Grundwasser ist weltweit die wichtigste Trinkwasserressource. Seine Menge und Qualität werden u.a. durch nicht nachhaltige Nutzung, diffuse Schadstoffeinträge und Veränderungen der biogeochemischen Verhältnisse beeinträchtigt. Grundwasserschutz erfordert die Betrachtung des gekoppelten terrestrischen Hydrosystems mit Atmosphären- und Landoberflächenprozessen, Oberflächengewässern, der ungesättigten Bodenzone und den Grundwasserleitern im Einzugsgebietsmaßstab. Die zugehörige Prozessbeschreibung ist unsicher, wird durch Heterogenität beeinflusst und unterliegt permanentem Wandel. Für die nachhaltige Bewirtschaftung von Grundwasserressourcen unter Klima- und Landnutzungswandel sind Modelle erforder-lich, die alle relevanten hydrologischen und (bio)geochemischen Prozesse als gekoppeltes, wechselwirken-des System simulieren. Solche physikalisch-basierten Modelle finden allmählich ersten Eingang in die Wassermengenwirtschaft. Erweiterungen in Bezug auf Wasserqualität stehen jedoch am Anfang und sind mit Schwierigkeiten auf der konzeptionellen Ebene sowie im Upscaling auf die Einzugsgebietsskala konfrontiert. Die Hauptziele des Internationalen Graduiertenkollegs liegen darin (a) Spezialisten aller relevanten Unterdisziplinen für die integrierte Bewertung und Modellierung gekoppelter Hydrosysteme von den Universitäten Tübingen, Waterloo (Kanada), Hohenheim und Stuttgart zusammenzubringen, (b) Doktoranden in den zugrundeliegenden hydrologischen und (bio)geochemischen Prozessen sowie ihrer Modellierung auf der Einzugsgebietsskala gemeinsam auszubilden und (c) Modellwerkzeuge weiterzuentwickeln, um die Prozesse, welche die Wasserqualität auf der Einzugsgebietsskala bestimmen, unter Berücksichtigung der internen Heterogenität und veränderter Antriebe besser zu verstehen. Das Forschungsprogramm ist in vier Themenbereiche gegliedert: A: Flüsse an der Landoberfläche, B: Biogeochemische Reaktionen in Einzugsgebieten, C: Unsicherheitsbewertung großskaliger Modelle und D: Natürliche Entwicklung von Einzugsgebieten. Das Qualifizierungsprogramm umfasst (i) eine Institutionen übergreifende Betreuung, (ii) obligatorische Forschungs- und Ausbildungsaufenthalte an der Partnerinstitution, (iii) gemeinsame Frühjahrs/Herbstschulen, (iv) die Teilnahme an einem strukturierten Doktorandenprogramm und (v) die Förderung von Schlüsselqualifikationen zur Erhöhung der Arbeitsmarktfähigkeit nach dem Abschluss. Das Qualitätsmanagement beruht auf dem plan-do-check-act Prinzip.
Die Ausweisung von Wasserschutzgebieten (WSG) dient dem Schutz des Grundwassers vor schädlichen Einwirkungen und damit der Trinkwasserressourcen für die öffentliche Wasserversorgung. Erfasst und fortgeschrieben werden - von der Planung bis zur Festsetzung - die nach § 51 des Wasserhaushaltsgesetzes (WHG) sowie § 45und § 95 des Wassergesetzes (WG) ausgewiesenen/auszuweisenden WSG. Die Abgrenzung der Schutzzonen wird nach hydrogeologischen Gegebenheiten vom Landesamt für Geologie, Rohstoffe und Bergbau Baden-Württemberg durchgeführt. Ein WSG kann aus bis zu 5 von insgesamt 7 verschiedenen Wasserschutzgebietszonen (WSG-Zone) bestehen: - Zone I (Fassungsbereich) - Zone II oder Zonen IIA und IIB (Engere Schutzzonen) - Zone III oder Zonen IIIA und IIIB (Weitere Schutzzonen) In jeder Zone gelten eigene Ge- und Verbote, die in der Rechtsverordnung festgehalten sind. Für die Ausweisung von Wasserschutzgebieten per Rechtsverordnung sind die unteren Wasserbehörden zuständig. Differenziert wird nach festgesetzten, vorläufig angeordneten und nicht festgesetzten Gebieten. Der im Internet veröffentlichte Datenbestand umfasst die rechtskräftig festgesetzten, vorläufig angeordneten, fachtechnisch abgegrenzten und im Festsetzungsverfahren befindlichen Wasserschutzgebiete sowie die festgesetzten und vorläufig angeordneten Wasserschutzgebietszonen in Baden-Württemberg. Für die Geometriedaten dient das Amtliche Liegenschaftskatasterinformationssystem (ALKIS) als Erfassungsgrundlage.
Die Ausweisung von Wasserschutzgebieten (WSG) dient dem Schutz des Grundwassers vor schädlichen Einwirkungen und damit der Trinkwasserressourcen für die öffentliche Wasserversorgung. Erfasst und fortgeschrieben werden - von der Planung bis zur Festsetzung - die nach § 51 des Wasserhaushaltsgesetzes (WHG) sowie § 45und § 95 des Wassergesetzes (WG) ausgewiesenen/auszuweisenden WSG. Die Abgrenzung der Schutzzonen wird nach hydrogeologischen Gegebenheiten vom Landesamt für Geologie, Rohstoffe und Bergbau Baden-Württemberg durchgeführt. Ein WSG kann aus bis zu 5 von insgesamt 7 verschiedenen Wasserschutzgebietszonen (WSG-Zone) bestehen: - Zone I (Fassungsbereich) - Zone II oder Zonen IIA und IIB (Engere Schutzzonen) - Zone III oder Zonen IIIA und IIIB (Weitere Schutzzonen) In jeder Zone gelten eigene Ge- und Verbote, die in der Rechtsverordnung festgehalten sind. Für die Ausweisung von Wasserschutzgebieten per Rechtsverordnung sind die unteren Wasserbehörden zuständig. Differenziert wird nach festgesetzten, vorläufig angeordneten und nicht festgesetzten Gebieten. Der im Internet veröffentlichte Datenbestand umfasst die rechtskräftig festgesetzten, vorläufig angeordneten, fachtechnisch abgegrenzten und im Festsetzungsverfahren befindlichen Wasserschutzgebiete sowie die festgesetzten und vorläufig angeordneten Wasserschutzgebietszonen in Baden-Württemberg. Für die Geometriedaten dient das Amtliche Liegenschaftskatasterinformationssystem (ALKIS) als Erfassungsgrundlage.
Die Ausweisung von Wasserschutzgebieten (WSG) dient dem Schutz des Grundwassers und damit der Trinkwasserressourcen. In diesen Gebieten dürfen durch oberirdische Nutzungen keine Schadstoffe in den Untergrund und das Grundwasser gelangen. Ein WSG besteht aus verschiedenen Wasserschutzgebietszonen, um das Grundwasser im Einzugsgebiet einer Wasserentnahme vor nachteiligen Einwirkungen zu schützen.
Für Milliarden Menschen weltweit, vor allem aber für jene in Küstengebieten, ist Grundwasser die primäre Quelle für Trinkwasser. Weltweit sind die verfügbaren Grundwasserressourcen durch steigende Wasserentnahmen gefährdet, dies gilt vor allem für küstennahe Aquifere, da diese zusätzlich von Salzwasserintrusion bedroht sind. Gleichzeitig ist der Grundwasserabfluss in die Ozeane ein wichtiger Prozess für aquatische Ökosysteme. Das sich wandelnde Klima und die steigenden Meeresspiegel werden die Küstengrundwasserdynamiken weiter verändern.Kürzlich entwickelte globale Grundwassermodelle bieten die Möglichkeit, diese globalen Herausforderungen sichtbar werden zu lassen. COASTGUARD stellt sich zur Aufgabe die Parametrisierung dieser neuartigen Modelle an der Randbedingung Ozean genauer zu untersuchen und dabei Unsicherheiten zu quantifizieren. Die Projektergebnisse werden der Forschungsgemeinschaft weltweit helfen, großskalige Küstengrundwasserprozesse besser zu verstehen und diese mit lokalen Erkenntnissen in Zusammenhang zu setzen. COASTGUARD wird nicht nur zu einem besseren Verständnis der Dynamiken von Küstengrundwasserprozessen beitragen, sondern auch Implikationen für die zukünftige Frischwasserverfügbarkeit zulassen. Außerdem wird COASTGUARD weltweit Regionen aufzeigen, welche besonders durch ein sich änderndes Klima betroffen sind.COASTGUARD bietet damit die einmalige Gelegenheit: (1) Unsicherheiten der globalen Grundwassermodellierung zu untersuchen und deren Parametrisierung an der so wichtigen Schnittstelle Ozean zu verbessern, (2) neue Erkenntnisse darüber zu liefern, welche Prozesse bezüglich der Dynamik zwischen Grundwasser und Meer auf einer globalen Skala dominant sind sowie (3) die weltweite Quantifizierung von Salzwasserintrusion und Grundwasserabfluss im Kontext von Klimawandel und dem steigenden Meeresspiegel darzustellen.
Die rasche Verstädterung und das Bevölkerungswachstum haben in den heutigen Gesellschaften neue Probleme geschaffen. Zu diesen Problemen gehören die Verknappung der Trinkwasserressourcen, Schwierigkeiten bei der Abfallbewirtschaftung, Luftverschmutzung, Verkehrsstaus und eine sich verschlechternde und veraltete Infrastruktur. Neben der zunehmenden Dringlichkeit einer nachhaltigen Entwicklung haben Fortschritte in der Mathematik und im Data Science das Konzept der "Smart Cities" zur Lösung dieser Probleme hervorgebracht. Die Versorgung der Menschen mit einer sicheren, zuverlässigen und kostengünstigen Trinkwasserversorgung ist von größter Bedeutung für die Gesundheit in der Gesellschaft, die Wirtschaft und die Politik. Daher ist der Zugang zu sauberem Wasser und sanitären Einrichtungen als eines der 17 Ziele in der Agenda 2030 für nachhaltige Entwicklung der Vereinten Nationen enthalten (https://sdgs.un.org/goals). In diesem Zusammenhang sind die Wasserversorgungsnetze (WDN) das Herzstück jeder intelligenten Stadt und erfordern neue Überlegungen und Entwicklungen, um intelligenter verwaltet und betrieben zu werden. Eines der Hauptprobleme in WDNs sind Lecks im System. Leckagen führen zu einem spürbaren Verlust von sauberem Wasser, was zu umgekehrten Leckagen, Verunreinigungen durch Grundwasser und ernsthaften Betriebsschwierigkeiten führen kann. Eine frühzeitige Leckerkennung spart Wasser und verhindert, dass sich kleine Lecks zu Wassereinbrüchen ausweiten. Daher sind Einrichtungen zur frühzeitigen Leckerkennung für jedes intelligente WDN unerlässlich, um Verluste und die Gefahr von Leckagen zu verringern. SMARTWINE zielt darauf ab, das Potenzial einer Kombination aus maschinellem Lernen (ML), Graphentheorie und Optimierungstechniken zu erforschen und zu nutzen, um zuverlässige, schnelle und einfach zu bedienende Methoden zur Echtzeit-Leckerkennung und Alarmierung in WDNs zu entwickeln.
LuproCess zielt auf die Gewinnung hochwertiger, weitestgehend nativer und funktioneller Protein- und Faserfraktionen aus Schmalblättriger Bitterlupine (Lupinus angustifolius L.) für die Humanernährung ab. Aus der gewonnen Proteinfraktion sollen im hier skizzierten Projekt Fleischersatzprodukte entwickelt werden. In LuproCess soll die bei der Proteingewinnung anfallende Faserfraktion auf ein lebensmittelgeeignetes Qualitätsniveau aufbereitet und als Zusatz bei der High-Moisture-Extrusion eingesetzt werden. Die bei der Faseraufbereitung abgeschiedenen antinutritiven Substanzen - Chinolizidinalkaloide und Oligosaccharide sowie Mineralstoffe - werden dem Prozesswasser mittels Nanofiltration entzogen und separiert, wodurch es im geschlossenen Kreis wiederverwendet werden kann. Die Chinolizidinalkaloide können als pflanzliche Sekundärmetaboliten mit bioaktiver Wirkung zu biologischen Pflanzenschutzmitteln und/oder medizinischen/veterinärmedizinischen Wirkstoffen weiterentwickelt werden. Um die Ressourceneffizienz durchgängig zu gewährleisten sollen Nebenstromketten bereits ab dem Schälprozess der Lupinensaaten vor dem Flockieren verfolgt werden. Im Rahmen der hier beschriebenen Forschungsvorhaben wird die Lupine als weitere alternative nachhaltige und ernährungsphysiologisch vorteilhafte Proteinquelle erschlossen. Des Weiteren leistet das Forschungsvorhaben einen Beitrag zur Ressourcenschonung oder sogar Ressourcenaufwertung, indem die Lupinenfasern als anfallender Nebenstrom zur Aufwertung der Textur und somit des Mundgefühls von extrudierten Fleischersatzprodukten eingesetzt werden. Darüber hinaus ist der benötigte hohe Wasserbedarf für die Diafiltration eine nicht zu akzeptierende Belastung der Trinkwasserressourcen. Ziel ist es hier das gesamte Prozesswasser für die zusätzlichen Waschungsstufen in den Prozesskreislauf zurückzuführen.
| Origin | Count |
|---|---|
| Bund | 141 |
| Kommune | 1 |
| Land | 38 |
| Type | Count |
|---|---|
| Ereignis | 1 |
| Förderprogramm | 100 |
| Text | 51 |
| Umweltprüfung | 1 |
| unbekannt | 25 |
| License | Count |
|---|---|
| geschlossen | 73 |
| offen | 103 |
| unbekannt | 2 |
| Language | Count |
|---|---|
| Deutsch | 147 |
| Englisch | 52 |
| Resource type | Count |
|---|---|
| Archiv | 3 |
| Bild | 3 |
| Datei | 3 |
| Dokument | 30 |
| Keine | 95 |
| Unbekannt | 1 |
| Webdienst | 4 |
| Webseite | 72 |
| Topic | Count |
|---|---|
| Boden | 178 |
| Lebewesen und Lebensräume | 163 |
| Luft | 118 |
| Mensch und Umwelt | 178 |
| Wasser | 178 |
| Weitere | 178 |