<p>Im Schnitt nutzt jede Person in Deutschland täglich 126 Liter Trinkwasser im Haushalt. Für die Herstellung von Lebensmitteln, Bekleidung und anderen Bedarfsgütern wird dagegen so viel Wasser verwendet, dass es 7.200 Litern pro Person und Tag entspricht. Ein Großteil dieses indirekt genutzten Wassers wird für die Bewässerung von Obst, Gemüse, Nüssen, Getreide und Baumwolle benötigt.</p><p>Direkte und indirekte Wassernutzung</p><p>Jede Person in Deutschland verwendete im Jahr 2022 im Schnitt täglich 126 Liter <a href="https://www.umweltbundesamt.de/daten/wasserwirtschaft/oeffentliche-wasserversorgung">Trinkwasser</a>, etwa für Körperpflege, Kochen, Trinken, Wäschewaschen oder auch das Putzen (siehe Abb. „Trinkwasserverwendung im Haushalt 2023“). Darin ist auch die Verwendung von Trinkwasser im Kleingewerbe zum Beispiel in Metzgereien, Bäckereien und Arztpraxen enthalten. Der überwiegende Anteil des im Haushalt genutzten Trinkwassers wird für Reinigung, Körperpflege und Toilettenspülung verwendet. Nur geringe Anteile nutzen wir tatsächlich zum Trinken und für die Zubereitung von Lebensmitteln.</p><p>Die tägliche Trinkwassernutzung im Haushalt und Kleingewerbe ging von 144 Liter pro Kopf und Tag im Jahr 1991 lange Jahre zurück bis auf täglich 123 Liter pro Kopf im Jahr 2016. 2019 wurden von im Schnitt täglich 128 Liter pro Person verbraucht, 2022 waren es 126 Liter. Der Anstieg im Vergleich zu 2016 begründet sich durch den höheren Wasserbedarf in den jeweils heißen und trockenen Sommermonaten (siehe Abb. „Tägliche Wasserverwendung pro Kopf“).</p><p>Doch wir nutzen Wasser nicht nur direkt als Trinkwasser. In Lebensmitteln, Kleidungstücken und anderen Produkten ist indirekt Wasser enthalten, das für ihre industrielle Herstellung eingesetzt wurde oder für die Bewässerung während der landwirtschaftlichen Erzeugung. Dieses Wasser wird als virtuelles Wasser bezeichnet. Virtuelles Wasser zeigt an, wie viel Wasser für die Herstellung von Produkten benötigt wurde.</p><p>Deutschlands Wasserfußabdruck</p><p>Das virtuelle Wasser ist Teil des <a href="https://www.umweltbundesamt.de/themen/wasser/wasser-bewirtschaften/wasserfussabdruck">„Wasserfußabdrucks“</a>, der die direkt und indirekt verbrauchte Wassermenge einer Person, eines Unternehmens oder Landes angibt. Das Besondere des Konzepts ist, dass die Wassermenge, die in den Herstellungsregionen für die Produktion eingesetzt, verdunstet oder verschmutzt wird, mit dem Konsum dieser Waren im In- und Ausland in Verbindung gebracht wird. Der Wasserfußabdruck macht deutlich, dass sich unser Konsum auf die Wasserressourcen weltweit auswirkt. Der durch Konsum verursachte, kurz konsuminduzierte Wasserfußabdruck eines Landes, wird auf folgende Weise berechnet; in den Klammern werden die Werte des Jahres 2021 für Deutschland in Milliarden Kubikmetern (Mrd. m³) ausgewiesen:</p><p><strong>Nutzung heimischer Wasservorkommen – Export virtuellen Wassers (= 30,66 Mrd. m³) + Import virtuellen Wassers (188,34 Mrd. m³) = konsuminduzierter Wasserfußabdruck (219 Mrd. m³)</strong></p><p>Bei einem Wasserfußabdruck von 219 Milliarden Kubikmetern hinterlässt jede Person in Deutschland durch ihren Konsum einen Wasserfußabdruck von rund 2.628 Kubikmetern jährlich – das sind 7,2 Kubikmeter oder 7.200 Liter täglich. 86 % des Wassers, das man für die Herstellung der in Deutschland konsumierten Waren benötigt, wird im Ausland verbraucht. Für Kleidung sind es sogar nahezu 100 %.</p><p>Grünes, blaues und graues Wasser</p><p>Beim Wasserfußabdruck wird zwischen „grünem“, „blauem“ und „grauem“ Wasser unterschieden. Als „grün“ gilt natürlich vorkommendes Boden- und Regenwasser, welches Pflanzen aufnehmen und verdunsten. Als „blau“ wird Wasser bezeichnet, das aus Grund- und Oberflächengewässern entnommen wird, um Produkte wie Textilien herzustellen oder Felder und Plantagen zu bewässern. Vor allem Agrarprodukte haben einen großen Anteil am blauen Wasserfußabdruck von Deutschland (siehe Abb. „Sektoren mit den höchsten Beiträgen blauen Wassers zum Wasserfußabdruck von Deutschland“). Der graue Wasserfußabdruck veranschaulicht die Verunreinigung von Süßwasser durch die Herstellung eines Produkts. Er ist definiert als die Menge an Süßwasser, die erforderlich ist, um Gewässerverunreinigungen so weit zu verdünnen, dass die Wasserqualität die gesetzlichen oder vereinbarten Anforderungen einhält.</p><p>Bei den nach Deutschland eingeführten Agrarrohstoffen und Baumwollerzeugnissen sind die Anteile an grünem, blauem und grauem Wasser auch bei gleichen Produkten je nach Herkunft unterschiedlich hoch:</p><p>Bei der Entnahme von blauem Wasser zur Bewässerung von Plantagen kann es zu ökologischen Schäden und lokalen Nutzungskonflikten kommen. Ein bekanntes Beispiel ist der Aralsee: Der einst viertgrößte Binnensee der Erde war im Jahr 1960 mit einer Fläche von 67.500 Quadratkilometern nur etwas kleiner als Bayern. Heute bedeckt er aufgrund gigantischer Wasserentnahmen für den Anbau von Baumwolle und Weizen nur noch etwa 10 % seiner ehemaligen Fläche. Bis 2014 verlor er 95 % seines Wasservolumens bei einem gleichzeitigen Anstieg des Salzgehalts um das Tausendfache. Auch in weiteren Gebieten auf der ganzen Welt trägt der Konsum in Deutschland dazu bei, dass deren Belastbarkeit überschritten wird (siehe Karte „Hotspots des Blauwasserverbrauchs mit Überschreitung der Belastbarkeitsgrenzen durch Konsum in Deutschland“).</p>
Durch ReFoPlan-Vorhaben FKZ 3719654080 (UBA Texte 20/2023) ist eine Stoffliste mit 639 bekannten Kontaminanten der Trinkwasserressourcen (55 Studien von 2000 bis 2019, Uferfiltrat, Grundwasser, Rohwasser, Trinkwasser) erstellt worden. 311 sind REACH-registriert. Davon sind 24 % als PMT/vPvM-Stoffe klassifizierbar, aber 42 % sind bisher nicht auf Persistenz getestet worden und können deswegen nicht durch die EU-Behörden unter REACH reguliert werden. Eine Priorisierung der Stoffliste erfolgt bis Ende 2023 durch ein Sachverständigengutachten in IV 2.3. Gleichzeitig zeigt das ReFoPlan-Vorhaben FKZ 3720644080 (UBA Texte xx/2023) für den OECD TG 309 eine hohe Priorisierung zur Testguidelineüberarbeitung (55 Kommentare und Platz 5 von 36). Das ReFoPlan-Vorhaben 'P-Ident2' FKZ xxxx (UBA Texte xx/2023) wiederum hat bewiesen, dass eine Testung von Mischungen persistente Stoffe identifizieren kann. Ziel dieses Forschungsvorhaben ist es, auf aktuelle Forschungsergebnisse aufzubauen und am Beispiel der bisher bekannten Kontaminanten der Trinkwasserressourcen, eine innovative, gestufte 'bottom up' Teststrategie zu entwickeln. Die Teststrategie soll zeitsparend, preiswert und zuverlässig die persistenten Chemikalien aus einer Stoffliste identifizieren, ohne dabei teure radioaktive Testsubstanzen einsetzen zu müssen. Zuerst werden Mischungen der Testsubstanzen (ca. 40 pro Test) in modifizierten OECD TG 309 Testsystemen bei niedrigen Konzentrationen mit biotischen und abiotischen Kontrollen getestet. Im zweiten Schritt wird die Abbaubarkeit jeder einzelner Testsubstanz durch das Verhältnis zwischen biotischen und abiotischen Peakflächen bewertet. Durch Wiederholung des ersten Schrittes in unterschiedlichen Kombinationen sollen systematische Fehler sowie Unsicherheiten minimiert werden. Der dritte Schritt ist das Ranking innerhalb der Stoffliste. Im letzten Schritt erfolgt für die priorisierten persistenten Chemikalien ein einfacher OECD TG 309 Test.
Das Konzept von Refill Deutschland ist simpel und einfach: Läden mit dem Refill Aufkleber am Fenster oder der Tür füllen kostenfrei Leitungswasser in jedes mitgebrachte Trinkgefäß. Im März 2017 in Hamburg gestartet, ist Refill Deutschland inzwischen zu einer deutschlandweiten Bewegung geworden! Durch das großartige Engagement von vielen Ehrenamtlichen helfen wir aktiv mit, dem Plastikwahnsinn ein Ende zu bereiten und auf die Ressourcenverschwendung und Verschmutzung durch Plastikmüll hinzuweisen.
Die Firma FAWA Fahrzeugwaschanlagen GmbH ist seit über 30 Jahren in der Fahrzeugreinigungsbranche tätig. Aktuell betreibt das Unternehmen zwei maschinelle Fahrzeugwaschanlagen im Stadtgebiet der Universitätsstadt Gießen. Beim Betrieb von Autowaschanlagen werden dem Waschwasser verschiedene Stoffe zugefügt, beispielsweise Tenside, Säuren oder Laugen zur Erhöhung der Reinigungsleistung. Außerdem gelangen bedingt durch den Reinigungsprozess selbst organische und anorganische Substanzen in den Wasserkreislauf. In Deutschland wird die Behandlung von Abwässern aus Autowaschanlagen im Rahmen der Abwasserverordnung geregelt. Zudem wird darin zwar auch festgelegt, dass Waschwasser weitestgehend im Kreislauf zu führen ist, allerdings greift diese Regelung nicht für SB-Waschplätze, da es sich hierbei nicht um eine maschinelle, sondern um eine manuelle Fahrzeugreinigung handelt. Standard-SB-Waschplätze haben allgemein folgenden Aufbau: Die Bodenabläufe der SB-Waschplätze enthalten selbst separate Schlamm- und Sandfänge, oder werden über Rohrleitungen in einen zentralen Schlammfang geführt. Danach ist ein Leichtflüssigkeitsabscheider installiert. Das verbrauchte Waschwasser wird dann in die Kanalisation eingeleitet, da die Qualität des Abwassers für eine Kreislaufführung nicht ausreicht. Im Rahmen dieses UIP-Projekts ist ein Kfz-Waschpark mit SB-Waschplätzen geplant, der mit Regenwassernutzung und einer membranbasierten Wasseraufbereitung ausgestattet ist und so fast komplett ohne Frischwasser auskommt. Darüber hinaus wird ein CO 2 -neutraler Betrieb mit Energieversorgung durch PV-Anlage und Energiespeicher sowie eine innovative Wärmerückgewinnung aus dem Betrieb von speziellen SB-Staubsaugern angestrebt. Durch die Realisierung des Vorhabens werden regenerative Energien effizient genutzt, Regenwasser verwendet und der Einsatz von Chemikalien minimiert. Durch Kreisläufe wird Grauwasser wieder zu Nutzwasser. Anfallende Wärme wird in den energetischen Kreislauf eingebunden und minimiert damit den energetischen Aufwand. Die Nutzung von Regenwasser reduziert im Projekt die projizierte notwendige Menge von Frischwasser auf null, wenn Niederschläge, wie in den vergangenen Jahren fallen. Wenn kein Regenwasser zur Verfügung steht, kann die nötige Qualität auch mittels Umkehrosmose erzeugt werden. Das Wasser, welches normalerweise aufgrund seiner hohen Salzfracht ins Stadtnetz eingeleitet werden würde, kann hier einfach zurück in den Entnahmebehälter geleitet werden. Dort vermischt es sich im Betrieb wieder mit dem Osmosewasser und kann so ohne Weiteres erneut aufbereitet werden. Der Bedarf an Osmosewasser beträgt etwa 20 Prozent des Gesamtbedarfs. Die Bereitstellung des Wassers durch die Aufbereitungsanlage folgt einfachen Regeln, welche in der Steuerung über die Zeit in Abhängigkeit vom Nutzungsverhalten, Wetterdaten und damit u.a. dem PV-Strom Aufkommen optimiert werden. Im weiteren Betrieb optimiert sich die Anlage bezüglich genauerer Vorhersagen, was die täglichen Bedarfsmengen betrifft. Gegenüber einer herkömmlichen Anlage werden voraussichtlich mindestens 1.050 Kubikmeter, gegenüber einer effizienten Anlage immer noch ca. 350 Kubikmeter Frischwasser eingespart. Regenwasser hat eine geringere Härte, dadurch und durch eine Erhöhung der Prozesswassertemperatur um ca. 5 Grad Celsius kann eine Reduzierung von bis zu 35 Prozent der schaumbildenden Chemie erreicht werden. Es können ca. 440 Liter Chemikalien eingespart werden. Trotz der 100-prozentigen Einsparung von Frischwasser kann die innovative Anlage mit dem gleichen Energiebedarf wie eine herkömmliche Anlage betrieben werden. Der Gesamtenergiebedarf reduziert sich bei der Projektanlage um ca. 6.800 Kilowattstunden auf 11.503 Kilowattstunden pro Jahr, was einer Reduktion von etwa 40 Prozent gegenüber einer effizienten Anlage entspricht. Besonders an der Anlage ist vor allem die sehr gute Übertragbarkeit der einzelnen Technologien in der Branche. Die Komponenten können fast alle, teilweise in abgewandelter Form, einfach in bereits bestehende SB-Waschanlagen, Portalanlagen und Waschstraßen integriert und nachgerüstet werden. Branche: Grundstücks- und Wohnungswesen und Sonstige Dienstleistungen Umweltbereich: Ressourcen Fördernehmer: FAWA Fahrzeugwaschanlagen GmbH Bundesland: Hessen Laufzeit: seit 2023 Status: Laufend
Trinkwasserleitung in der Samtgemeinde Gartow vom Landkreis Lüchow-Dannenberg. Dargestellt sind die Trinkwasserleitung der Samtgemeinde Gartow wie sie in den 80er und 90er Jahren kartiert wurden.
WebMapService (WMS) mit den Probestellen aus der Trinkwasserdatenbank ZTEIS in Hamburg. Der WMS-Dienst unterliegt Datenschutzrechtlichen Bestimmungen und ist ausschließlich für die Visualisierung im Trinkwasserportal. In der Trinkwasserdatenbank ZTEIS (zentrales Trinkwassererfassungs- und Informationssystem) werden Untersuchungsergebnisse gesammelt, die vom Trinkwasserlabor der Hamburger Wasserwerke nach § 14 Trinkwasserverordnung (TrinkwV) und vom Institut für Hygiene und Umwelt nach § 19 TrinkwV durchgeführt werden. Die Untersuchungen erfolgen im Rahmen der Umsetzung der Trinkwasserverordnung und und stammen sowohl aus den Wasserwerken, wie auch aus dem Leitungsnetz. Der Behörde für Gesundheit und Verbraucherschutz (BGV) obliegt die Überprüfung der öffentlichen Wasserversorgung. Die Datenbank hat primär den Zweck, die Berichterstattung gemäß § 21 TrinkwV zu gewährleisten. Seit 2003 werden in der Trinkwasserdatenbank ca. 24.000 Proben mit ca. 1,2 Mio. Untersuchungsergebnissen (Stand Februar 2014) gespeichert. Zur genaueren Beschreibung der Daten und Datenverantwortung nutzen Sie bitte den Verweis zur Datensatzbeschreibung.
Die Eignung von Regenwasser in Zisternen (bei sachgemaesser techn. Ausfuehrung) ist fuer die Nutzungsarten WC-Spuelung, Gartenberegnung und Waeschewaschen nicht mehr umstritten. Aus diesem Grunde ist es sinnvoll die Dachablaufwaesser in Regenwassernutzungsanlagen (RWNA) zu sammeln und fuer o.g. Nutzungsarten zu verwenden. Auf diese Art kann teures Trinkwasser eingespart, das Kanalisationsnetz und die techn. Klaerwerke entlastet werden. In vielen Regionen der BRD reicht jedoch der Niederschlag fuer o.g. Nutzungsarten nicht aus, so dass eine Nachspeisung der Zisterne zwingend notwendig wird. Anstelle der Nachspeisung mit Trinkwasser koennte auch gereinigtes Grauwasser zum Einsatz kommen; Voraussetzung: es ist in seiner Beschaffenheit vergleichbar mit Regenwasser. Hauptproblem sind hierbei die hohen Konzentrationen von Tensiden, die ueber die Waschmittel in das Grauwasser gelangen. Ziel des Versuches ist es das Grauwasser mittels bepflanzten Bodenfiltern so gut zu Reinigen, dass die Grenzwerte der EU-RL ueber die Qualitaet der Badegewaesser eingehalten bzw. unterschritten werden koennen.
| Origin | Count |
|---|---|
| Bund | 2853 |
| Kommune | 242 |
| Land | 872 |
| Wissenschaft | 24 |
| Zivilgesellschaft | 32 |
| Type | Count |
|---|---|
| Daten und Messstellen | 22 |
| Ereignis | 18 |
| Förderprogramm | 2163 |
| Text | 666 |
| Umweltprüfung | 64 |
| Videomaterial | 1 |
| unbekannt | 579 |
| License | Count |
|---|---|
| geschlossen | 873 |
| offen | 2577 |
| unbekannt | 62 |
| Language | Count |
|---|---|
| Deutsch | 3201 |
| Englisch | 467 |
| andere | 4 |
| Resource type | Count |
|---|---|
| Archiv | 24 |
| Bild | 18 |
| Datei | 271 |
| Dokument | 353 |
| Keine | 1885 |
| Multimedia | 2 |
| Unbekannt | 12 |
| Webdienst | 44 |
| Webseite | 1191 |
| Topic | Count |
|---|---|
| Boden | 2261 |
| Lebewesen und Lebensräume | 3512 |
| Luft | 1635 |
| Mensch und Umwelt | 3512 |
| Wasser | 3511 |
| Weitere | 3512 |