API src

Found 1399 results.

Related terms

Versuche zur Ermittlung und zum Verhalten von Bioindikatoren in mit Schadstoffen kontaminierter Luft

Die Raumluft ist haeufig mit toxischen Stoffen (besonders chlorierte Kohlenwasserstoffe wie PCP, Lindan sowie mit Formaldehyd) angereichert. Die ueblichen Analysen sind kompliziert, kostspielig und nicht lebensbezogen. Mit Pflanzen, Samen und pflanzlichem Plasma koennte der Nachweis verbessert werden, so dass ihn auch der Laie anwenden kann (was wegen der ubiquitaeren Verbreitung der Schadstoffe noetig waere).

Identifizierung von Schadstoffquellen in Bundeswasserstraßen

Veranlassung Bei der ökotoxikologischen Untersuchung von Wasser- und Sedimentproben kann oftmals nur ein Anteil der beobachteten Effekte durch bekannte Schadstoffe erklärt werden. Gleichzeitig zeigen chemische Non-Target-Analysen, dass aquatische Lebensgemeinschaften einer Vielzahl unbekannter oder unzureichend charakterisierter Stoffe ausgesetzt sind. Für eine Priorisierung und Identifizierung von Stoffen werden deshalb dringend innovative Ansätze zur Kopplung moderner chemischer und ökotoxikologischer Verfahren benötigt. Im Projekt SOURCE werden Wasser- und Sedimentproben entlang der Elbe chemisch und ökotoxikologisch charakterisiert und die Ergebnisse mithilfe wirkungsorientierter Analytik und der Modellierung molekularer und adverser Effekte integriert. Unter Berücksichtigung von Kombinationseffekten, die bei Umweltmischungen unweigerlich zu erwarten sind, wird somit eine Möglichkeit zur Identifizierung und Priorisierung von Schadstoffen und ihren Quellen geschaffen. Ziele - Bestandsaufnahme von Stoff- und Wirkungsprofilen von Sedimenten und Wasserproben entlang der Elbe - Kombination von chemisch analytischen Verfahren, Modellierung toxischer Effekte und effektbasierten Biotests - Entwicklung und Anwendung von Verfahren zur Identifizierung toxischer Stoffe und ihrer Eintragsquellen in Bundeswasserstraßen Woher kommen die Schadstoffe in unseren Flüssen? Um dieser Frage nachzugehen, werden im Projekt SOURCE Methoden der chemischen Target- und Non-Target-Analytik, bioanalytische Testverfahren und Modellierungsansätze kombiniert. Die Zahl der industriell hergestellten Chemikalien hat sich in den letzten 20 Jahren mehr als verdreifacht und liegt heute bei über 350.000 Substanzen. Gewässer werden in Europa routinemäßig jedoch nur auf wenige ausgewählte Stoffe untersucht. Dadurch bleiben Identität und Wirkung vieler Stoffe, die unsere Gewässer gefährden können, unerkannt. Vor dem Hintergrund der aktuellen Aktivitäten, z.B. zum Sedimentmanagement an der Elbe, ist es für die Entwicklung nachhaltiger Maßnahmen notwendig, die für Schadwirkungen verantwortlichen Stoffe zu identifizieren. Nur auf dieser Basis können Vorschläge zur zielgerichteten Minimierung der Einträge erarbeitet werden.

Schwermetall-Analytik von Aerosolen mit der Hamburger Protonenmikrosonde

Die Belastung der Luft mit toxischen Stoffen stellt insbesondere in Ballungsraeumen wie Hamburg eine Beeintraechtigung der Lebensqualtitaet und eine potentielle Gefaehrdung der Bevoelkerung dar. Insbesondere in der Umgebung hier angesiedelter Industrie kann die Belastung der Luft mit Schwermetallen mitunter erhebliche Werte erreichen. Die Schwermetallanalytik wird mit der durch Protonen induzierten Emission charakteristischer Roentgenstrahlung (PIXE) an der Hamburger Protonenmikrosonde durchgefuehrt. Die hohe Empfindlichkeit der verwendeten Analysemethode erlaubt auch die Durchfuehrung kurzzeitiger (stuendlicher) Probennahmen und damit die Erfassung kurzzeitiger Veraenderungen. Fuer einen 1-Jahres-Zeitraum (1991) wurde am Standort Kaltehove ein Luftprobennehmer aufgestellt und bei taeglichem Probenwechsel die Staubbelastung, zusammen mit dem Luftdruck, der Luftfeuchtigkeit, der Wind-Staerke und -Richtung gemessen. Die gemessenen Gesamtschwebstaubbelastungen lagen bei etwa 30 Prozent der Immisionsgrenzwerte fuer Langzeitmessungen (IW1) und fuer Kurzzeitemissionen (IW2) der TA Luft. Die Bleikonzentration zeigt eine starke Korrelation zur Windrichtung, hohe Werte bei suedwestlichem Wind weisen den Fahrzeugverkehr auf den Elbbruecken als Verursacher aus. Hohe Chrom-Nickel Konzentrationen bei suedlicher Windrichtung lassen auf den dort angesiedelten Industriebetrieb als Quelle schliessen. Wie zu erwarten, wird nach Niederschlaegen ein deutlicher Rueckgang der Schwebstaubkonzentration ermittelt. Der tageszeitliche Gang der Bleikonzentration weist in 1989 einen deutlichen Zusammenhang mit der Verkehrsdichte auf. Dagegen zeigen Untersuchungen, die im Jahr 1996 im Hamburger Elbtunnel durchgefuehrt wurden, keinen signifikanten Zusammenhang mit der Verkehrsbelastung. Dies wird auf die extensive Belueftung im Elbtunnel zurueckgefuehrt. Der Rueckgang der Bleikonzentration in der Luft spiegelt die Verringerung im Einsatz bleihaltiger Additive zu Kraftstoffen wider.

Abbau giftiger Substanzen, Farbstoffe, etc. in den Industrieabwaessern unter dem Einfluss von ionisierender Strahlung und UV-Licht

Bekanntlich werden bei der Produktion von Aluminium, Stahl etc., sowie von chemischen Produkten, Textilien, etc. eine Reihe von giftigen Gasen (Stickoxide, Schwefeloxide, etc.) und giftige schwer abbaubare Substanzen gebildet. Diese tragen entweder als Abgase oder Abwaesser zur Umweltverschmutzung wesentlich bei. Wir haben uns als Aufgabe gestellt, diese schaedlichen Stoffe unter dem Einfluss von Strahlung entweder in nutzbare Substanzen umzuwandeln oder aber sie so weit abzubauen, sodass sie keine Gefahr fuer die Umwelt darstellen.

Abbau von organischen Verunreinigungen durch eine Kombination von physikalisch-chemischen und biologischen Verfahren

Das Ziel dieses Forschungsvorhabens ist die Qualitaet von Abwaessern, die schwer- oder nicht -abbaubare oder toxische Verbindungen enthalten, mit einem physikalisch-chemischen Verfahren soweit zu verbessern, dass die Abwaesser anschliessend mit einem biologischen Verfahren gereinigt werden koennen. Es werden sowohl photochemische als auch elektrochemische Verfahren getestet, bei denen Hydroxylradikale die organischen Verbindungen oxidieren. Die Nutzung von Sonnenlicht, die hauptsaechlich in Entwicklungslaendern Anwendung finden koennte, ist eine Richtung der Forschung, der spezielles Interesse gewidmet wird.

CO2 und Staub - zwie interaktive Ausstellungen des WZU auf Reisen

Staub - Spiegel der Umwelt. Der Mensch hat schon früh die ungewöhnlichen Eigenschaften staubfeiner Stoffe für seine Zwecke genutzt, indem er sie z.B. zur Körperbemalung verwandte. Zugleich ist seit prähistorischen Zeiten bekannt, dass Staub auch eine Gefahr sein kann. Mit dem Atem dringt er in den Körper ein - und umso tiefer, je feiner er ist. Vor dem Hintergrund der Diskussion über Feinstaub und über nanoskalige Materialien ist es das Ziel der Ausstellung, auf unterhaltsame und doch ernsthafte Weise über den Umweltfaktor Staub zu informieren. Ein großer Experimentierbereich macht die Ausstellung gerade für Schüler und sogar für Kinder zu einem spannenden Erlebnis. Seit 2006 ist die Ausstellung zu Gast in Museen, Museen in Deutschland in Umweltbildungseinrichtungen und auf internationalen Messen. 2009 wurden Exponate der Ausstellung gleich zweimal in China präsentiert, nämlich in Shenyang und in Wuhan - in einem Pavillion des BMBF. 2011 wurde sie im Bremer Haus der Wissenschaft gezeigt. Aktuell sind einzelne Exponate im Mineralogischen Museum der Universität Bonn zu sehen. C02- Ein Stoff und seine Geschichte 30 Prozent: Das war der Gehalt. an Kohlendioxid in der Atmosphäre der jungen Erde vor drei bis vier Milliarden Jahren. Heute sind es 0,038 Prozent. Der Rest steckt in Kalksteinen, Lebewesen und natürlich den fossilen Brennstoffen, wie Öl, Gas und Kohle. Wie das Kohlendioxid dorthin gekommen ist, welche Rolle es gespielt hat in der Entwicklung von Erde, Leben und Klima - diese Geschichte erzählt die Ausstellung. Neben Bildschirminformationen und kleinen Filmen rund um den Stoff gibt es verschiedene Experimentierstationen. Eine davon findet sich in vielen Haushalten: ein Sprudelautomat. Sie zeigt, dass C02 zwar problematisch, doch kein giftiger Stoff ist, sondern ein Teil des Lebens, ein Teil der Erde. Wälder und Wiesen, Brot und Wein: Alles das war ursprünglich C02. C02 ist das Hauptprodukt der Verbrennung von Kohle, Erdöl und Erdgas, die ihrerseits mumifizierte, verwandelte Reste von Geschöpfen des Meeres oder des Landes sind. Es entsteht auch sonst überall dort, wo Leben vergeht. Die Chemiker bezeichnen es als anorganische Kohlenstoffverbindung, was ein Unsinn ist, denn ein organischeres Molekül ist gar nicht denkbar. Dieses Gas ist 'der letzte Weg allen Fleisches ', wie der Chemiker Primo Levi schrieb. Es ist die eigentliche Asche der Geschöpfe; eine gasförmige Asche, sie steigt auf in die Luft und verteilt sich rasch. Sie wirkt überhaupt nicht tot, sondern unruhig und lebendig, und schmeckt sogar erfrischend. Aus der Perspektive des Lebens ist die Luftartigkeit des C02 die entscheidende Qualität, die den Kohlenstoff, der auf Erden selten ist, allen anderen Elementen überlegen macht. Wäre C02 wie die meisten Oxide fest und schwer löslich, das Leben wäre rasch erloschen. Wäre es flüssig, so wäre das Leben aus dem Meer nie herausgekommen usw.

Ermittlung einer Eingangs- und Ausgangsbilanz für PFAS in einer typischen Papierfabrik

Teilthema im Globalvorhaben: Weiterentwicklung des Standes der Technik, national PFAS sind ubiquitär verbreitet. Es handelt sich um sehr persistente, mobile und toxische Stoffe. Einige Verbindungen werden in der wasser- und fettdichten Ausrüstung von Lebensmittelkontaktpapieren eingesetzt. Bestimmte Verbindungen kommen auch als Abriebfestmittel in Druckfarben zum Einsatz. Es ist unbekannt wie hoch die Gehalte an PFAS im Altpapier sind und wo diese in einer Papierfabrik verbleiben. in dem Forschungsvorhaben soll eine Input-Output-Analyse durchgeführt werden. Es soll geprüft werden, ob bestimmte Verarbeitungsschritte im Papierherstellungsprozess eventuell eine Senke für diese Stoffe darstellen. Es sollen darüber hinaus Emissionen in die Luft, ins Gewässer und in den Schlamm evaluiert werden.

Analyse und Ueberwachung von Radionukliden und toxischen Elementspuren in der Umwelt

Entwicklung, Verbesserung, Anpassung und Erprobung von Verfahren zur Bestimmung von Alphastrahlern und anderen Radionukliden in Luft, Wasser, Bewuchs, Boden und Nahrungsmitteln. Ueberwachung von Alpha-Strahlern, insbesondere Transuranen, in Abluft, Primaer- und Abwasser kerntechnischer Anlagen (mit BGA). Messung des natuerlichen Untergrundes einzelner Radionuklide in Luftstaub und Niederschlag (teilweise mit Usaec). Ausscheidungsanalyse von Radionukliden bei Stoffwechseluntersuchungen an Kleinkindern (mit Kinderklinik der Uni Muenchen). Ueberwachung von Elementspuren in Luftstaub durch Atomabsorptions-, Aktivierungs- und Elektroanalyse sowie Ir-Spektroskopie. Bestimmung von Nullpegel- und Intoxikationsgehalten an Pb und cd in Schlachtrindern zur Festlegung von Toleranzwerten (mit Institut fuer Nahrungsmittelkunde der Uni Muenchen) sowie in Zaehnen (mit Zahnklinik der Uni Muenchen). Ueberwachung von PO-210 in verschiedenen Nahrungsmitteln. Abgabe toxischer Elemente aus Gebrauchsgeschirr.

Belastung durch chronisch-toxische und carcinogene Stoffe und daraus entstandene Erkrankungsformen bei Voegeln. Erarbeitung von Zusammenhaengen, die fuer den menschlichen Bereich wichtig sind

An moribunden bzw. tot gefundenen Voegeln werden Reihenuntersuchungen auf Tumore und andere Erkrankungsformen durchgefuehrt. Zusammenhaenge zwischen der Biologie und der moeglichen Einwirkung von Umweltgiften soll geprueft werden.

Transport und Verbleib von Mikroplastik in Süßwassersedimenten

Mikroplastik (MP, Plastikteile kleiner als 5 mm) werden als neu aufkommende Schadstoffe betrachtet und neuste Studien belegen die potentielle Gefahr von MP für die menschliche Gesundheit und die Umwelt. Die Forschung hat sich bisher mehrheitlich auf die Untersuchung von MP in der marinen Umgebung konzentriert. Allerdings konnte MP auch vermehrt Süßwasser und -sedimenten weltweit nachgewiesen werden. Als Primärpartikel oder Sekundärprodukte aus dem Abbau von Makroplastik kann MP entweder direkt toxisch wirken oder als Überträger von sorbierten Schadstoffen fungieren. Neuste Studien belegen außerdem, dass MP in die menschliche Nahrungskette eindringen kann. Weiterhin können die dem MP beigefügten endokrinen Disruptoren wie Bisphenol A (BPA) and Nonylphenol (NP) während der Transportprozesse an das Süßwasser abgegeben werden. Dabei können Flussbettsedimente potentielle Hotspots für die Akkumulation von MP und deren Additive darstellen.Das Hauptziel dieses Projektes ist, die Akkumulation und den Transport von MP in Süßwasser und -sedimenten näher zu untersuchen. Dabei soll den folgenden beiden grundsätzlichen Fragen nachgegangen werden:(i) Welche Prozesse kontrollieren Transport und Akkumulation von MP verschiedener Größe, Dichte und Zusammensetzung und wie bilden sich sogenannte Mikroplastik-Hotspots in der hyporheischen Zone?(ii) Wie können Transport und Akkumulation von MP sowie die Freisetzung von Additiven wie BPA und NP unter variablen Umweltbedingungen beschrieben und vorhergesagt werden? Zwei Arbeitspakete (WP) sollen helfen, diese Fragen zu beantworten:WP1 befasst sich mit den Auswirkungen der grundlegenden Eigenschaften von MP wie Größe, Form, Zusammensetzung, Dichte, Auftrieb auf deren Transport und untersucht systematisch, wie verschiedene Arten von MP in der hyporheischen Zone (hier Flussbettsedimente) unter diversen hydrodynamischen und morphologischen Bedingungen akkumulieren. Dafür sollen Versuche in künstlichen Abflusskanälen (artificial flumes) durchgeführt werden. In diesen Versuchen werden repräsentative hydrodynamische und morphologische Bedingungen geschaffen, um eine Spannbreite an primären und sekundären MP zu testen, ihr Transportverhalten zu beschrieben und die Freisetzung von Additiven näher zu untersuchen. MP wird mit verschiedensten Methoden charakterisiert, z.B. mit single particle ICP-MS zur Bestimmung der Größe oder FT-IR zur Bestimmung des vorherrschenden Polymers. Während der Flume-Experimente werden die Eigenschaften der Sedimente, des Porenwassers und der Biofilme, sowie die Konzentration an BPA und NP gemessen und später analysiert, um die Reaktivität der Akkumulationshotspots zu bestimmen.WP2 beinhaltet die Entwicklung und Anwendung eines Models, um MP-Transport sowie die Freisetzung von Additiven in der hyporheischen Zone vorherzusagen. Da Modelle, die momentan im Bereich Stofftransport verwendet werden nicht für MP ausgelegt sind, soll die Lattice-Boltzmann Methode als neuer Modellansatz verfolgt werden.

1 2 3 4 5138 139 140