API src

Found 488 results.

Related terms

Ozonschicht zerstörende Substanzen

Stratosphärisches Ozon (Ozonschicht) ist ein lebenswichtiger Bestandteil der Atmosphäre, wobei es nicht mehr als einen fein verteilten zarten Schleier darstellt, der zusammengepresst auf Normaldruck lediglich eine Dicke von etwa 3 mm hätte. Es reicht aber aus, um die kurzwellige ultraviolette (UV) Strahlung der Sonne zu absorbieren und so wie ein Sonnenschutz alles Leben auf der Erde vor den zellschädigenden Wirkungen zu schützen. Die stratosphärische Ozonschicht kann durch langlebige chlor- und bromhaltige Verbindungen wie Fluorchlorkohlenwasserstoffen (FCKW) und Halon geschädigt werden. Ausgehend von Fluorchlorkohlenwasserstoffe (FCKW) und Halonen, die als Treibgase, Kühl- und Schäummittel beziehungsweise als Feuerlöschmittel in der Vergangenheit eingesetzt wurden, entstehenden Chlor-Radikale, die nach komplizierten Zwischenschritten vor allem im Bereich der sehr kalten polaren Stratosphäre in der Lage sind, viele Ozonmoleküle zu spalten. In den Bereichen der Pole ist die Ozonschicht teilweise so gering, dass man vor allem während der Wintermonate von einem "Ozonloch" spricht. Zum Schutz der Ozonschicht wurde deshalb im Jahr 1987 das Montrealer Protokoll unterzeichnet. Dies wurde in Europa und Deutschland durch verschiedene Verordnungen umgesetzt. In Europa und in Deutschland sind die Herstellung und die Vermarktung von FCKW und Halonen sowie von Produkten, die diese enthalten (Spraydosen, Kühlgeräte, Feuerlöscher) weitestgehend verboten. Auch die Ersatzstoffe (H-FCKW), die ebenfalls ein Ozonschädigungspotential besitzen, wenn auch in geringerem Umfang, werden nach und nach beschränkt.

Zerstörung der Ozonschicht

Zusammenhänge zwischen der Zerstörung der Ozonschicht und der Freisetzung von Treibgasen werden wissenschaftlich nachgewiesen.

Verwendung klimawirksamer Stoffe: Deutschland, Jahre,Einsatzbereiche, Stoffe

Persistente Abbauprodukte halogenierter Kälte- und Treibmittel in der Umwelt: Art, Umweltkonzentrationen und Verbleib unter besonderer Berücksichtigung neuer halogenierter Ersatzstoffe mit kleinem Treibhauspotenzial

Klimawirksame Kälte- und Treibmittel werden oft durch halogenierte Stoffe ersetzt, die trotz niedrigem Treibhauspotential nicht unbedenklich für die Umwelt sind. Betrachtet werden Verwendungsmengen und Emissionen heute und in Zukunft sowie Abbauwege und -produkte. Besonders umweltrelevantes Abbauprodukt ist die persistente Trifluoressigsäure (TFA). Ein zweijähriges Messprogramm von TFA an 8 Messstellen in Deutschland zeigte, dass die TFA-Werte im Niederschlag schon heute mehrfach über denen von vor 25 Jahren liegen und voraussichtlich noch weiter steigen werden. Daher müssen Einsatz und Entwicklung von Produkten mit halogenfreien Kälte- und Treibmitteln weiter vorangetrieben werden. Veröffentlicht in Texte | 36/2021.

Chem-Org\PS-DE-2000

Polystyrol-Polymerisation: GPPS (und HIPS) werden heute hauptsächlich über kontinuierliche Polymerisationsprozesse hergestellt. Bei dem Polymerisationsverfahren in Lösung werden in geringen Mengen Lösungsmittel wie Toluol oder Ethylbenzol hinzugegeben. Das Masseverfahren unterscheidet sich dadurch, dass hierbei kein Lösungsmittel zugesetzt wird. Vielmehr dient Styrol sowohl als Edukt als auch als Lösungsmittel. In der Reaktorsektion wird das monomere Styrol zu Polystyrol umgesetzt. Das Produktgemisch, das die Reaktorsektion verläßt hat eine Polystyrolkonzentration von 70-90 %. Nicht umgesetztes monomeres Styrol und Lösungsmittel werden abgetrennt und wieder dem Reaktionsprozeß zugeführt. An den eigentlichen Polymerisationsschritt schließt sich die Zugabe von Additiven (Farbstoffe, Stabilisatoren) zur Produktschmelze, die Extrusion, die Kühlung des Monomers und die Granulation an. Prozess-Situierung: Bei dem Thermoplast Polystyrol (PS) werden verschiedene Arten an PS unterschieden. GP(general-purpose)PS oder auch Standard- PS ist ein hartes, schmelzbares und transparentes Material. HI(high-impact)PS enthält ca. 3 - 10 % Polybutadien als Gummizusatz. Expandable PS (EPS) ist Ausgangsmaterial für PS-Hartschäume. Die Herstellung geht von PS unter Zugabe von ca. 6 % eines Schäumungsmittels (z.B. Pentan) aus. EPS (Handelsname: Styropor) wird sowohl für die Geräusch- als auch die Kälteisolierung eingesetzt. Es werden aber auch Werbe- und Sportartike (z.B. Schwimmwesten)l aus EPS hergestellt. Extrudierte Polystyrolschäume (XPS) werden aus PS und halogenierten Kohlenwasserstoffen als Treibmittel hergestellt. XPS findelt vor allem als thermisches Isoliermittel Anwendung. Weitere Produkte können durch den Zusatz von Copolymeren bei der Polymerisation von Styrol erhalten werden. In dieser Prozeßeinheit wird die Polymerisation von Styrol zu GPPS bilanziert. Nicht alle betrachteten Literaturquellen geben explizit an welches Polystyrol dort bilanziert wird. Es wird jedoch angenommen, daß das Standard-PS betrachtet wird bzw. die entsprechenden Angaben sich nicht wesentlich von denen für GPPS unterscheiden. Der jährliche Verbrauch an PS betrug 1990 weltweit ca. 6,7 Mio. Tonnen. Davon entfielen ca. 2 Mio. t auf Westeuropa (Ullmann 1992). In (APME 1994) wird für Westeuropa, 1994, eine Produktionsmenge von 1,998 Mio. t PS aufgeführt. In #3 werden Anlagen bilanziert, die ca. 0,70 Mio. t GPPS bzw. ca 0,63. Mio. t HIPS produzieren. Die Bilanzierung der PS-Polymerisation beruht auf den Literaturquellen (Ullmann 1992), (APME 1994), #1, #2, #3, (OEKO 1992c) und (Tellus 1992). Aufgrund der unterschiedlichen Datenherkunft kann der Gesamtprozeß weder einem bestimmten Zeitraum noch einer bestimmten Region zugeordnet werden. Die Massenbilanz bezieht sich auf die Produktion in Deutschland Ende der 80er Jahre (#1). Die Energiebilanz gibt Daten Anfang der 80er Jahre aus den USA wieder (#2). Die Emissionswerte beziehen sich sowohl auf die USA (Tellus 1992) als auch auf Westeuropa (OEKO 1992c, #1). Allokation: keine Genese der Daten: - Massenbilanz: Nach #1 werden für die Herstellung einer Tonne Polystyrol (es ist anzunehmen, daß bei BUWAL GPPS bilanziert wird) 974,8 kg monomeres Styrol eingesetzt. Unter „Hilfsstoffe, Zusätze" werden weitere 31,2 kg aufgeführt, die nicht weiter spezifiziert sind. Diese Menge wird hier vernachlässigt. Bei der Polymerisation fällt eine Menge von 5,75 kg an nicht weiter spezifizierten „Nebenausbeuten" sowie 0,09 kg feste Abfälle an. Der Einsatz an Styrol stimmt gut mit den Angaben aus (Tellus 1992) bzw. #3 für die Herstellung von GPPS überein. Dort werden jeweils Werte von 980 kg Styrol und 30 bzw. 33 kg an Kohlenwasserstoffen genannt. Da bei BUWAL die ausführlichsten Angaben vorliegen, werden diese Daten für GEMIS verwendet. Energiebedarf: Die Prozessenergie zur Herstellung einer Tonne PS (Masseverfahren) wird in #2 mit insgesamt ca. 3,7 GJ/t PS beziffert (0,6 GJ elektrische Energie, 1,8 GJ Energieträger und 1,3 GJ Energieinhalt des eingesetzten Dampfs). Bei GEMIS wurde für den Einsatz des Energieträger ein Wirkungsgrad von 85 % zugundegelegt. Die entsprechende Energie wird (wie auch der eingesetzte Dampf) als Prozeaawärme (Industriemix, Summe aus Energieträger und Dampf: 2,8 GJ) bereitgestellt. Bei (Tellus 1992) wird ein fast identischer Energiebedarf von 3,8 GJ/t GPPS bilanziert (Masseverfahren: 2,8 GJ elektrische Energie, 1,0 GJ Energieinhalt des Dampfs). Im Vergleich dazu wird bei (PWMI 1993a) ein wesentlicher geringer Energiebedarf von 1,08 GJ/t GPPS genannt, der sich aus 0,80 GJ elektrischer Energie und 0,28 GJ an Energieträgern zusammensetzt. [Für die Herstellung von HIPS ist nach #3 ein vergleichbarer Energiebedarf, 0,60 GJ elektrische Energie und 0,33 GJ Energieträger, erforderlich]. Da bei #2 die weitaus detailliertesten Angaben vorliegen, wurden diese Werte als Kennziffern verwendet. Prozessbedingte Luftemissionen: Bei der Herstellung von Polystyrol sind prinzipiell Emissionen des monomeren Styrols in Betracht zu ziehen. In (OEKO 1992c) werden die prozeßbedingten VOC-Emissionen bei der Polystyrolherstellung abgeschätzt. Daraus ergibt sich ein Wert von ca. 1 kg VOC/t PS. Wasser: In #3 wird der Wasserbedarf zur Herstellung einer Tonne GPPS mit 1850 kg beziffert, hinzu kommen weitere 169 kg an Dampf.Im Hinblick auf Wasserverunreinigungen ist das Suspensionsverfahren (hauptsächlich für die Herstellung von EPS) relevant, bei dem die Polymerisation in wässrigem Medium durchgeführt wird. Beim Masseverfahren kommt das Produkt nur bei der Extrusion (Kühlung) in Kontakt mit Wasser. Angaben zu Abwasserwerten für das Masseverfahren sind in (Tellus 1992) enthalten. Im behandelten Abwasser wird dort für Benzol ein Wert von 0,048 g/t GPPS und für Phenol ein Wert von 0,56 g/t GPPS angegeben. Aus #1 kann entnommen werden, dass der BSB5-Wert gleich null ist. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 103% Produkt: Kunststoffe

Chem-Org\PS-DE-2010

Polystyrol-Polymerisation: GPPS (und HIPS) werden heute hauptsächlich über kontinuierliche Polymerisationsprozesse hergestellt. Bei dem Polymerisationsverfahren in Lösung werden in geringen Mengen Lösungsmittel wie Toluol oder Ethylbenzol hinzugegeben. Das Masseverfahren unterscheidet sich dadurch, dass hierbei kein Lösungsmittel zugesetzt wird. Vielmehr dient Styrol sowohl als Edukt als auch als Lösungsmittel. In der Reaktorsektion wird das monomere Styrol zu Polystyrol umgesetzt. Das Produktgemisch, das die Reaktorsektion verläßt hat eine Polystyrolkonzentration von 70-90 %. Nicht umgesetztes monomeres Styrol und Lösungsmittel werden abgetrennt und wieder dem Reaktionsprozeß zugeführt. An den eigentlichen Polymerisationsschritt schließt sich die Zugabe von Additiven (Farbstoffe, Stabilisatoren) zur Produktschmelze, die Extrusion, die Kühlung des Monomers und die Granulation an. Prozess-Situierung: Bei dem Thermoplast Polystyrol (PS) werden verschiedene Arten an PS unterschieden. GP(general-purpose)PS oder auch Standard- PS ist ein hartes, schmelzbares und transparentes Material. HI(high-impact)PS enthält ca. 3 - 10 % Polybutadien als Gummizusatz. Expandable PS (EPS) ist Ausgangsmaterial für PS-Hartschäume. Die Herstellung geht von PS unter Zugabe von ca. 6 % eines Schäumungsmittels (z.B. Pentan) aus. EPS (Handelsname: Styropor) wird sowohl für die Geräusch- als auch die Kälteisolierung eingesetzt. Es werden aber auch Werbe- und Sportartike (z.B. Schwimmwesten)l aus EPS hergestellt. Extrudierte Polystyrolschäume (XPS) werden aus PS und halogenierten Kohlenwasserstoffen als Treibmittel hergestellt. XPS findelt vor allem als thermisches Isoliermittel Anwendung. Weitere Produkte können durch den Zusatz von Copolymeren bei der Polymerisation von Styrol erhalten werden. In dieser Prozeßeinheit wird die Polymerisation von Styrol zu GPPS bilanziert. Nicht alle betrachteten Literaturquellen geben explizit an welches Polystyrol dort bilanziert wird. Es wird jedoch angenommen, daß das Standard-PS betrachtet wird bzw. die entsprechenden Angaben sich nicht wesentlich von denen für GPPS unterscheiden. Der jährliche Verbrauch an PS betrug 1990 weltweit ca. 6,7 Mio. Tonnen. Davon entfielen ca. 2 Mio. t auf Westeuropa (Ullmann 1992). In (APME 1994) wird für Westeuropa, 1994, eine Produktionsmenge von 1,998 Mio. t PS aufgeführt. In #3 werden Anlagen bilanziert, die ca. 0,70 Mio. t GPPS bzw. ca 0,63. Mio. t HIPS produzieren. Die Bilanzierung der PS-Polymerisation beruht auf den Literaturquellen (Ullmann 1992), (APME 1994), #1, #2, #3, (OEKO 1992c) und (Tellus 1992). Aufgrund der unterschiedlichen Datenherkunft kann der Gesamtprozeß weder einem bestimmten Zeitraum noch einer bestimmten Region zugeordnet werden. Die Massenbilanz bezieht sich auf die Produktion in Deutschland Ende der 80er Jahre (#1). Die Energiebilanz gibt Daten Anfang der 80er Jahre aus den USA wieder (#2). Die Emissionswerte beziehen sich sowohl auf die USA (Tellus 1992) als auch auf Westeuropa (OEKO 1992c, #1). Allokation: hier keine, aber in Vorketten (energetisch) Genese der Daten: - Massenbilanz: Nach #1 werden für die Herstellung einer Tonne Polystyrol (es ist anzunehmen, daß bei BUWAL GPPS bilanziert wird) 974,8 kg monomeres Styrol eingesetzt. Unter „Hilfsstoffe, Zusätze" werden weitere 31,2 kg aufgeführt, die nicht weiter spezifiziert sind. Diese Menge wird hier vernachlässigt. Bei der Polymerisation fällt eine Menge von 5,75 kg an nicht weiter spezifizierten „Nebenausbeuten" sowie 0,09 kg feste Abfälle an. Der Einsatz an Styrol stimmt gut mit den Angaben aus (Tellus 1992) bzw. #3 für die Herstellung von GPPS überein. Dort werden jeweils Werte von 980 kg Styrol und 30 bzw. 33 kg an Kohlenwasserstoffen genannt. Da bei BUWAL die ausführlichsten Angaben vorliegen, werden diese Daten für GEMIS verwendet. Energiebedarf: Die Prozessenergie zur Herstellung einer Tonne PS (Masseverfahren) wird in #2 mit insgesamt ca. 3,7 GJ/t PS beziffert (0,6 GJ elektrische Energie, 1,8 GJ Energieträger und 1,3 GJ Energieinhalt des eingesetzten Dampfs). Bei GEMIS wurde für den Einsatz des Energieträger ein Wirkungsgrad von 85 % zugundegelegt. Die entsprechende Energie wird (wie auch der eingesetzte Dampf) als Prozeaawärme (Industriemix, Summe aus Energieträger und Dampf: 2,8 GJ) bereitgestellt. Bei (Tellus 1992) wird ein fast identischer Energiebedarf von 3,8 GJ/t GPPS bilanziert (Masseverfahren: 2,8 GJ elektrische Energie, 1,0 GJ Energieinhalt des Dampfs). Im Vergleich dazu wird bei (PWMI 1993a) ein wesentlicher geringer Energiebedarf von 1,08 GJ/t GPPS genannt, der sich aus 0,80 GJ elektrischer Energie und 0,28 GJ an Energieträgern zusammensetzt. [Für die Herstellung von HIPS ist nach #3 ein vergleichbarer Energiebedarf, 0,60 GJ elektrische Energie und 0,33 GJ Energieträger, erforderlich]. Da bei #2 die weitaus detailliertesten Angaben vorliegen, wurden diese Werte als Kennziffern verwendet. Prozessbedingte Luftemissionen: Bei der Herstellung von Polystyrol sind prinzipiell Emissionen des monomeren Styrols in Betracht zu ziehen. In (OEKO 1992c) werden die prozeßbedingten VOC-Emissionen bei der Polystyrolherstellung abgeschätzt. Daraus ergibt sich ein Wert von ca. 1 kg VOC/t PS. Wasser: In #3 wird der Wasserbedarf zur Herstellung einer Tonne GPPS mit 1850 kg beziffert, hinzu kommen weitere 169 kg an Dampf.Im Hinblick auf Wasserverunreinigungen ist das Suspensionsverfahren (hauptsächlich für die Herstellung von EPS) relevant, bei dem die Polymerisation in wässrigem Medium durchgeführt wird. Beim Masseverfahren kommt das Produkt nur bei der Extrusion (Kühlung) in Kontakt mit Wasser. Angaben zu Abwasserwerten für das Masseverfahren sind in (Tellus 1992) enthalten. Im behandelten Abwasser wird dort für Benzol ein Wert von 0,048 g/t GPPS und für Phenol ein Wert von 0,56 g/t GPPS angegeben. Aus #1 kann entnommen werden, dass der BSB5-Wert gleich null ist. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 103% Produkt: Kunststoffe

Chem-Org\PS-DE-2030

Polystyrol-Polymerisation: GPPS (und HIPS) werden heute hauptsächlich über kontinuierliche Polymerisationsprozesse hergestellt. Bei dem Polymerisationsverfahren in Lösung werden in geringen Mengen Lösungsmittel wie Toluol oder Ethylbenzol hinzugegeben. Das Masseverfahren unterscheidet sich dadurch, dass hierbei kein Lösungsmittel zugesetzt wird. Vielmehr dient Styrol sowohl als Edukt als auch als Lösungsmittel. In der Reaktorsektion wird das monomere Styrol zu Polystyrol umgesetzt. Das Produktgemisch, das die Reaktorsektion verläßt hat eine Polystyrolkonzentration von 70-90 %. Nicht umgesetztes monomeres Styrol und Lösungsmittel werden abgetrennt und wieder dem Reaktionsprozeß zugeführt. An den eigentlichen Polymerisationsschritt schließt sich die Zugabe von Additiven (Farbstoffe, Stabilisatoren) zur Produktschmelze, die Extrusion, die Kühlung des Monomers und die Granulation an. Prozess-Situierung: Bei dem Thermoplast Polystyrol (PS) werden verschiedene Arten an PS unterschieden. GP(general-purpose)PS oder auch Standard- PS ist ein hartes, schmelzbares und transparentes Material. HI(high-impact)PS enthält ca. 3 - 10 % Polybutadien als Gummizusatz. Expandable PS (EPS) ist Ausgangsmaterial für PS-Hartschäume. Die Herstellung geht von PS unter Zugabe von ca. 6 % eines Schäumungsmittels (z.B. Pentan) aus. EPS (Handelsname: Styropor) wird sowohl für die Geräusch- als auch die Kälteisolierung eingesetzt. Es werden aber auch Werbe- und Sportartike (z.B. Schwimmwesten)l aus EPS hergestellt. Extrudierte Polystyrolschäume (XPS) werden aus PS und halogenierten Kohlenwasserstoffen als Treibmittel hergestellt. XPS findelt vor allem als thermisches Isoliermittel Anwendung. Weitere Produkte können durch den Zusatz von Copolymeren bei der Polymerisation von Styrol erhalten werden. In dieser Prozeßeinheit wird die Polymerisation von Styrol zu GPPS bilanziert. Nicht alle betrachteten Literaturquellen geben explizit an welches Polystyrol dort bilanziert wird. Es wird jedoch angenommen, daß das Standard-PS betrachtet wird bzw. die entsprechenden Angaben sich nicht wesentlich von denen für GPPS unterscheiden. Der jährliche Verbrauch an PS betrug 1990 weltweit ca. 6,7 Mio. Tonnen. Davon entfielen ca. 2 Mio. t auf Westeuropa (Ullmann 1992). In (APME 1994) wird für Westeuropa, 1994, eine Produktionsmenge von 1,998 Mio. t PS aufgeführt. In #3 werden Anlagen bilanziert, die ca. 0,70 Mio. t GPPS bzw. ca 0,63. Mio. t HIPS produzieren. Die Bilanzierung der PS-Polymerisation beruht auf den Literaturquellen (Ullmann 1992), (APME 1994), #1, #2, #3, (OEKO 1992c) und (Tellus 1992). Aufgrund der unterschiedlichen Datenherkunft kann der Gesamtprozeß weder einem bestimmten Zeitraum noch einer bestimmten Region zugeordnet werden. Die Massenbilanz bezieht sich auf die Produktion in Deutschland Ende der 80er Jahre (#1). Die Energiebilanz gibt Daten Anfang der 80er Jahre aus den USA wieder (#2). Die Emissionswerte beziehen sich sowohl auf die USA (Tellus 1992) als auch auf Westeuropa (OEKO 1992c, #1). Allokation: hier keine, aber in Vorketten (energetisch) Genese der Daten: - Massenbilanz: Nach #1 werden für die Herstellung einer Tonne Polystyrol (es ist anzunehmen, daß bei BUWAL GPPS bilanziert wird) 974,8 kg monomeres Styrol eingesetzt. Unter „Hilfsstoffe, Zusätze" werden weitere 31,2 kg aufgeführt, die nicht weiter spezifiziert sind. Diese Menge wird hier vernachlässigt. Bei der Polymerisation fällt eine Menge von 5,75 kg an nicht weiter spezifizierten „Nebenausbeuten" sowie 0,09 kg feste Abfälle an. Der Einsatz an Styrol stimmt gut mit den Angaben aus (Tellus 1992) bzw. #3 für die Herstellung von GPPS überein. Dort werden jeweils Werte von 980 kg Styrol und 30 bzw. 33 kg an Kohlenwasserstoffen genannt. Da bei BUWAL die ausführlichsten Angaben vorliegen, werden diese Daten für GEMIS verwendet. Energiebedarf: Die Prozessenergie zur Herstellung einer Tonne PS (Masseverfahren) wird in #2 mit insgesamt ca. 3,7 GJ/t PS beziffert (0,6 GJ elektrische Energie, 1,8 GJ Energieträger und 1,3 GJ Energieinhalt des eingesetzten Dampfs). Bei GEMIS wurde für den Einsatz des Energieträger ein Wirkungsgrad von 85 % zugundegelegt. Die entsprechende Energie wird (wie auch der eingesetzte Dampf) als Prozeaawärme (Industriemix, Summe aus Energieträger und Dampf: 2,8 GJ) bereitgestellt. Bei (Tellus 1992) wird ein fast identischer Energiebedarf von 3,8 GJ/t GPPS bilanziert (Masseverfahren: 2,8 GJ elektrische Energie, 1,0 GJ Energieinhalt des Dampfs). Im Vergleich dazu wird bei (PWMI 1993a) ein wesentlicher geringer Energiebedarf von 1,08 GJ/t GPPS genannt, der sich aus 0,80 GJ elektrischer Energie und 0,28 GJ an Energieträgern zusammensetzt. [Für die Herstellung von HIPS ist nach #3 ein vergleichbarer Energiebedarf, 0,60 GJ elektrische Energie und 0,33 GJ Energieträger, erforderlich]. Da bei #2 die weitaus detailliertesten Angaben vorliegen, wurden diese Werte als Kennziffern verwendet. Prozessbedingte Luftemissionen: Bei der Herstellung von Polystyrol sind prinzipiell Emissionen des monomeren Styrols in Betracht zu ziehen. In (OEKO 1992c) werden die prozeßbedingten VOC-Emissionen bei der Polystyrolherstellung abgeschätzt. Daraus ergibt sich ein Wert von ca. 1 kg VOC/t PS. Wasser: In #3 wird der Wasserbedarf zur Herstellung einer Tonne GPPS mit 1850 kg beziffert, hinzu kommen weitere 169 kg an Dampf.Im Hinblick auf Wasserverunreinigungen ist das Suspensionsverfahren (hauptsächlich für die Herstellung von EPS) relevant, bei dem die Polymerisation in wässrigem Medium durchgeführt wird. Beim Masseverfahren kommt das Produkt nur bei der Extrusion (Kühlung) in Kontakt mit Wasser. Angaben zu Abwasserwerten für das Masseverfahren sind in (Tellus 1992) enthalten. Im behandelten Abwasser wird dort für Benzol ein Wert von 0,048 g/t GPPS und für Phenol ein Wert von 0,56 g/t GPPS angegeben. Aus #1 kann entnommen werden, dass der BSB5-Wert gleich null ist. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 103% Produkt: Kunststoffe

Chem-Org\PS-DE-2005

Polystyrol-Polymerisation: GPPS (und HIPS) werden heute hauptsächlich über kontinuierliche Polymerisationsprozesse hergestellt. Bei dem Polymerisationsverfahren in Lösung werden in geringen Mengen Lösungsmittel wie Toluol oder Ethylbenzol hinzugegeben. Das Masseverfahren unterscheidet sich dadurch, dass hierbei kein Lösungsmittel zugesetzt wird. Vielmehr dient Styrol sowohl als Edukt als auch als Lösungsmittel. In der Reaktorsektion wird das monomere Styrol zu Polystyrol umgesetzt. Das Produktgemisch, das die Reaktorsektion verläßt hat eine Polystyrolkonzentration von 70-90 %. Nicht umgesetztes monomeres Styrol und Lösungsmittel werden abgetrennt und wieder dem Reaktionsprozeß zugeführt. An den eigentlichen Polymerisationsschritt schließt sich die Zugabe von Additiven (Farbstoffe, Stabilisatoren) zur Produktschmelze, die Extrusion, die Kühlung des Monomers und die Granulation an. Prozess-Situierung: Bei dem Thermoplast Polystyrol (PS) werden verschiedene Arten an PS unterschieden. GP(general-purpose)PS oder auch Standard- PS ist ein hartes, schmelzbares und transparentes Material. HI(high-impact)PS enthält ca. 3 - 10 % Polybutadien als Gummizusatz. Expandable PS (EPS) ist Ausgangsmaterial für PS-Hartschäume. Die Herstellung geht von PS unter Zugabe von ca. 6 % eines Schäumungsmittels (z.B. Pentan) aus. EPS (Handelsname: Styropor) wird sowohl für die Geräusch- als auch die Kälteisolierung eingesetzt. Es werden aber auch Werbe- und Sportartike (z.B. Schwimmwesten)l aus EPS hergestellt. Extrudierte Polystyrolschäume (XPS) werden aus PS und halogenierten Kohlenwasserstoffen als Treibmittel hergestellt. XPS findelt vor allem als thermisches Isoliermittel Anwendung. Weitere Produkte können durch den Zusatz von Copolymeren bei der Polymerisation von Styrol erhalten werden. In dieser Prozeßeinheit wird die Polymerisation von Styrol zu GPPS bilanziert. Nicht alle betrachteten Literaturquellen geben explizit an welches Polystyrol dort bilanziert wird. Es wird jedoch angenommen, daß das Standard-PS betrachtet wird bzw. die entsprechenden Angaben sich nicht wesentlich von denen für GPPS unterscheiden. Der jährliche Verbrauch an PS betrug 1990 weltweit ca. 6,7 Mio. Tonnen. Davon entfielen ca. 2 Mio. t auf Westeuropa (Ullmann 1992). In (APME 1994) wird für Westeuropa, 1994, eine Produktionsmenge von 1,998 Mio. t PS aufgeführt. In #3 werden Anlagen bilanziert, die ca. 0,70 Mio. t GPPS bzw. ca 0,63. Mio. t HIPS produzieren. Die Bilanzierung der PS-Polymerisation beruht auf den Literaturquellen (Ullmann 1992), (APME 1994), #1, #2, #3, (OEKO 1992c) und (Tellus 1992). Aufgrund der unterschiedlichen Datenherkunft kann der Gesamtprozeß weder einem bestimmten Zeitraum noch einer bestimmten Region zugeordnet werden. Die Massenbilanz bezieht sich auf die Produktion in Deutschland Ende der 80er Jahre (#1). Die Energiebilanz gibt Daten Anfang der 80er Jahre aus den USA wieder (#2). Die Emissionswerte beziehen sich sowohl auf die USA (Tellus 1992) als auch auf Westeuropa (OEKO 1992c, #1). Allokation: hier keine, aber in Vorketten (energetisch) Genese der Daten: - Massenbilanz: Nach #1 werden für die Herstellung einer Tonne Polystyrol (es ist anzunehmen, daß bei BUWAL GPPS bilanziert wird) 974,8 kg monomeres Styrol eingesetzt. Unter „Hilfsstoffe, Zusätze" werden weitere 31,2 kg aufgeführt, die nicht weiter spezifiziert sind. Diese Menge wird hier vernachlässigt. Bei der Polymerisation fällt eine Menge von 5,75 kg an nicht weiter spezifizierten „Nebenausbeuten" sowie 0,09 kg feste Abfälle an. Der Einsatz an Styrol stimmt gut mit den Angaben aus (Tellus 1992) bzw. #3 für die Herstellung von GPPS überein. Dort werden jeweils Werte von 980 kg Styrol und 30 bzw. 33 kg an Kohlenwasserstoffen genannt. Da bei BUWAL die ausführlichsten Angaben vorliegen, werden diese Daten für GEMIS verwendet. Energiebedarf: Die Prozessenergie zur Herstellung einer Tonne PS (Masseverfahren) wird in #2 mit insgesamt ca. 3,7 GJ/t PS beziffert (0,6 GJ elektrische Energie, 1,8 GJ Energieträger und 1,3 GJ Energieinhalt des eingesetzten Dampfs). Bei GEMIS wurde für den Einsatz des Energieträger ein Wirkungsgrad von 85 % zugundegelegt. Die entsprechende Energie wird (wie auch der eingesetzte Dampf) als Prozeaawärme (Industriemix, Summe aus Energieträger und Dampf: 2,8 GJ) bereitgestellt. Bei (Tellus 1992) wird ein fast identischer Energiebedarf von 3,8 GJ/t GPPS bilanziert (Masseverfahren: 2,8 GJ elektrische Energie, 1,0 GJ Energieinhalt des Dampfs). Im Vergleich dazu wird bei (PWMI 1993a) ein wesentlicher geringer Energiebedarf von 1,08 GJ/t GPPS genannt, der sich aus 0,80 GJ elektrischer Energie und 0,28 GJ an Energieträgern zusammensetzt. [Für die Herstellung von HIPS ist nach #3 ein vergleichbarer Energiebedarf, 0,60 GJ elektrische Energie und 0,33 GJ Energieträger, erforderlich]. Da bei #2 die weitaus detailliertesten Angaben vorliegen, wurden diese Werte als Kennziffern verwendet. Prozessbedingte Luftemissionen: Bei der Herstellung von Polystyrol sind prinzipiell Emissionen des monomeren Styrols in Betracht zu ziehen. In (OEKO 1992c) werden die prozeßbedingten VOC-Emissionen bei der Polystyrolherstellung abgeschätzt. Daraus ergibt sich ein Wert von ca. 1 kg VOC/t PS. Wasser: In #3 wird der Wasserbedarf zur Herstellung einer Tonne GPPS mit 1850 kg beziffert, hinzu kommen weitere 169 kg an Dampf.Im Hinblick auf Wasserverunreinigungen ist das Suspensionsverfahren (hauptsächlich für die Herstellung von EPS) relevant, bei dem die Polymerisation in wässrigem Medium durchgeführt wird. Beim Masseverfahren kommt das Produkt nur bei der Extrusion (Kühlung) in Kontakt mit Wasser. Angaben zu Abwasserwerten für das Masseverfahren sind in (Tellus 1992) enthalten. Im behandelten Abwasser wird dort für Benzol ein Wert von 0,048 g/t GPPS und für Phenol ein Wert von 0,56 g/t GPPS angegeben. Aus #1 kann entnommen werden, dass der BSB5-Wert gleich null ist. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 103% Produkt: Kunststoffe

Chem-Org\PS-DE-2020

Polystyrol-Polymerisation: GPPS (und HIPS) werden heute hauptsächlich über kontinuierliche Polymerisationsprozesse hergestellt. Bei dem Polymerisationsverfahren in Lösung werden in geringen Mengen Lösungsmittel wie Toluol oder Ethylbenzol hinzugegeben. Das Masseverfahren unterscheidet sich dadurch, dass hierbei kein Lösungsmittel zugesetzt wird. Vielmehr dient Styrol sowohl als Edukt als auch als Lösungsmittel. In der Reaktorsektion wird das monomere Styrol zu Polystyrol umgesetzt. Das Produktgemisch, das die Reaktorsektion verläßt hat eine Polystyrolkonzentration von 70-90 %. Nicht umgesetztes monomeres Styrol und Lösungsmittel werden abgetrennt und wieder dem Reaktionsprozeß zugeführt. An den eigentlichen Polymerisationsschritt schließt sich die Zugabe von Additiven (Farbstoffe, Stabilisatoren) zur Produktschmelze, die Extrusion, die Kühlung des Monomers und die Granulation an. Prozess-Situierung: Bei dem Thermoplast Polystyrol (PS) werden verschiedene Arten an PS unterschieden. GP(general-purpose)PS oder auch Standard- PS ist ein hartes, schmelzbares und transparentes Material. HI(high-impact)PS enthält ca. 3 - 10 % Polybutadien als Gummizusatz. Expandable PS (EPS) ist Ausgangsmaterial für PS-Hartschäume. Die Herstellung geht von PS unter Zugabe von ca. 6 % eines Schäumungsmittels (z.B. Pentan) aus. EPS (Handelsname: Styropor) wird sowohl für die Geräusch- als auch die Kälteisolierung eingesetzt. Es werden aber auch Werbe- und Sportartike (z.B. Schwimmwesten)l aus EPS hergestellt. Extrudierte Polystyrolschäume (XPS) werden aus PS und halogenierten Kohlenwasserstoffen als Treibmittel hergestellt. XPS findelt vor allem als thermisches Isoliermittel Anwendung. Weitere Produkte können durch den Zusatz von Copolymeren bei der Polymerisation von Styrol erhalten werden. In dieser Prozeßeinheit wird die Polymerisation von Styrol zu GPPS bilanziert. Nicht alle betrachteten Literaturquellen geben explizit an welches Polystyrol dort bilanziert wird. Es wird jedoch angenommen, daß das Standard-PS betrachtet wird bzw. die entsprechenden Angaben sich nicht wesentlich von denen für GPPS unterscheiden. Der jährliche Verbrauch an PS betrug 1990 weltweit ca. 6,7 Mio. Tonnen. Davon entfielen ca. 2 Mio. t auf Westeuropa (Ullmann 1992). In (APME 1994) wird für Westeuropa, 1994, eine Produktionsmenge von 1,998 Mio. t PS aufgeführt. In #3 werden Anlagen bilanziert, die ca. 0,70 Mio. t GPPS bzw. ca 0,63. Mio. t HIPS produzieren. Die Bilanzierung der PS-Polymerisation beruht auf den Literaturquellen (Ullmann 1992), (APME 1994), #1, #2, #3, (OEKO 1992c) und (Tellus 1992). Aufgrund der unterschiedlichen Datenherkunft kann der Gesamtprozeß weder einem bestimmten Zeitraum noch einer bestimmten Region zugeordnet werden. Die Massenbilanz bezieht sich auf die Produktion in Deutschland Ende der 80er Jahre (#1). Die Energiebilanz gibt Daten Anfang der 80er Jahre aus den USA wieder (#2). Die Emissionswerte beziehen sich sowohl auf die USA (Tellus 1992) als auch auf Westeuropa (OEKO 1992c, #1). Allokation: hier keine, aber in Vorketten (energetisch) Genese der Daten: - Massenbilanz: Nach #1 werden für die Herstellung einer Tonne Polystyrol (es ist anzunehmen, daß bei BUWAL GPPS bilanziert wird) 974,8 kg monomeres Styrol eingesetzt. Unter „Hilfsstoffe, Zusätze" werden weitere 31,2 kg aufgeführt, die nicht weiter spezifiziert sind. Diese Menge wird hier vernachlässigt. Bei der Polymerisation fällt eine Menge von 5,75 kg an nicht weiter spezifizierten „Nebenausbeuten" sowie 0,09 kg feste Abfälle an. Der Einsatz an Styrol stimmt gut mit den Angaben aus (Tellus 1992) bzw. #3 für die Herstellung von GPPS überein. Dort werden jeweils Werte von 980 kg Styrol und 30 bzw. 33 kg an Kohlenwasserstoffen genannt. Da bei BUWAL die ausführlichsten Angaben vorliegen, werden diese Daten für GEMIS verwendet. Energiebedarf: Die Prozessenergie zur Herstellung einer Tonne PS (Masseverfahren) wird in #2 mit insgesamt ca. 3,7 GJ/t PS beziffert (0,6 GJ elektrische Energie, 1,8 GJ Energieträger und 1,3 GJ Energieinhalt des eingesetzten Dampfs). Bei GEMIS wurde für den Einsatz des Energieträger ein Wirkungsgrad von 85 % zugundegelegt. Die entsprechende Energie wird (wie auch der eingesetzte Dampf) als Prozeaawärme (Industriemix, Summe aus Energieträger und Dampf: 2,8 GJ) bereitgestellt. Bei (Tellus 1992) wird ein fast identischer Energiebedarf von 3,8 GJ/t GPPS bilanziert (Masseverfahren: 2,8 GJ elektrische Energie, 1,0 GJ Energieinhalt des Dampfs). Im Vergleich dazu wird bei (PWMI 1993a) ein wesentlicher geringer Energiebedarf von 1,08 GJ/t GPPS genannt, der sich aus 0,80 GJ elektrischer Energie und 0,28 GJ an Energieträgern zusammensetzt. [Für die Herstellung von HIPS ist nach #3 ein vergleichbarer Energiebedarf, 0,60 GJ elektrische Energie und 0,33 GJ Energieträger, erforderlich]. Da bei #2 die weitaus detailliertesten Angaben vorliegen, wurden diese Werte als Kennziffern verwendet. Prozessbedingte Luftemissionen: Bei der Herstellung von Polystyrol sind prinzipiell Emissionen des monomeren Styrols in Betracht zu ziehen. In (OEKO 1992c) werden die prozeßbedingten VOC-Emissionen bei der Polystyrolherstellung abgeschätzt. Daraus ergibt sich ein Wert von ca. 1 kg VOC/t PS. Wasser: In #3 wird der Wasserbedarf zur Herstellung einer Tonne GPPS mit 1850 kg beziffert, hinzu kommen weitere 169 kg an Dampf.Im Hinblick auf Wasserverunreinigungen ist das Suspensionsverfahren (hauptsächlich für die Herstellung von EPS) relevant, bei dem die Polymerisation in wässrigem Medium durchgeführt wird. Beim Masseverfahren kommt das Produkt nur bei der Extrusion (Kühlung) in Kontakt mit Wasser. Angaben zu Abwasserwerten für das Masseverfahren sind in (Tellus 1992) enthalten. Im behandelten Abwasser wird dort für Benzol ein Wert von 0,048 g/t GPPS und für Phenol ein Wert von 0,56 g/t GPPS angegeben. Aus #1 kann entnommen werden, dass der BSB5-Wert gleich null ist. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 103% Produkt: Kunststoffe

Green Cooling Summit

Die Online-Konferenz"Green Cooling Summit" vom 25. bis 27. Mai 2021 brachte verschiedene Akteursgruppenaus der Kälte-und Klimatechnikbranche zusammen und vermittelteein umfassendes Bild zum Thema nachhaltige Kühlung. Veranstalter waren das Umweltbundesamt, die Deutsche Gesellschaft für internationale Zusammenarbeit (GIZ) und das Bundesministerium für Umwelt Naturschutz und nukleare Sicherheit.Der "Summit" bot einenÜberblick zur Frage, wie der HFKW Phase-down gemäß des Beschlusses von Kigali zum Montrealer Protokoll am besten mit der Nutzung vonnatürlichen Kältemitteln und verbesserter Energieeffizienz umgesetzt sowie politisch und technisch beschleunigt werden kann. Seitens der Vortragenden und Teilnehmenden wurde ein breites Kompetenzspektrum abgebildet. Sie repräsentierten politische Entscheidungsträger, Wissenschaftler, technische Beraterund Hersteller nachhaltiger Kühl-und Klimatechniken. Die Konferenz erstreckte sich über drei Tage, wobei jeder Tag einem anderen Schwerpunktthema gewidmet war. Der erste Tag konzentrierte sich auf die politischen Ansätze zur Umsetzung des HFKW Phasedown mit natürlichen Kältemitteln. Nachhaltige Kühl-und Klimatechniken sowie die sichere Nutzung natürlicher Kältemittel standen am zweiten Tag im Fokus. Am letzten Tag wurden neueste Forschungsergebnisse zu verschiedenen Themen, welche für Kühlung und Klimatisierung relevant sind, vorgestellt und diskutiert. Während der Konferenz konnten die Teilnehmenden auf die begleitende Veranstaltungsplattform zugreifen, dieu.a.mit einer virtuellen Messe,einer Kontaktvermittlungsoption und einer Auswahl an Videos zu klimafreundlichen Kühltechniken aufwartete. Die Einblicke und gute-Praxis-Beispiele, welche auf der Konferenzpräsentiert wurden, boten eine gute Grundlage die derzeitige Praxis im Kälte-/Klimabereich einer kritischen Überprüfung zu unterziehen und ermöglichten den Teilnehmerinnen und Teilnehmern, sich ein Bild von nachhaltigen Kühlungskonzepten, Standards und politischen Ansätzen zu machen. Insgesamt zeigten die Vorträge und Diskussionen, dass natürliche Kältemittel eine ökonomisch tragfähige und ökologisch nachhaltige Option darstellen, teilfluorierte Kohlenwasserstoffe (HFKW) und teilhalogenierte Fluorchlorkohlenwasserstoffe (HFCKW) zu ersetzen und damit das HFKW Phase-down gemäß des Beschlusses von Kigali zum Montrealer Protokoll einzuhalten. Es wurde jedoch auch deutlich, dass die bloße Einhaltung des Beschlusses nicht ausreichend ist, um einen ausreichend wirksamen Beitrag zum Klimaschutz zu leisten. Folgerichtig haben manche Staaten und Unternehmenbereits angekündigt, über die Ziele des Beschlusses von Kigali hinauszugehen, zum Beispiel der Inselstaat Grenada, der anstrebt, die erste HFKW-freie Insel der Welt zu werden. Der belgische Lebensmitteleinzelhändler Colruyt plant eine vollständige Umstellung seiner Märkte auf natürliche Kältemittel bereits bis zum Jahr 2030. Der überwiegende Teil der Vortragenden und Podiumsdiskussionsteilnehmenden stimmten darin überein, dass der Ersatz halogenierter Kältemittel durch natürliche jetzt erfolgen muss und keinen Aufschub duldet. Regierungshandeln wurde oft als einer der wichtigsten Faktoren für die breite Anwendung natürlicher Kältemittel genannt. Dies beinhaltet - Eine zeitnahe Umsetzung des Beschlusses von Kigali und beschleunigter HFKW Phase-down, - Anreize für die Nutzung von Techniken mit natürlichen Kältemitteln wie etwa verminderter Importsteuer und Förderprogramme (wie z.B.in Ghana), - Einschränkung und Verbotder HFKW-Nutzung (wie in der EU F-Gas-Verordnung EU umgesetzt), um einen verlässlichen Rahmen für Hersteller und Endverbraucher zu gewährleisten und - Weiterbildung von Kältetechnikern und Kapazitätsaufbau im Kälte-/Klimasektor. Nach Einschätzung einiger Sachverständiger liegt das Marktpotential von Anlagen und Geräten mit natürlichen Kältemitteln im gesamten Kälte-/Klimasektor zwischen 75 und 85 %. Andere gehen sogar davon aus, dass ein vollständiger Ersatz von HFKW nicht nur möglich, sondern folgerichtig ist. Anlagen und Geräte mit natürlichen Kältemitteln sind deutlich energieeffizienter (20-50 %) im Vergleich zu HFKW-Techniken. Im Fall von R290-Monosplit-Klimageräten ist ein Energieeffizienzvorteil von 10 bis 16 % in Abhängigkeit der Außentemperaturen im Vergleich zu R22-Gerätenzu verzeichnen. Interessanterweise weisen auch gewerbliche HFKW-Anlagen, die auf R290 (Propan) umgerüstet wurden, eine verbesserte Energieeffizienz auf. Solche Umrüstungen erfordern sorgfältige Begutachtung und Sicherheitsmaßnahmen, um die potentielle Brandgefahr auszuschließen. Der sichere Einsatz brennbarer Kältemittel wurde nicht als Hindernis, sondern eher als Herausforderung angesehen, dermit einem angemessenem Anlagenkonzept und technischen Maßnahmen wie etwa Gassensoren, Außenaufstellung und mehreren Kältekreisläufen in Flüssigkeitskühlern um die Füllmenge zu reduzieren, begegnet wird. Die Brennbarkeit ist in internationalen Normen sehr restriktiv adressiert, Änderungen sind jedoch bereits auf den Weg gebracht, z.B. in der Gerätenorm IEC 60335-2-40. Die überarbeitete Norm erleichtert den Einsatz von R290-Splitgeräten, auch bei solchen mit größerer Nennkälteleistung (bis zu 15 kW). Der informelle Sektor in Entwicklungsländern wird als Sicherheitsproblem wahrgenommen, da unzureichend ausgebildete Techniker ohne Zertifizierung oft in unangemessener Art und Weise mit brennbaren Kältemitteln umgehen. In mehreren Wortmeldungen und Diskussionen wurde angemerkt, dass die Überbetonung der Sicherheitsaspekte und die Aufschiebung des Übergangs zu natürlichen Kältemitteln nicht auf wissenschaftlichen Erkenntnissen basiert bzw. auf einen Mangel an halogenfreien Kühltechniken zurückzuführen ist. Dies ist vielmehr dem Eigeninteresse der Kältemittelindustrie geschuldet, welche die Vermarktung ihres Produktportfolios über entsprechende Einflussnahme auf die Normung vorantreibt, unter anderem auch durch die Errichtung von Hindernissen für natürliche Kältemittel. Darüber hinaus werden diese Profitinteressen seitens einiger Vertragsstaaten des Montrealer Protokolls unterstützt. Die Gewinnspannen natürlicher Kältemittel, welche teilweise Nebenprodukte der Öl-und Gasgewinnung sind oder im Falle von CO2(R744) aus Emissionengewonnen werden, sind vergleichsweise niedrig. Folglich werden diese von Herstellern von synthetischen Kältemitteln nicht in Betracht gezogen. Neueste Erkenntnisse zum Verbleib des ungesättigten HFKW-1234ze, welcher als Kältemittel und Treibmittel in der Polyurethanschaumherstellung verwendet wird, zeigten, dass dieser in der Atmosphäre zunächst zu Trifluoracetaldehyd (CF3COH) und anschließend zu HFKW-23 mit einer Ausbeute von 9 bis 12% abgebaut wird.Das bedeutet, dass die Klimawirkung von HFKW-1234ze mit einem GWP (Global Warming Potential) von 1.400 insgesamt deutlich größer ist als bisher angenommen. Dieser Befund wird dadurch gestützt, dass er in der Lage ist, den kürzlich beobachteten Anstieg der HFKW-23-Konzentration in der Atmosphäre zu erklären. HFKW-1234ze wird als Alternative für R134a (GWP=1.430) eingesetzt. Dieser Sachverhalt zeigt, dass falsche Entscheidungen bei der Auswahl der Anlagentechnik getroffen werden, wenn bei der Einschätzung der Umweltwirkung von Kältemitteln deren atmosphärische Zerfallsprodukte nicht berücksichtigt werden. Der urbane Hitzeinseleffekt, der den thermischen Komfort und die Gesundheit von Stadtbewohnern erheblich beeinträchtigt, kann durch Begrünung (Baumpflanzung, Errichtung grüner Fassaden und Dächer), blaue Infrastruktur (Teiche, Seen, Brunnen), Minderung von anthropogenen Wärmequellen, Verschattung und weitere Maßnahmen reduziert werden. Während die einen Sachverständigen angeben, dass Hitzeinseln die thermische Behaglichkeit in Innenräumen beeinflussen, gehen andere davon aus, dass dies zumindest im gemäßigten Breiten eher vernachlässigbar ist. Der Einfluss von Maßnahmenpaketen gegen den Hitzeinseleffekt ist relativ klein (1 bis 2 K) wenn lediglich Außenlufttemperaturen betrachtet werden. Im Gegensatz dazu können erhebliche Effekte von -10 K und mehr insbesondere durch Verschattungsmaßnahmen wie Baumpflanzungen und Sonnensegel beobachtet werden, wenn der Indikator Physiologisch äquivalente Temperatur (PET) herangezogen wird. Quelle: Forschungsbericht

1 2 3 4 547 48 49