API src

Found 76 results.

Sub project: Fault zone damage and chemical reactions at depth in the San Andreas Fault Zone: A study of SAFOD drill core samples

Das Projekt "Sub project: Fault zone damage and chemical reactions at depth in the San Andreas Fault Zone: A study of SAFOD drill core samples" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. The results of the first funding period, particularly the proof of several weakening and hardening mechanisms operating in the fault gouge of four SAFOD core samples (e.g. amorphous material, nano-scale pore spaces, dissolution-precipitation processes, intracrystalline plasticity) inspired a more detailed study of microstructures in order to specify the cause of mechanical weakness along the San Andreas Fault (SAF). Therefore we applied for and received four additional core samples from different depths and different distances to the fault contact. In particular, we will focus on: - The analysis of dominant microstructures in the new SAFOD samples. Based on our previous experience we will predominantly use the transmission electron microscopy (TEM). These studies have proven to be the most powerful tool for analyzing microstructures. The cutting of foils with the focused ion beam technique (FIB) allows identifying microstructures down to the nm scale without damage. - The observed microstructures will be interpreted in view of their implication for fault weakening mechanisms integrating previous results of the core samples from the first funding period. - The observed agglomeration of flocculated clay particles in previous samples calls for further detailed TEM investigations of clay minerals. - Some vein-calcites show evidence for intense intracrystalline plasticity (deformation twins and dislocation creep). We will measure dislocation and twin densities in calcite veins in the new sample set. The results will be used for stress estimations based on paleo-piezometric relationships. - First results of stable isotope analyses of vein calcites provide indications that the fluids were dominantly derived from deeper sources. We will further analyze stable isotopes with the aim to characterize the origin of fluids penetrating the fault gouge. - Mercury porosimetry and the BET gas adsorption methods will be used to measure the connected rock porosity pore volume and pore surface areas of our new samples. Porosity data will be used to roughly estimate permeability. - SAFOD microstructures will be compared to samples recently obtained from the Taiwan Chelungpu fault Drilling Project (TCDP).

Analyse von Asbest und anderen Mineralfasern

Das Projekt "Analyse von Asbest und anderen Mineralfasern" wird vom Umweltbundesamt gefördert und von Universität Gießen, Medizinisches Zentrum für Ökologie, Institut und Poliklinik für Arbeits- und Sozialmedizin durchgeführt. Objective: To carry out fiber analysis in lungs of patients with asbestos related diseases. General Information: The use of various electron-microscopic methods, including scanning transmission electron microscopy (stem) to undertake fibre analysis in lungs of patients with asbestos related diseases (mesothelioma, lung cancer with and without asbestosis, asbestosis of lung and pleural space.) Results are compared with control group without occupational asbestos dust exposure. Measurements are carried out on 30-40 human lungs.

Effiziente Duennschichtsolarzelle auf der Grundlage von CuInS2

Das Projekt "Effiziente Duennschichtsolarzelle auf der Grundlage von CuInS2" wird vom Umweltbundesamt gefördert und von Hahn-Meitner-Institut Berlin GmbH durchgeführt. General Information: The primary goal of the project is the demonstration of a small area, 15 per cent efficient thin film solar cell which is free of Cd and Se and uses a small number of elements. This goal shall be achieved by a CuInS2 based solar cell (SULFURCELL). The avoidance of Cd and Se and the restriction of the number of different elements incorporated in the cell will reduce production and recycling costs as well as environmental impacts. Development and optimization will be performed on all constituent components of the cell, i.e. substrate, back contact, absorber, buffer and transparent front contact. The ternary chalcopyrite CuInS2 has an optimum band-gap and potential for high efficiency and high open circuit voltages facilitating the module design. Extrinsic doping and growth assistance will be used to improve the opto-electronical properties of CuInS2 as required for the project's goal. Cd free buffer layers with a suitable conduction band alignment to CuInS2 have to be developed. Novel concepts such as aerosol based techniques, spin coating and band-gap engineering by quantum confinement will be pursued. Transparent conductive oxides such as ZnO, ITO and SnO, deposited by sputtering or MOCVD are used as front contacts after optimization of transparency, conductivity and haze. Valuable input for these tasks is expected from characterization methods such as transmission electron microscopy, Raman spectroscopy and secondary ion mass spectroscopy. The material science aspects will be supplemented by the investigation of topics especially important for scaling-up and commercial exploitation, e.g. substrate and patterned back-contact cost reduction, encapsulation and stability tests. The results of all sub-tasks will be used as input for an exploitation study.

Im Fokus des Projektes NORLED steht die Herstellung einer neuen Technologie für energieeffiziente, weiße Leuchtdioden auf Basis fluoreszierenden Siliziumkarbids, die im Vgl. zum Stand der Technik umweltfreundlicher und kostengünstiger ist

Das Projekt "Im Fokus des Projektes NORLED steht die Herstellung einer neuen Technologie für energieeffiziente, weiße Leuchtdioden auf Basis fluoreszierenden Siliziumkarbids, die im Vgl. zum Stand der Technik umweltfreundlicher und kostengünstiger ist" wird vom Umweltbundesamt gefördert und von Universität Erlangen-Nürnberg, Department Werkstoffwissenschaften, Lehrstuhl Werkstoffe der Elektronik und Energietechnik. Arbeitsgruppe Crystal Growth durchgeführt. Im Gesamtprojekt NORLED (N-INNER) werden weiße Leuchtdioden auf Basis von fluoreszierendem SiC (f-SiC) hergestellt. Die Innovation des f-SiC liegt in der definierten Misch-Dotierung des Halbleiters SiC mit N, und vor allem Al und B. Zur Bauelementherstellung kommt der sog. Fast Sublimation Growth Prozess (FSGP) des Projektpartners IFM M.SYVÄJÄRVI zum Einsatz, welches ohne umweltgefährliche metallorganische Prekursoren, wie bei den Standard GaN Leuchtdioden auskommt. Das vorliegende Teilprojekt (IMS P.WELLMANN) bildet das Materialfundament des Gesamtprojektes und stellt speziell dotierte SiC-Substrate und Ausgangsmaterialien für den FSG-Prozess zur Verfügung. Zum Einsatz kommt das von P. Wellmann entwickelte, sog. Modifiziertes PVT (physical vapor transport), das Dotierstoffe über eine extra Gasleitung in die Wachstumszelle einleitet. Die hochauflösende Transmissionselektronenmikroskopie im Teilprojekt FOE E.SPIECKER bildet das Fundament der Materialcharakterisierung. WISSENSCHAFTLICH-TECHNOLOGISCH steht die Ausbalancierung der Dotierstoffe N, Al und B zur Erzeugung von weißem Licht im Fokus. (1) Bereitstellung von Ausgangsmaterialien für den FSG-Prozess (poly-SiC dotiert mit N, Al und B). (2) Herstellung von kristallinen SiC-Wafern (50mm und 75mm) dotiert mit N, Al und B. (3) Optimierung der Bauelement-Farbe Weiß durch Variation der Dotierung (4) Korrelation Dotierung mit Kristalldefekten. Die deutschen Teilprojekte ergeben bereits in sich eine sinnvoll abgeschlossene Einheit.

Sub project: Transmission electron microscopy of deformed eclogite from the Chinese Continental Scientific Drilling project at Donghai

Das Projekt "Sub project: Transmission electron microscopy of deformed eclogite from the Chinese Continental Scientific Drilling project at Donghai" wird vom Umweltbundesamt gefördert und von Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Fachgebiet Geomaterialwissenschaft durchgeführt. Eclogite, especially deformed eclogite (and eventually other ultrahigh pressure metamorphic rocks), from the Chinese Continental Scientific Drilling project in Dabie Shan will be studied by methods of transmission electron microscopy (TEM). The study shall contribute to the knowledge of formation and exhumation of ultrahigh pressure metamorphic rocks. Nature, density, distribution and orientation of crystal defects, phase- and grain-boundaries of the eclogite minerals present (garnet, omphacite, amphiboles, epidote group, Fe-Ti-Oxides, cyanite, micas, etc.) have to be characterized. They are generated during crystal growth, by phase transformations - including mineral reactions - and by deformation. In principle, they permit conclusions regarding the pressure, temperature and deformation history of the rocks. However, the basis of data and knowledge is weak so far. E.g., the slip systems of omphacite, which is the main constituent and the mineral carrying the deformation of eclogite, are not sufficiently well known, especially not as function of pressure and temperature.Comparison with eclogites from other localities, which experienced lower pressures, should reveal eventual peculiarities of the behaviour of ultrahigh pressure metamorphic eclogites. The TEM study will be performed on samples also investigated by other groups in order to obtain integral information from eclogites whose mineralogy, petrology and geochemistry is well characterized.

CatSE2 - Grenzflächen und Interphasen in wiederaufladbaren Batterien auf Li-Basis - Kathode/Festelektrolyt - Phase 2

Das Projekt "CatSE2 - Grenzflächen und Interphasen in wiederaufladbaren Batterien auf Li-Basis - Kathode/Festelektrolyt - Phase 2" wird vom Umweltbundesamt gefördert und von Justus-Liebig-Universität Gießen, Physikalisch-Chemisches Institut durchgeführt. Das Gesamtvorhaben hat ausgehend von der ersten Phase von CATSE, in der modellhafte innere Grenzflächen in LLZO-Keramik und unmodifizierte Grenzflächen der Art LLZO/Kathodenmaterial im Mittepunkt standen, nun das Ziel, näher an realistische Grenzflächen in anwendungsnahen Situationen zu kommen. SE/Kathoden-Grenzflächen stehen weiter im Mittelpunkt, allerdings mit einem stärkeren Fokus auf die Verbesserung (oder Vermeidung) der notorisch kritischen Oxid/Oxid-Grenzflächen. Die Rolle von Zwischenphasen (interlayers) für die Stabilität und Grenzflächenkinetik soll gezielt untersucht werden. Hierbei spielt naturgemäß die Stabilität der Zwischenschichten selbst eine wichtige Rolle. Hochentwickelte Charakterisierungs- und Modellierungstechniken sollen zum Einsatz kommen, um sowohl auf der Grenzflächenebene als auch auf der Zellebene Ergebnisse zu erzielen. Strukturelle und chemische Informationen über Grenzflächen und Komponenten von Zellen sollen u.a. mit Hilfe von FIB-Tomographie, µ-Computertomographie (µCT), Transmissionselektronenmikroskopie (TEM), Kelvinsonden-Mikroskopie (KPFM) und Neutronen- und Ionenstrahlanalytik erhalten werden. Untersuchungen auf der Vollzellebene sollen dazu dienen, das Arbeitsprogramm des Konsortiums näher an industrielle Bedingungen zu bringen und den Transfer der Ergebnisse zu gewährleisten. Das Teilvorhaben der JLU hat innerhalb dieses Rahmens die folgenden Teilziele: 1. Die möglichst weitgehende Aufklärung der Mikrostruktur und chemischen Zusammensetzung von (unmodifizierten) Grenzflächenbereichen in KAM/SE-Kompositen, vorzugsweise auf Oxid-Basis, gemeinsam mit den Partnereinrichtungen (komplementäre analytische Methoden). 2. Entwicklung von stabilisierenden Zwischenschichten und Aufklärung der resultierenden Mikro-struktur und lokalen chemischen Zusammensetzung, aufbauend auf 1. 3. Aufklärung der 3D-Mikrostruktur realer Komposite und Bereitstellung der entsprechenden Daten für die theoretische Modellierung.

Characterisation of ultrafine particles (nano particles) for workplace protection (part 2)

Das Projekt "Characterisation of ultrafine particles (nano particles) for workplace protection (part 2)" wird vom Umweltbundesamt gefördert und von Universität Gießen, Medizinisches Zentrum für Ökologie, Institut und Poliklinik für Arbeits- und Sozialmedizin durchgeführt. To assess the increased biological effects of ultrafine particles 100 nm in diameter not only the free primary particles, but also the aggregates and agglomerates (A+A) of these primary particles, the stabilities of these A+A and the solubility of the primary particles have to be considered. According to environmental measuring programs workplace measurements of ultrafine aerosols are performed with instruments like the scanning mobility particle sizer (SMPS), that classify particles according to their diameter, but do not distinguish between massive particles and A+A which consist of ultrafine primary particles. Therefore, in comparison with measurements from SMPS, a method for the characterisation of ultrafine aerosols by transmission electron microscopy (TEM) has been developed. In addition to free primary particles and aggregates the number and the size of primary particles within the A+A can be registered. It is intended - to optimize this measuring method until it generates reproducible results for a duration of sampling of 1 hour and to apply it to relevant work places, - to characterise the stability of the A+A within aqueous suspension (i.e. to detect differences as they already have been observed between the A+A from diesel soot and from fume of metal inert gas welding) and - to analyse 6 of the ultrafine samples of the 19 granular dust samples that were tested on rats in the carcinogenicity study of Pott and Roller 2003. Free primary particles and aggregates are registered with the condensation particle counter. Simultaneously the ultrafine particles are sampled on nuclepore filters. TEM-analysis is performed at magnification x 40,000 in 10 to 25 TEM-fields using direct and indirect preparation. Information is obtained on - the morphology of the ultrafine particles - their composition of A+A - the number and the surface estimate of all primary particles - the size distribution of the A+A - distinction between liquid and solid particles - on the solubility of the ultrafine particles - on the stability of the A+A in aqueous suspension, when adequate dispersion agents are used. It is expected that the results on the concentrations of primary particles per mg or per A+A, which are generated for ultrafine aerosols in certain work places are useful to characterise the ultrafine aerosols and may be generalized for these work places.Dust volume, particle size and surface influence the response of granular biopersis-tent dust (GBS). From the reanalysis of the GBS administered in an intratracheal test using the transmission electron microscopy (TEM), tumour rates could be predicted sufficiently with a combination of volume and surface (R2 = 0,7) or volume and number of aggregates und agglomerates (A+A) or of primary particles (PT) per mg of the dust. Air measurements of the mass concentration and of the number concentration of the particles which were analysed by TEM were evaluated using these doses met-ric...

Catalyst development for selective conversion of syngas to mainly aromatic hydrocarbons

Das Projekt "Catalyst development for selective conversion of syngas to mainly aromatic hydrocarbons" wird vom Umweltbundesamt gefördert und von Universität Bochum, Fakultät für Chemie, Lehrstuhl für Technische Chemie (LTC) durchgeführt. Objective: Development and characterization of zeolite-modified fischer-tropsch catalysts with a high selectivity for aromatic hydrocarbons under conditions similar to fischer-tropsch synthesis. General information: formation of aromatic hydrocarbons via zeolite modified ft catalysts is well known, but the selectivity is low (ca 30 percent). Higher selectivities were achieved only when zeolites were combined with catalysts for methanol synthesis, but then pressures and temperatures similar to those usually applied in methanol synthesis were required. The present project aims at applying conditions similar to ft synthesis. Modified fe/mn and fe/v-oxide catalysts combined with zsm-5-type-zeolites of high silica to alumina ratio will be used, 1.- as composite catalysts (micro-mixed on molecular scale), 2.- as mechanically mixed catalysts (macro-mixed material), and 3.- the two catalysts distributed on two different catalytic reactors (dual bed operation). The composite catalysts will be tested catalytically and characterized by their physico-chemical surface properties before, during and after catalytic reaction. These informations are expected to serve as a feed-back in design and optimization of catalysts. Achievements: A high pressure apparatus has been developed for synthesis gas experiments. The whole apparatus is controlled by a minicomputer, to be able to work at constant carbon monoxide conversion or at constant space velocity. For surface analysis an Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), ion scattering spectrometry (ISS) apparatus has been additionally equipped with a reaction chamber to conduct in situ synthesis gas experiments. The pressure dependence of selectivity and activity of an iron manganese oxide catalyst has been investigated. A maximum in activity is observed at a synthesis gas pressure of 1.5 MPa. The surface concentration, as determined by XPS and ISS of the catalysts is strongly altered by pre-treatment conditions and the addition of copper or potassium. The following catalytic systems were developed, tested in the Fischer Tropsch (FT) reaction and characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and carbon monoxide (CO) chemisorption: iron/manganese oxides impregnated with cobalt, copper, lead, rhodium and potassium respectively; cobalt/manganese oxide catalysts with different compositions to maximise the formation of olefinic products; rhodium/silicon dioxide catalysts doped with rare earth compounds and thorium dioxide to maximise the formation of oxygenates; mixtures of the previous catalysts with pentasil zeolites to form aromatic hydrocarbons. 2 modes of operation were tested: a single bed reactor with a mechanical mixture of the components and a dual operation with the FT component and the zeolite respectively in separate reactors. ... Prime Contractor: Ruhr Universität Bochum, Technische Chemie, Fakultät für Chemie; Bochum; Germany.

Untersuchungen der Kontaktzone zwischen Pilz und Wurzel als Transport- und Filtersystem potentiell toxischer Ionen in Ectomykorrhizen

Das Projekt "Untersuchungen der Kontaktzone zwischen Pilz und Wurzel als Transport- und Filtersystem potentiell toxischer Ionen in Ectomykorrhizen" wird vom Umweltbundesamt gefördert und von Universität Tübingen, Fakultät für Biologie, Botanisches Institut durchgeführt. Der bisher sehr wenig bekannten, oekologischen Bedeutung der Hyphenmaentel der Ektomykorrhizen, die die eigentlichen Mittler zwischen Boden und Wurzel sind, in ihrer moderierenden Wirkung von pedogenen Stressfaktoren sollte nachgegangen werden. Die Passage und Deposition von potentiell toxischen Elementen, zu denen neben Aluminium auch im Uebermass angebotene Naehrelemente, wie Stickstoff und Calcium zu rechnen sind, in den Mykorrhizen von Waldbaeumen unter Einsatz moderner, analytischer Transmissionselektronenmikroskopie (Elektronen-Energieverlust-Analyse, ESI/EELS) geklaert werden. Der apoplastische Transport von Elementen im Pilz-Pilz und Pilz-Wurzel Kontaktbereich wurde mit Hilfe der Tracerelemente Lanthan und Cer an Mykorrhizen von Tuber spp. untersucht, die aus einer Baumschulanzucht in Clermont-Ferrand entnommen wurden. Die Deposition von Calcium wurde an Mykorrhizen aus einem Kalkungs- und Bodenversauerungs-Versuch (Hoeglwald) ebenfalls am TEM902 analysiert. Die Analysen wurden in Tuebingen gemeinsam mit den franzoesischen Partnern Dr. Pargney und Isabel Diaz-Carnero durchgefuehrt. Die Bindung von Aluminium aus der Bodenloesung an Polyphosphate in vakuolaeren Grana der Mykorrhizapilze wurde sowohl unter Einsatz der ESI/EELS Analytik als auch der Kernresonanzspektroskopie (27Al NMR, 31P NMR) in Zusammenarbeit mit Dr. Martin und Dr. Rubini, INRA bzw. Universitaet Nancy untersucht. Als Material wurden Myzelien der Mykorrhizapilze Laccaria amethystea und L bicolor in Alumniumloesung bebruetet. Die Grana wurden zusaetzlich auf Stickstoff untersucht. Eine Moeglichkeit der relativen Quantifizierung der Elemente aus den Daten der EELS Analysen wurde erarbeitet. Die Analysen ergaben, dass nur sehr geringe Unterschiede in der Infil trationsfaehigkeit mit Cer und Lanthan von Mykorrhizen unterschiedlicher Mantelstruktur bestehen. Alle Manteltypen nahmen rasch apoplastisch Cer bzw. Lanthan auf, wobei tote Hyphen als Kanaele benutzt wer- . den. Calcium wird in unterschiedlichen Mengen in Hyphenwaenden, interhyphaler Matrix und in wurzelbuertigen Polyphenolen akkumuliert. Es konnte eindeutig nachgewiesen werden, dass Aluminium sehr rasch an Polyphosphate gebunden und damit detoxifiziert wird (Kottke & Martin 1994, Martin et al. 1994). Sowohl Aluminium als auch Stickstoff koennen in erheblichen Konzentrationen in den Polyphosphaten gespeichert werden.

Strukturelle Defekte - Teilprojekt 8B

Das Projekt "Strukturelle Defekte - Teilprojekt 8B" wird vom Umweltbundesamt gefördert und von Universität Erlangen-Nürnberg, Lehrstuhl für Mikrocharakterisierung durchgeführt. Ziel der Forschungstätigkeiten an unserem Lehrstuhl ist es, den im Verbundprojekt beteiligten Materialherstellern und -prozessierern, basierend auf unseren wissenschaftlichen Erkenntnissen, Hinweise und Vorschläge zu liefern, die geeignet sind, eine verbesserte Materialstruktur und damit bessere Solarzellen (höherer Wirkungsgrad, verbesserte Prozessierung) zu erzielen. Die Materialien charakterisieren wir mit einer Kombination von Untersuchungsmethoden; die wichtigsten sind: 1.) Mikro-Raman-Spektroskopie: Diese Methode erlaubt uns, mechanische Spannungen und die Kristallitorientierungen in Solarmaterialien zerstörungsfrei und lokal aufgelöst (bis ca. 1 my) zu messen. Damit erhalten wir Informationen über Textur und insbesondere innere Spannungen und deren Quellen. Die zugrunde liegenden Defektstrukturen werden korrelierend analysiert und ergeben Hinweise auf Rissbildung in Solarmaterialien. Hierzu nutzen wir Methoden der: 2.) Durchstrahlungselektronenmikroskopie (TEM). Diese ermöglichen, die Struktur von Materialdefekten bis in atomare Dimensionen aufzuklären (siehe Abb. 2). Wir können somit den Einfluss von Defekten auf die lokalen Material- und Solarzellenparameter untersuchen. Zur Aufklärung der chemischen Natur von Defekten bzw. Verunreinigungen stehen uns verschiedene spektroskopische Methoden im TEM zur Verfügung: Röntgenspektroskopie (EDS), parallele Elektronenenergieverlustspektroskopie (PEELS). Außerdem besteht die Möglichkeit, Messungen im TEM mittels Elektronenstrahl induzierten Strom (EBIC) durchzuführen.

1 2 3 4 5 6 7 8