewesen & Lebensräume | 141 |
Luft | 109 |
Mensch & Umwelt | 188 |
Wasser | 127 |
Weitere | 186 |