API src

Found 30 results.

Related terms

Teilprojekt 1

Das Projekt "Teilprojekt 1" wird vom Umweltbundesamt gefördert und von Max-Planck-Gesellschaft zur Förderung der Wissenschaften, Max-Planck-Institut für Molekulare Genetik durchgeführt. Projektziel ist die Etablierung einer genomischen Hochdurchsatz-Plattform basierend auf der Technologie des Zelltransfektionsarrays (TCA) zur Entwicklung einer effizienten Methode für funktionelle Genanalysen in primären Zellen als Alternative zum Tierversuch. Durch den Einsatz der Techniken von RNA Interferenz (RITA) und Genüberexpression (DTCA) werden wir ein in vitro Verfahren etablieren, dessen Anwendung zu einer signifikanten Reduktion von knockout-Analysen und Überexpressionsstudien im Tierversuch beitragen wird. Im Mikroarray-Format gespottete siRNA und cDNA wird für den nachfolgenden Transfer in mehrere humane Zelllinien sowie Primärzellen der Immunantwort, mit Transfektionsreagenz inkubiert. Die Zielgen-Produkte werden mittels Immunfluoreszenz detektiert. Durch Zytometrie sollen die anhand TCA gewonnenen Daten auf Einzelzellebene bestätigt werden. Entwicklung und Optimierung der RITA- und DTCA-Technologie werden zu einer deutlichen Reduktion von in vivo Experimenten an genetisch veränderten Tieren führen. Die kommerzielle Nutzung einzelner, im Verlauf des Projekts entwickelter Elemente der TCA-Technik, wird durch den Industriepartner des Konsortiums erfolgen.

Activation tagging in aspen using an inducible two component Ac/Ds-enhancer element system

Das Projekt "Activation tagging in aspen using an inducible two component Ac/Ds-enhancer element system" wird vom Umweltbundesamt gefördert und von Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik durchgeführt. Based on the Ac/Ds two element transposition system from maize an activation tagging approach is suggested for the hybrid aspen (Populus tremula x tremuloides) line -Esch5-. The proposed approach is based on results obtained from our earlier work on the genetic transfer of the maize transposable element Ac and its functional analysis in hybrid and pure aspen lines. It was shown that the Ac element is active in aspen and reintegrates elsewhere in genomic regions in high frequency. However, a two element transposon tagging system where Ac and Ds are put together in crosses is not feasible in trees due to the in part long vegetative phases. To overcome this barrier, an inducible two element Ac/ATDs element system is suggested to induce activation tagged variants following two independent transformation steps. In combination with a 35S enhancer tetramer and outward facing two CaMV 35S promoter located near both ends of the ATDs element, expression of genes can be elevated which are located adjacent to the new integration site of the element. As selective marker for ATDs transposition, both knocking-out the expression of a phenotypic marker (rolC gene) and a negative selection marker gene (tms) are considered. Thus, the transposition can easily be screened in primary transgenic lines.

Carbon acquisition during pathogenic development of Ustilago maydis and Colletotrichum graminicola

Das Projekt "Carbon acquisition during pathogenic development of Ustilago maydis and Colletotrichum graminicola" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Toxikologie und Genetik (ITG) durchgeführt. The biotrophic fungus Ustilago maydis infects corn and induces the formation of tumors. In order for the fungus to proliferate in the infected tissue, U. maydis has to redirect the metabolism of the host to the site of infection. We wish to elucidate how this is accomplished. To this end we will perform transcript profiling during the time course of infection for both, the fungus and the maize plant. This will be complemented by metabolome analysis of different tissues during infection as well as by apoplastic fluid analysis. The goals will be to identify the carbon sources taken up by the fungus during biotrophic growth, to identify the transporters required for uptake, determine their specificity and elucidate how these carbon sources are provided by the plant. Fungal mutants affected in discrete stages of pathogenic development will be included in these studies. Likely candidate genes for carbon uptake/supply as well as for redirecting host metabolism will be functionally characterized by generating knockouts in the fungus and by isolating plants carrying mutations in respective genes or by generating transgenic plants expressing RNAi constructs.

Transformation von Perlhirse zur Verbesserung der Pilzresistenz

Das Projekt "Transformation von Perlhirse zur Verbesserung der Pilzresistenz" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Fachbereich Biologie, Biozentrum Klein Flottbek und Botanischer Garten durchgeführt. Pearl millet is the sixth most important crop world-wide and the main food source for the world's poorest and most food-insecure people in Africa and India. It is a high yielding cereal, tolerant to drought and can be grown in arid areas where maize and even sorghum fail. In Africa alone a total of 13.330.168 t pearl millet were produced during the harvest period of 2001 (FAO, 2001).Pearl millet is susceptible to many fungal diseases, for example downy mildew (Dm) caused by Sclerospora graminicola. Infection with this fungus causes yield losses up to 30Prozent every year (Safeeulla, 1976).Due to the poor nutrition situation in developing countries and the expanding desertification, it is of great interest to develop high-yielding and pathogen resistant pearl millet lines to help attain food security. In addition to classical breeding methods, genetic engineering is a promising approach to insert useful traits into plants. Besides, the use of pesticides to combat fungal attack can be reduced, which results in the preservation of the environment.Efficient regeneration and transformation systems, which are essential prerequisites for the proposed project, have been established in our group (Oldach et al., 2001; Girgi et al., 2002).The aim of the project is the production of fungal resistant pearl millet plants. The already established regeneration and transformation methods will be utilised to introduce fungal resistance genes like those encoding for antimicrobial proteins, defensins, chitinases and glucanases into susceptible pearl millet lines. The improvement of the resistance of transgenic pearl millet lines will be tested by phytopathological assays under laboratory conditions and later in controlled field experiments.

ProBenBt - Bewahrung des Nutzens von Bt-Toxinen gegenüber einer Bildung von Insektenresistenz durch Monitoring und Management

Das Projekt "ProBenBt - Bewahrung des Nutzens von Bt-Toxinen gegenüber einer Bildung von Insektenresistenz durch Monitoring und Management" wird vom Umweltbundesamt gefördert und von Technische Hochschule Aachen, Fachgruppe Biologie, Lehrstuhl für Biologie V (Ökologie, Ökotoxikologie, Ökochemie) durchgeführt. Eine alternative Pflanzenschutzstrategie im Maisanbau gegen die Hauptschädlinge in Europa, den Maiszünsler Ostrinia nubialis (ECB) und den Mediterranen Maiszünsler Sesamia nonagroides (MCB), ist die Einführung von transgenem Mais, der ein Bt-Toxin expremiert. Wie jede Anwendung von Toxinen im Pflanzenschutz besteht die Gefahr einer Resistenzbildung. Um diese neue Pflanzenschutzstrategie möglichst lange zu erhalten, bedarf es eines Resistenzmanagements. Erste Erfahrungen liegen aus den USA vor, wo dieser Mais seit mehreren Jahren angebaut wird. Aufgrund der unterschiedlichen Verhältnisse in Europa und den USA lassen sich diese Erfahrungen aber nicht übertragen. Deshalb wurde das EU-Forschungsprojekt ProBenBt (Protecting the benefits of Bt-toxins from insect resistance development by monitoring and management ) ins Leben gerufen. Ziel diese Projektes ist in einem ersten Schritt die nötigen Basisdaten für ein Resistenzmanagement zu sammeln und in einem zweiten Schritt in einen Resistenzmanagementplan umzusetzen. Im Einzelnen stehen folgende Punkt im Mittelpunkt des Projektes: Monitoring der Bt-Suszeptibilität von EBC und MCB; Ausbreitungsvermögen und genetische Struktur der ECB- und MCB-Populationen; Genfluss zwischen verschiedenen ECB-Rassen; Sammelung von EBC und MCB in Europa; Bestimmung der Häufigkeit des Resistenzallels; Züchtung von resistenten Stämmen im Labor; Charakterisierung des Resistenzmechanismus; Entwicklung eines Prognoseinstruments zur Entwicklung einer Bt-Resistenz; Im Forschungsverbund arbeiten Wissenschaftler aus Deutschland, Italien, Griechenland, Spanien, Frankreich, Slowakei, USA und Australien zusammen.

Untersuchung des horizontalen Gentransfers in die bakterielle Endophytenmikroflora von Forstgehölzen und Abschätzung einer möglichen Ausbreitung transgener DNA in die Umwelt

Das Projekt "Untersuchung des horizontalen Gentransfers in die bakterielle Endophytenmikroflora von Forstgehölzen und Abschätzung einer möglichen Ausbreitung transgener DNA in die Umwelt" wird vom Umweltbundesamt gefördert und von Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V., Institut für Landschaftsbiogeochemie durchgeführt. Im Projekt soll die ökologische Relevanz eines horizontalen Gentransfers innerhalb der endophytischen Mikroflora von Forstgehölzen untersucht und bewertet werden. Hierzu wird in einem Modellsystem mit Pappel-Stecklingen/Jungpflanzen ein Gentransfer über die bakterielle Konjugation in die Endophytenmikroflora induziert. Der Gentransfer erfolgt durch ein rekombinantes Plasmid mit einem geeigneten Reportergen, das in vitro in einen Agrobakterien- und einen endophytischen Bakterienstamm eingebracht wurde. Es wird geprüft, inwieweit sich das rekombinante Plasmid in der Endophytenmikroflora etablieren kann. Ein weiterer Schwerpunkt ist die Abschätzung des Entlassens des rekombinanten Plasmids aus der Endophytenmikroflora der Pappel in verschiedene Umweltmedien (Boden und zersetztes Pflanzenmaterial).

Einfluss eines rekombinanten humanen P450-Systems auf endogene Inhaltsstoffe in transformierten Pflanzen von Nicotiana tabacum L.

Das Projekt "Einfluss eines rekombinanten humanen P450-Systems auf endogene Inhaltsstoffe in transformierten Pflanzen von Nicotiana tabacum L." wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Institut für Umweltforschung, Biologie V, Lehrstuhl für Umweltbiologie und -chemodynamik durchgeführt. Pflanzliche P450-Enzyme besitzen sowohl Aufgaben im Primär- und Sekundärstoffwechsel der Pflanzen als auch in der Metabolisierung von Xenobiotika einschließlich Herbiziden. Da z.B. Mais eine natürliche Resistenz gegenüber dem Triazin-Herbizid Atrazin aufweist, konnten suszeptible Wildpflanzen, die bei Feldanbau neben den Kulturpflanzen aufkommen, durch Anwendung des Herbizids ohne Schädigung der Kulturpflanzen selektiv bekämpft werden (Herbizidselektivität). Kulturpflanzen wie z.B. Tabak und Kartoffel, die keine oder nur eine unzureichende natürliche Resistenz gegenüber einem bestimmten Herbizid besitzen, können durch Agrobacterium tumefaciens-vermittelte Transformation mit einem Säuger-P450-Isoenzym (z.B. CYP1A1 oder CYP1A2) Herbizid-resistent werden. Seit einigen Jahren gibt es in dieser Richtung Bestrebungen, P450-transgene Pflanzen herzustellen. Aufgrund der überlappenden, breiten Substratspezifität des jeweils eingebrachten Säuger-P450-Isoenzyms (Ratte, Mensch) wird in den transgenen Pflanzen meist eine multiple Resistenz gegen verschiedene Herbizide mit unterschiedlichen Strukturen und Wirkmechanismen beobachtet. Vor der Vermarktung von transgenen Pflanzen müssen diese in Feldversuchen getestet werden. Dabei wird die Verträglichkeit des Genproduktes, die Eigenschaften der modifizierten Pflanze, die Expressionsstabilität des eingebrachten Fremd-Gens und mögliche ökologische Auswirkungen untersucht. Zusätzlich sollte neben der Substratspezifität des fremden P450-Isoenzyms gegenüber Xenobiotika getestet werden, ob pflanzliche Sekundärmetaboliten als Substrate in Frage kommen. Außerdem sind mögliche Einflüsse auf den normalen Stoffwechsel der Pflanzen von Interesse, die sich auf den Phänotyp der Pflanzen auswirken können. Z.B. wurde bei Cyp2c14-transformierten Tabak-Pflanzen (aus Kaninchen) eine verstärkte Seneszenz beschrieben, die sich in einem verringertem Chlorophyll-Gehalt, einem erhöhten Gehalt an Abbauprodukten der Lipid-Peroxidation und einem Abbauprodukt des Nornicotins und in einer Abnahme des Nicotin-Gehaltes äußerte. Außerdem wuchsen die Pflanzen langsamer und brauchten mehr Zeit zur Bewurzelung. Dies sind Anzeichen dafür, dass das Einbringen eines Fremd-P450-Gens in Tabak über die oxidative Veränderung der Membranlipide oder -sterole und damit über die Veränderung der Membranstruktur, durch einen hormonellen Eingriff durch Umsetzung eines Brassinosteroids oder die Unterdrückung endogener P450-Gene möglicherweise schwerwiegende metabolische Auswirkungen zur Folge haben kann. Vor diesem Hintergrund wurde untersucht, ob die Agrobakterien-vermittelte Transformation von Tabak mit der cDNA des humanen CYP1A2 Auswirkungen auf den endogenen Nicotin-Gehalt der Pflanzen zur Folge haben. CYP1A2 gehört dabei neben anderen Isoenzymen im Gegensatz zu den Hauptenzymen CYP2A6, CYP2B6 und CYP2D6 zu den Isoenzymen, die Nicotin nur bei hoher Substratkonzentration umsetzen. Nicotin besitzt dabei als natürliches Insektizid eine wichtige ökol u.s.w.

Glufosinat: Metabolismus in transgenen und nicht-transgenen Pflanzengeweben sowie Schicksal im Boden

Das Projekt "Glufosinat: Metabolismus in transgenen und nicht-transgenen Pflanzengeweben sowie Schicksal im Boden" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Institut für Umweltforschung, Biologie V, Lehrstuhl für Umweltbiologie und -chemodynamik durchgeführt. Glufosinat (oder Phosphinotricin) ist ein vergleichsweise modernes Herbizid, das seit etwa 25 Jahren in Gebrauch ist. Bei der Verbindung handelt es sich um eine Aminosäure; üblicherweise bezeichnet man das DL-Racemat als Glufosinat, das L-Enantiomer als Phosphinothricin. Die Verbindung ist Teilstruktur eines von den Pilzen Streptomyces viridochromogenes und Streptomyces hygroscopicus produzierten natürlichen Antibiotikums (Tripeptid: L-Alanin-L-Alanin-L-Phosphinothricin). Neben seiner antibakteriellen Wirkung zeigt Glufosinat eine nicht-selektive herbizide Wirkung. Der antibakterielle und herbizide Effekt geht nur vom L-Enantiomer aus; das D-Enantiomer ist inaktiv. Sowohl Glufosinat (Racemat) als auch das Tripeptid (Bialaphos oder Bilanaphos; mit L-Enantiomer) werden als Herbizide vermarktet. Die herbizide Wirkung von Phosphinothricin beruht auf einer Inhibition der Glutaminsynthetase. Glufosinat weist günstige ökotoxikologische Eigenschaften auf, z.B. bezüglich Versickerung, Abbau sowie Toxizität gegenüber Tier und Mensch. Auf Grund dieser Eigenschaften ist Glufosinat ein geeigneter Kandidat zur Herstellung gentechnisch modifizierter Herbizid-resistenter Pflanzen, um Glufosinat auch selektiv - im Nachauflauf - einsetzen zu können. Dazu wurden verschiedene Spezies, wie z.B. die Zuckerrübe, mit dem bar-Gen aus Streptomyces hygroscopicus transformiert. Das bar-Gen codiert für eine Phosphinothricin-N-acetyltransferase, die Phosphinothricin zum nicht herbizid-wirksamen, stabilen N-Acetylderivat umsetzt. Bei entsprechend hoher Expression des bar-Gens resultiert eine Glufosinat-resistente Pflanze. Ein Ziel unseres Forschungsvorhabens war es, den Metabolismus von Glufosinat und der einzelnen Enantiomere (L- und D-Phyosphinothricin) in transgenen und nicht transgenen Pflanzenzellkulturen zu untersuchen. Die transgenen Kulturen, die von der Zuckerrübe (Beta vulgaris) stammten, waren mit dem bar-Gen transformiert, exprimierten demnach die Phosphinothricin-N-acetyltransferase. Sie wurden aus entsprechenden Sprosskulturen initiiert. Daneben wurden nicht-transgene Kulturen von Zuckerrübe, Karotte (Daucus carota), Fingerhut (Digitalis purpurea) und Stechapfel (Datura stramonium) untersucht. In einer zweiten Versuchsserie wurden abgetrennte Sprosse und Blätter von 20 Wildpflanzen auf den Metabolismus von Glufosinat untersucht. Es sollte überprüft werden, ob qualitative und quantitative Unterschiede im Umsatz des Herbizids im Pflanzenreich vorkommen und möglicherweise eine natürliche (teilweise) Resistenz gegenüber Glufosinat existiert. Schließlich wurde das Schicksal des Herbizids im Boden (Abbau, Versickerung) nach Aufbringung des Wirksstoffs in einer handelsüblichen Formulierung auf ein bewachsenes Versuchsfeld im Freiland untersucht.

Effects of GM wheat cultivation on the decomposition of GM biomass by soil arthropods and annelids

Das Projekt "Effects of GM wheat cultivation on the decomposition of GM biomass by soil arthropods and annelids" wird vom Umweltbundesamt gefördert und von Universität Bern, Abteilung Synökologie Institut für Ökologie und Evolution durchgeführt. How digestible is transgenic wheat for earthworms? Genetically modified crops are intended to be toxic for the pests that attack them. At the same time, however, they could harm beneficial organisms. Background Crop plants can be genetically modified to make them immune to pathogens such as fungi, or unpalatable or toxic for pests that feed on them. The overriding objective of plant breeders is to reduce the use of crop protection products. The same substances may, however, be harmful to animals that are important for plants, such as woodlice and worms, as they play a central role in decomposing plant material and releasing nutrients into the soil. Objectives The diversity of species and activity of selected soil-dwelling organisms are expected to provide information on the impact of transgenic plants on these important groups of animals. In addition, nutrient uptake and reproduction of selected soil-dwelling organisms will be compared in areas used to grow genetically modified wheat and areas used to grow conventional wheat. Methods Arthropods (such as woodlice) and segmented worms (such as earthworms) are beneficial invertebrates that live in the soil. Their diversity will be investigated using soil samples as part of the field trial with transgenic wheat (cf. Keller project I). Their activity and nutrient uptake will be determined by burying a constant volume of leaf material derived from transgenic wheat plants and conventional wheat plants for a period of several months. The amount eaten by the soil-living organisms will subsequently be measured. Significance Little is known about the effect of substances that may be released into the soil from the transgenic plants being investigated here. The project is using arthropods and annelid worms as an example of how to investigate this question. The ecologically oriented design of the project will also create a basis for assessing the risk of transgenic plants affecting soil fertility in open cultivation.

Analysis of Pm3 resistance gene function in transgenic wheat

Das Projekt "Analysis of Pm3 resistance gene function in transgenic wheat" wird vom Umweltbundesamt gefördert und von Universität Zürich, Institut für Pflanzenbiologie durchgeführt. Can wheat be genetically engineered to become durably resistant to mildew? Individual resistance genes to mildew protect wheat plants against some, but not all, variants of this pathogen. A series of field trials will be carried out to test various means of genetically engineering wheat to enhance its resistance. The combination of several genes will play a central role in this project. Background Wheat has various genes that are responsible for resistance to mildew. One of these genes has seven variants, known as alleles. Individually, these alleles make wheat resistant to some, but not all, variants of the mildew fungus. There are in fact varieties of conventional wheat that have a certain degree of resistance to mildew. However, this resistance is often lost within a short time-frame. To overcome this shortcoming, genetic engineering will be used to combine the alleles. Field trials are the only way to find out whether long-term resistance can be achieved by this means. Objectives Various transgenic wheat lines will undergo comprehensive testing in a field trial (cf. Keller project I). The aim is first to establish whether the individual lines do indeed have better resistance to mildew. The second aim is to investigate how the additional gene affects the performance of the plant - in terms of yield, for example. The project also aims to analyse the effect of the environment on the plants' resistance properties. Methods Transgenic wheat lines - each containing one of the seven resistance alleles - will be developed and tested over three years for properties including seed maturation, yield and resistance following artificial and natural infection with mildew. Some of these lines will also be cultivated as a seed mixture. At the same time, wheat lines will be produced which combine the different alleles in the same plant. Both trials will test whether and to what extent mildew develops less frequently. Significance This is the first time that a field trial of this size will be carried out with transgenic plants in Switzerland. The project will not only elicit a major response from the general public, it will also provide new facts about the possible benefits of genetically modified plants.

1 2 3