This dataset presents hydrogen sulfide (H2S) and nitrate (NO3-) concentrations in the water column at 15 stations in the Kiel Bight taken during the research cruises BE10/2018 (23.10.2018), BE03/2019 (15.03.2019), L23-13 (13.09.2023 - 15.09.2023), Hai24VE2 (24.09.2024) and EMB374 (04.09.2025 - 13.09.2025). Water samples were collected using Niskin bottles attached to a stainless-steel framework with CTD sensors. Concentrations of H2S and NO3- were measured photometrically (Hitachi U-2900). The data are used to describe seasonal hypoxia in the Kiel Bight water column and are combined with sediment and porewater data to identify controlling factors governing the accumulation of H2S at the seafloor. Furthermore, we compare the H2S measurements from the deepest Niskin bottle with bottom water H2S concentrations obtained from the benthic tracer profiler and from the overlying water in sediment cores. This allows us to illustrate H2S trends from several meters above the seafloor down to the sediment-water interface, and to discuss advantages and limitations of the different sampling techniques in characterizing geochemical conditions in the benthic environment.
Apfel (Malus domestica) ist einer der wichtigsten angebauten Früchte weltweit. In Baumschulen werden Pflanzen häufig neu gepflanzt (2-3 Jahre), was zu einer verminderten Ernteproduktivität führt, die auch als Apfelnachbaukrankheit (ARD) bezeichnet wird. ARD kann definiert werden als "eine schädlich, gestörte physiologische und morphologische Reaktion von Apfelpflanzen auf Böden, die aufgrund früherer Apfelkulturen Veränderungen in ihrem (Mikro-) Biom ausgesetzt waren". Früher wurden Bodenbegasungsmittel zur Bekämpfung von ARD verwendet. Bei diesen Mitteln sind Anwendungsschwierigkeiten, hohe Kosten und Gefahren für die Umwelt und die menschliche Gesundheit als problematisch anzusehen. Daher wäre die Züchtung und/oder Selektion weniger empfindlicher Genotypen eine nachhaltigere Lösung für ARD. Die Entwicklung von ARD-assoziierten Markern beruht jedoch auf einem besseren Verständnis der molekularen Reaktionen in planta, um die Ätiologie der Krankheit zu entschlüsseln. Kürzlich wurde gezeigt, dass Phytoalexinbiosynthesegene nach sieben Tagen Kultur auf ARD-Boden im Vergleich zu desinfiziertem ARD-Boden stark hochreguliert sind. Es zeigte sich, dass sich die Phytoalexine im Wurzelsystem in sehr hohen Konzentrationen anhäufen, was zu einer möglichen Phytotoxizität führt. ABC-Transporter, die an der Translokation und Exsudation von Phytoalexinen beteiligt sind, zeigten keine Regulation, was zu der Annahme führte, dass Phytoalexine unter ARD-Bedingungen nicht in den Boden ausgeschieden werden und sich daher in sehr hohen Konzentrationen in den Wurzeln anreichern. Zusätzlich kann der vakuoläre Transport behindert werden, was zu einer fehlenden Entgiftung der akkumulierten Substanzen führt. Ein möglicher Grund für die möglicherweise eingeschränkte Exsudation von Phytoalexinen oder von Sequestrierung in Vakuolen über ABC-Transporter könnte die Entstehung toxischer Zyanidkonzentrationen in ARD-betroffenen Pflanzen sein, was zu weniger ATP-Verfügbarkeit für ABC-Transporter führt. Ziel des Projektes ist es, die Rolle von ARD-induzierten Phytoalexinen bei ARD und molekulare Reaktionen in ARD-betroffenen Pflanzen aufzuklären. Der Fokus wird darauf liegen, ihre Rolle bei ARD unter Berücksichtigung weiterer interagierender Gene/Proteine abzuleiten. Die Toxizität und Lokalisation der Verbindungen werden ebenso analysiert wie Entgiftungsmechanismen, z.B. Transport aus dem Zytoplasma. Darüber hinaus werden weitere toxische Nebenprodukte im Cyanidstoffwechsel sowie die Energieversorgung näher untersucht, um einen detaillierten Überblick über die molekularen Mechanismen bei ARD zu erhalten. Fluoreszenz-in-situ-Hybridisierung, Mikroskopie, Genexpressionsstudien und metabolische Analysen werden eingesetzt, um dieses Ziel zu erreichen. Vergleiche zwischen einem sensitiven und einem weniger sensitiven Genotyp sollen Erkenntnisse für die frühe Vorhersage von ARD-Schweregraden in Böden liefern und dabei helfen ARD-tolerante Apfelpflanzen auszuwählen.
Dieser Antrag skizziert ein Projekt, das den Zielen des SPP 'EarthShape' folgt, indem es die Rolle von Biota für die Formungsprozesse der Erde untersucht. Diese Studie zielt darauf ab, (i) die ursprüngliche Annahme von EarthShape zu testen, dass alle primären Arbeitsgebiete eine ähnliche langfristige tektonische (Gesteinshebungs-) Geschichte aufweisen und (ii) den Einfluss von Biota auf Landschaften entlang eines ausgeprägten klimatischen und ökologischen Gradienten in der chilenischen Küstenregion über Jahrtausende zu quantifizieren. Die Annahme einer identischen tektonischen (Gesteinshebungs-) Geschichte aller vier primären Arbeitsgebiete impliziert, dass laterale Variationen der Topographie und der stattfindenden Erdoberflächenprozesse ausschließlich durch Klima und Biota gesteuert werden/wurden. Tektonische Studien und thermochronologische Pilotdaten, legen nahe, dass dies möglicherweise nicht der Fall ist, und somit jedwede Schlussfolgerung über Biota- Topographie-Erosionsbeziehungen unvollkommen ist. Wir werden Festgesteins- Niedrigtemperatur-Thermochronologie (Apatit (U-Th)/He- und Fission-Track-Methode) und thermisch-kinematische Modellierung (PECUBE) anwenden, um die tektonische (Gesteinshebungs-) Geschichte aller vier primären Arbeitsgebiete in EarthShape über Millionen Jahre zu rekonstruieren. Die Ergebnisse sind sowohl für Beobachtungs- als auch für Modellierungsstudien, die großskalige Tektonik-Klima-Biota-Interaktionen und Landschaftsentwicklungen untersuchen (vgl. Phase-II-EarthShape-Anträge: PIs Ehlers und Hickler, Schaller und van der Kruk, Mutz und Niedermeyer), von großer Bedeutung. Detritische (Tracer) Thermochronologie wird in allen primären Arbeitsgebiete von EarthShape angewendet, um die antreibenden Kräfte von Erdoberflächenprozessen über Jahrtausende zu identifizieren. Von besonderem Interesse ist hierbei die Untersuchung der Beziehungen zwischen Vegetationsbedeckung, Geomorphologie, Erosion und Sedimenttransport. Dies geschieht durch statistische Zuordnung der detritischen Altersverteilungen zu den Herkunftsgebieten in den untersuchten Einzugsgebieten. Geomorphologische und biotische Einflussfaktoren werden aus verschiedenen Fernerkundungsdaten abgeleitet. Geomorphologische Erosionsfaktoren werden aus digitalen Höhenmodellen (ASTER, LiDAR) berechnet, während Vegetations-Erosionsfaktoren aus der Analyse multispektraler Satellitendaten (Sentinel, Landsat) in Verbindung mit Feldarbeit abgeleitet werden. Hieraus resultierende relative Erosionskarten können mit kosmogenen Nuklid-Erosionsraten kombiniert werden (z. B. EarthShape Phase I + II, PIs Schereler et al., Schaller und van der Kruk), um hochaufgelöste Erosionsraten-Karten für alle primären Arbeitsgebiet von EarthShape abzuleiten. Wir erwarten, dass dieser innovative multidisziplinäre Ansatz (Kombination von Thermochronologie und Fernerkundungsdaten) unser Verständnis der tektonischen, klimatischen und biologischen Landschaftsdynamik verbessern wird.
Sind Moschusverbindungen als Tracer fuer Verunreinigungen der Grund- und Trinkwasser geeignet? Lassen sich diese Stoffe relativ einfach im Oberflaechen- und Grundwasser nachweisen? Polycyclische Moschusstoffe sind besser geeignet als die Nitromoschusstoffe. Der Nachweis kann mittels SPME (solid phase microextraction) erfolgen.
Im Fokus des Projektes steht der Einfluss des organischen Stoffkreislaufs auf den biogeochemischen Kreislauf der (Ultra-)Spurenmetalle Thallium (Tl) und die Gruppe der Seltenen Erden Elemente (SEE) im Küstenbereich. Bisher wird davon ausgegangen, dass diese Metalle nicht von bio-assoziierten Prozessen beeinflusst werden. Aktuelle Studien weisen jedoch darauf hin, dass diese Metalle in hochproduktiven Küstengebieten in Verbindung mit organischen Stoffkreisläufen stehen und im organischen Stoffpool akkumuliert werden. Ein Umstand, welcher ihr Potenzial zur Schädigung von Küstenökosystemen deutlich macht. Bislang ist jedoch wenig darüber bekannt, wie diese Metalle mit welcher Fraktion des organischen Stoffpools in Verbindung stehen und welchen Einfluss organische Stoffkreisläufe auf deren biogeochemische Kreisläufe haben, und umgekehrt. Außerdem ist bislang nicht geklärt, welche Prozesse für die beobachteten räumlichen und zeitlichen Änderungen in den Konzentrationsmustern von Tl und SEE, insbesondere in den Küstengebieten, verantwortlich sind. In Anbetracht der Toxizität dieser Metalle, der anthropogenen Veränderung ihres Vorkommens im Küstenbereich, sowie ihrer Verwendung als Tracer für ozeanische Prozesse, sind Kenntnisse über ihre biogeochemischen Kreisläufe unerlässlich. Zentrale Aspekte, die im Rahmen dieses Projekts untersucht werden sollen, sind: (1) Das Verhalten und der Verbleib von natürlich und anthropogen eingetragenem Tl und SEE in den verschiedenen Kompartimenten des Küstenozeans, und (2) Der Einfluss von organischen Stoffkreisläufen, in Bezug auf die lebende und nicht lebende Fraktion des Stoffpools, auf die Konzentrationsmuster von Tl und SEE und umgekehrt.Diese Aspekte werden mittels eines höchst interdisziplinären Multiparameter-Ansatzes untersucht, in welchem labor- und feldbasierte Ansätze von unterschiedlicher ökologischer Komplexität und zeitlicher Auflösung kombiniert werden. Auf Basis eines Mikrokosmen-Ansatzes, in welchem eine für die Nordsee typische Phytoplanktongemeinschaft und repräsentative Einzelarten unter umgebungs- und erhöhten Tl- und SEE-Bedingungen inkubiert werden, werden die artspezifischen Auswirkungen auf das Verhalten von Tl und SEE und umgekehrt die Reaktion des Phytoplanktons auf anthropogenen Stress ermittelt. Der Einfluss einer Phytoplanktonblüte und den damit verbundenen biogeochemischen Prozessen auf die Metallkonzentrationen im intertidalen Küstenbereich sowie potenzielle Schlüsselfaktoren, werden im Rahmen eines Mesokosmen-Ansatzes untersucht. Die saisonale und interannuelle Variabilität der Tl- und SEE-Dynamik im Küstenbereich sowie die verantwortlichen Hauptfaktoren, werden anhand von Multiparameter-Zeitseriendaten, welche im Küstenbereich der deutschen Nordsee erhoben werden, untersucht. Anhand der Ergebnisse werden außerdem die Erkenntnisse aus den Mikro- und Mesokosmenkonzepten validiert und deren Übertragbarkeit auf ein natürliches System bewertet.
Untersuchung der lokalen Ausbreitung von Schadstoffen in der Atmosphaere. Bestimmung von Ausbreitungsparametern durch Tracerexperimente und Turbulenzmessungen mit Vektorwindfahnen. Studium der Hoehen- und Rauhigkeitsabhaengigkeit der Ausbreitungsparameter. Weiterentwicklung von Ausbreitungsmodellen unter Beruecksichtigung der Theorie der Turbulenz. Untersuchung der Ablagerung von Aerosolen auf verschiedenen Grenzflaechen als Funktion der Partikelgroesse, der meteorologischen Bedingungen und der Struktur der Ablagerungsflaechen.
Ziel ist die Erfassung des Wasserhaushalts und der Stoffdynamik heterogener urbaner Standorte. Kernpunkt ist dabei die Kombination mit den geophysikalischen Messungen zur räumlichen Flächenvariabilität und Wasserhaushalt in Zusammenarbeit mit dem Teilprojekt GEO. Feldversuche mit Tracern und Infiltrationsexperimente sind zur inversen Bestimmung von Transportparametern sowie zur Dektierung von hydrophilen und -phoben Bodenbereichen geplant. Laborexperimente dienen zur Bestimmung der räumlichen Verteilung der hydraulischen Funktionen, der Desorptionscharakteristiken sowie der wassergehalts- und temperaturabhängigen CO2-Freisetzung. Die Experimente werden vertieft mit bodenchemischen und biologischen Detailuntersuchungen der anderen Teilprojekte. In der ersten Projektphase steht die bodenphysikalische und -chemische Standortcharakterisierung, der Aufbau und die Betreuung von Meßfeldern. Die Versuche werden auf drei Standorten durchgeführt: Einem Transekt von einer stark befahrenen Straße in eine Parkfläche, einer teilversiegelten Fläche sowie einer ehemaligen Rieselfeldfläche. Zusammen mit den Laboruntersuchungen stehen Grundlagenprozesse zum bodenphysikalischen Verhalten (ungesättigte Wasserleitfähigkeit, Hydrophobizität) und zu den -chemischen Eigenschaften (Sorption-Desorption, CO2-Freisetzung) im Mittelpunkt. Darauf aufbauend sollen in der nächsten Projektphase numerische Modelle weiterentwickelt werden, um in hoher räumlicher und zeitlicher Auflösung das langfristige Verhalten des Wasser- und der Stoffhaushalts für unterschiedliche urbane Standortbedingungen zu berechnen.
| Origin | Count |
|---|---|
| Bund | 2036 |
| Land | 20 |
| Wissenschaft | 46 |
| Zivilgesellschaft | 1 |
| Type | Count |
|---|---|
| Chemische Verbindung | 2 |
| Daten und Messstellen | 24 |
| Förderprogramm | 1949 |
| Gesetzestext | 2 |
| Taxon | 7 |
| Text | 64 |
| WRRL-Maßnahme | 12 |
| unbekannt | 37 |
| License | Count |
|---|---|
| geschlossen | 85 |
| offen | 2002 |
| unbekannt | 8 |
| Language | Count |
|---|---|
| Deutsch | 1766 |
| Englisch | 624 |
| Resource type | Count |
|---|---|
| Archiv | 10 |
| Bild | 7 |
| Datei | 15 |
| Dokument | 48 |
| Keine | 1347 |
| Multimedia | 2 |
| Unbekannt | 1 |
| Webseite | 677 |
| Topic | Count |
|---|---|
| Boden | 1622 |
| Lebewesen und Lebensräume | 1769 |
| Luft | 1205 |
| Mensch und Umwelt | 2095 |
| Wasser | 1395 |
| Weitere | 2059 |