Das Projekt "Schwerpunktprogramm (SPP) 1315: Biogeochemische Grenzflächen in Böden; Biogeochemical Interfaces in Soil, Mikrobieller Metabolismus von Modellpestiziden in der Drilosphäre und Einfluss auf die N2O-Bildung: Verknüpfung von Prozessen mit Populationen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bayreuth, Fachgruppe Biologie, Bayreuther Zentrum für Ökologie und Umweltforschung (BayCEER), Lehrstuhl für Ökologische Mikrobiologie.Der Einsatz von Pestiziden ist in der Landwirtschaft weit verbreitet. Mineralisierung von Pestiziden findet im Boden hauptsächlich durch aerobe mikrobielle Prozesse statt. Bereiche hoher mikrobieller Aktivität im Boden schließen die Drilosphäre mit ein, d.h. Gänge, Darminhalt und Kot von Regenwürmern. Das Treibhausgas Distickstoffmonoxid (N20) wird in der Drilosphäre durch die dort ablaufenden Nitrifikation und Denitrifikation gebildet, welche von Pestiziden beeinflußt werden können. Allerdings sind die physikalisch-chemischen Parameter, aerobe und anaerobe Pestizid Abbauwege, sowie die Pestizid-abbauenden Mikroorganismen in der Drilosphäre nur wenig untersucht. Der Einfluß von Pestiziden und deren Abbauprodukte auf die Nitrifikation und Denitrifikation in der Drilosphäre sind größtenteils unbekannt. Daher sollen die folgenden Hypothesen mit Hilfe von Regenwürmer-enthaltenden Bodensäulen getestet werden: (i) In der Drilosphäre kommen bislang unbekannte, hoch aktive Prokaryotcn vor, die Phenoxyessigsäure Herbizide und deren Abbauprodukte umsetzen; und (ii) Phenoxyessigsäure-Herbizide und deren Abbauprodukte inhibieren die N20-Bildung und das Wachstum von bislang unbekannten Nitrifikanten und Denitrifikanten in der Drilosphäre. Zwischen- und Abbauprodukte sollen mit Hilfe von Gaschrornatographie (GC) und Hochdruckflüssigkeitschromatographie- Massenspektrometrie (H PLC-MS) bestimmt werden. 16S rRNA und mRNA basiertes 'Stable Isotope Probing', Quantifizierung funktioneller Gene mittels quantitativer 'real time' PCR (qPCR), 'Most Probable Number' (MPN) Analysen und zielgerichtete Isolierungsmethoden sollen zur Identifikation und Charakterisierung der prozeß-assoziierten, mikrobiellen Populationen und Mikroorganismen eingesetzt werden
Das Projekt "Pestizideffekte an den Rändern? Auswirkungen von agrochemischer Verschmutzung flussabwärts auf Organismen in Refugien" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Institut für Umweltwissenschaften.Basierend auf mehreren Studien in den letzten zwei Jahrzehnten ist weitestgehend gesichert, dass Pestizide Wirbellosen-Gemeinschaften in Bächen beeinflussen, was sich in einer Zunahme der relativen Häufigkeit von toleranten Taxa äußert. Unser Verständnis der Reaktion und der Langzeitfolgen toxischer Effekte ist jedoch noch unzureichend in Bezug auf die räumliche Dynamik und Anpassungsprozesse. Modellierungsstudien zeigten, dass sich genetische Anpassungen an Pestizide, die zu einer erhöhten Toleranz führen, auch Organismen in unbelasteten Standorten beeinflussen können. Empirische Studien über das Potenzial von Pestizideffekten flussabwärts sich auf Organismen in unbelasteten Bachabschnitten fortzupflanzen sind jedoch selten. In diesem Projekt untersuchen wir für verschiedene Wirbellose, ob sich Pestizideffekte auf Organismen in Refugien ausbreiten können. Das Projekt profitiert von einem landesweiten Monitoringprogramm zu Pestiziden (Umsetzung des nationalen Monitorings kleiner Gewässer für Pestizide), das qualitativ hochwertige Pestiziddaten, hochauflösende physikochemische Daten sowie Gemeinschaftsdaten zu Wirbellosen und Kieselalgen ohne zusätzliche Kosten liefert. Wir werden drei wirbellose Arten, darunter einen Gammarid, eine Köcherfliege und eine Eintagsfliege, in landwirtschaftlichen Stellen mit hoher Pestizidtoxizität und in zwei Abständen innerhalb von Refugien (Rand von Refugien und weiter stromaufwärts) untersuchen. Mit Hilfe von Schnelltests werden wir die Toleranz der Wirbellosen bestimmen, um mögliche Anpassungen beurteilen zu können. Darüber hinaus werden wir die genetische Vielfalt und Energiereserven in Gammariden messen. Wir stellen die Hypothese auf, dass die Anpassung die genetische Vielfalt reduziert und dass diese Reduktion sich auf unbelastete Standorte am Rand des Refugiums ausbreitet. Darüber hinaus gehen wir nach dem Konzept der Ressourcenallokation davon aus, dass eine höhere Toleranz mit einer höheren Allokation von Energie in Abwehrmechanismen verbunden ist, was zu geringeren Energiereserven im Vergleich zu weniger toleranten Organismen führt. Insgesamt wird dieses Forschungsprojekt wesentlich zum Verständnis der Mechanismen beitragen, die der höheren Toleranz in belasteten Standorten, wie in einer früheren Studie beobachtet (Shahid et al. 2018), zugrunde liegen. Außerdem wird es unsere Abschätzung der Kosten der Verschmutzung für Organismen und Populationen in unbelasteten Standorten voranbringen.