Conductivity-temperature-depth profiles were measured using a Seabird SBE 911plus CTD during RV HEINCKE cruise HE660. The CTD was equipped with duplicate sensors for temperature (SBE3plus), conductivity (SBE4) and oxygen (SBE43). Additional sensors such as a WET Labs C-Star transmissometer, a WET Labs ECO-AFL fluorometer and an altimeter (PSA-916 Teledyne (Benthos)) were mounted to the CTD. Temperature, conductivity and oxygen sensors are calibrated by the manufacturer once a year before being mounted in January. They are used throughout the year and no post-cruise or in-situ calibration is applied. All other sensors are calibrated irregularly. Data were connected to the station book of the specific cruise as available in the DSHIP database. Processing of the data including removal of obvious outliers followed the procedures described in CTD Processing Logbook of RV HEINCKE (hdl:10013/epic.47427). The processing report for this dataset is linked below.
Conductivity-temperature-depth profiles were measured using a Seabird SBE 911plus CTD during RV HEINCKE cruise HE658. The CTD was equipped with duplicate sensors for temperature (SBE3plus), conductivity (SBE4) and oxygen (SBE43). Additional sensors such as a WET Labs C-Star transmissometer, a WET Labs ECO-AFL fluorometer and an altimeter (PSA-916 Teledyne (Benthos)) were mounted to the CTD. Temperature, conductivity and oxygen sensors are calibrated by the manufacturer once a year before being mounted in January. They are used throughout the year and no post-cruise or in-situ calibration is applied. All other sensors are calibrated irregularly. Data were connected to the station book of the specific cruise as available in the DSHIP database. Processing of the data including removal of obvious outliers followed the procedures described in CTD Processing Logbook of RV HEINCKE (hdl:10013/epic.47427). The processing report for this dataset is linked below.
Conductivity-temperature-depth profiles were measured using a Seabird SBE 911plus CTD during RV HEINCKE cruise HE656. The CTD was equipped with duplicate sensors for temperature (SBE3plus), conductivity (SBE4) and oxygen (SBE43). Additional sensors such as a WET Labs C-Star transmissometer, a WET Labs ECO-AFL fluorometer and an altimeter (PSA-916 Teledyne (Benthos)) were mounted to the CTD. Temperature, conductivity and oxygen sensors are calibrated by the manufacturer once a year before being mounted in January. They are used throughout the year and no post-cruise or in-situ calibration is applied. All other sensors are calibrated irregularly. Data were connected to the station book of the specific cruise as available in the DSHIP database. Processing of the data including removal of obvious outliers followed the procedures described in CTD Processing Logbook of RV HEINCKE (hdl:10013/epic.47427). The processing report for this dataset is linked below.
Conductivity-temperature-depth profiles were measured using a Seabird SBE 911plus CTD during RV HEINCKE cruise HE655/2. The CTD was equipped with duplicate sensors for temperature (SBE3plus), conductivity (SBE4) and oxygen (SBE43). Additional sensors such as a WET Labs C-Star transmissometer, a WET Labs ECO-AFL fluorometer and an altimeter (PSA-916 Teledyne (Benthos)) were mounted to the CTD. Temperature, conductivity and oxygen sensors are calibrated by the manufacturer once a year before being mounted in January. They are used throughout the year and no post-cruise or in-situ calibration is applied. All other sensors are calibrated irregularly. Data were connected to the station book of the specific cruise as available in the DSHIP database. Processing of the data including removal of obvious outliers followed the procedures described in CTD Processing Logbook of RV HEINCKE (hdl:10013/epic.47427). The processing report for this dataset is linked below.
Conductivity-temperature-depth profiles were measured using a Seabird SBE 911plus CTD during RV HEINCKE cruise HE659. The CTD was equipped with duplicate sensors for temperature (SBE3plus), conductivity (SBE4) and oxygen (SBE43). Additional sensors such as a WET Labs C-Star transmissometer, a WET Labs ECO-AFL fluorometer and an altimeter (PSA-916 Teledyne (Benthos)) were mounted to the CTD. Temperature, conductivity and oxygen sensors are calibrated by the manufacturer once a year before being mounted in January. They are used throughout the year and no post-cruise or in-situ calibration is applied. All other sensors are calibrated irregularly. Data were connected to the station book of the specific cruise as available in the DSHIP database. Processing of the data including removal of obvious outliers followed the procedures described in CTD Processing Logbook of RV HEINCKE (hdl:10013/epic.47427). The processing report for this dataset is linked below.
Conductivity-temperature-depth profiles were measured using a Seabird SBE 911plus CTD during RV HEINCKE cruise HE654/1. The CTD was equipped with duplicate sensors for temperature (SBE3plus), conductivity (SBE4) and oxygen (SBE43). Additional sensors such as a WET Labs C-Star transmissometer, a WET Labs ECO-AFL fluorometer and an altimeter (PSA-916 Teledyne (Benthos)) were mounted to the CTD. Temperature, conductivity and oxygen sensors are calibrated by the manufacturer once a year before being mounted in January. They are used throughout the year and no post-cruise or in-situ calibration is applied. All other sensors are calibrated irregularly. Data were connected to the station book of the specific cruise as available in the DSHIP database. Processing of the data including removal of obvious outliers followed the procedures described in CTD Processing Logbook of RV HEINCKE (hdl:10013/epic.47427). The processing report for this dataset is linked below.
As part of PhytOakmeter (www.phytoakmeter.de), time-domain transmission, soil moisture and -temperature sensors with custom-made logger systems were used to measure time series of soil state variables. The aim of these investigations was to provide data on environmental properties used in a cross-disciplinary approach. The measurement device consisted of two sensors at three different depths. The dataset contains the values of time (UTC), relative permittivity, soil moisture (in % vol) derived from permittivity and soil temperature (in °C). Determination of soil moisture was done using the formula of Topp et al. (1980). As sensors, the SMT100 soil moisture sensors with integrated temperature measurement were used. All sensors were installed within the upper 50cm below ground. The exact depths for each sensor are listed in the dataset and parameter comment.
Bacteria of the genus Legionella cause waterborne infections resulting in severe pneumonia. In Europe, 70Prozent of the cases of the so-called Legionnaires disease (LD) originate from strains of L. pneumophila serogroup (Sg) 1, 20Prozent from other L. pneumophila serotypes and 10Prozent from other Legionella species. In contrast, in the Middle East most legionella infections are due to L. pneumophila Sg3. The overall objective of this project is to advance current knowledge on the ecology of legionella in freshwater systems, the environmental factors affecting their occurrence, virulence potential and infectivity and to understand their transmission to humans. We will analyze the major environmental factors regulating the abundance of legionella, such as grazing and assimable dissolved organic carbon, because the occurrence of these heterotrophic bacteria in aquatic habitats is highly dependent on these factors. We will use an integrated molecular approach based on highresolution diagnostics of environmental samples and clinical isolates to determine the abundance, activity and virulence potential of Legionella populations in-situ. Combining environmental and molecular epidemiological data, we aim at understanding the link between ecology and population dynamics of legionella and cases of LD. The project will result in a novel understanding of the molecular epidemiology of legionella and provide new surveillance tools and strategies to prevent LD.
Il s'agit d'une recherche globale sur la biologie, la physiologie, l'immunologie, l'ecologie et le role de vecteur des Tiques, essentiellement les especes parasitant les animaux domestiques. Le travail est mene aussi bien en Suisse qu'en Afrique, dans des biotopes diversifies (plaine, Jura, savane, foret). Les travaux de laboratoire ont pour but de detecter de nouvelles approches dans la lutte contre les Tiques (etudes des systemes endocriniens, du determinisme de la reproduction, de la physiologie sensorielle (pheromones) et des phenomenes de resistance chez les hotes. Les travaux de terrain concernent essentiellement la survie et l'orientation des Tiques dans leur environnement, la quete des hotes, les mecanismes de transmission des microorganismes pathogenes et leur circulation dans la nature. L'impact de l'urbanisation sur la distribution des Tiques est egalement mesure. (FRA)
Origin | Count |
---|---|
Bund | 297 |
Europa | 5 |
Land | 41 |
Wissenschaft | 112 |
Zivilgesellschaft | 1 |
Type | Count |
---|---|
Daten und Messstellen | 85 |
Förderprogramm | 257 |
Text | 27 |
Umweltprüfung | 38 |
unbekannt | 49 |
License | Count |
---|---|
geschlossen | 67 |
offen | 356 |
unbekannt | 33 |
Language | Count |
---|---|
Deutsch | 233 |
Englisch | 244 |
Resource type | Count |
---|---|
Archiv | 16 |
Bild | 1 |
Datei | 90 |
Dokument | 42 |
Keine | 226 |
Webdienst | 5 |
Webseite | 113 |
Topic | Count |
---|---|
Boden | 273 |
Lebewesen und Lebensräume | 288 |
Luft | 456 |
Mensch und Umwelt | 454 |
Wasser | 195 |
Weitere | 439 |